1
|
Cahalan SD, Boehm I, Jones RA, Piercy RJ. Recognising the potential of large animals for modelling neuromuscular junction physiology and disease. J Anat 2022; 241:1120-1132. [PMID: 36056593 PMCID: PMC9558152 DOI: 10.1111/joa.13749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 12/28/2022] Open
Abstract
The aetiology and pathophysiology of many diseases of the motor unit remain poorly understood and the role of the neuromuscular junction (NMJ) in this group of disorders is particularly overlooked, especially in humans, when these diseases are comparatively rare. However, elucidating the development, function and degeneration of the NMJ is essential to uncover its contribution to neuromuscular disorders, and to explore potential therapeutic avenues to treat these devastating diseases. Until now, an understanding of the role of the NMJ in disease pathogenesis has been hindered by inherent differences between rodent and human NMJs: stark contrasts in body size and corresponding differences in associated axon length underpin some of the translational issues in animal models of neuromuscular disease. Comparative studies in large mammalian models, including examination of naturally occurring, highly prevalent animal diseases and evaluation of their treatment, might provide more relevant insights into the pathogenesis and therapy of equivalent human diseases. This review argues that large animal models offer great potential to enhance our understanding of the neuromuscular system in health and disease, and in particular, when dealing with diseases for which nerve length dependency might underly the pathogenesis.
Collapse
Affiliation(s)
- Stephen D Cahalan
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, University of London, London, UK
| | - Ines Boehm
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK.,Biozentrum University of Basel, Basel, Switzerland
| | - Ross A Jones
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Richard J Piercy
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, University of London, London, UK
| |
Collapse
|
2
|
Majumdar S, Gupta S, Krishnamurthy S. Multifarious applications of bioactive glasses in soft tissue engineering. Biomater Sci 2021; 9:8111-8147. [PMID: 34766608 DOI: 10.1039/d1bm01104a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tissue engineering (TE), a new paradigm in regenerative medicine, repairs and restores the diseased or damaged tissues and eliminates drawbacks associated with autografts and allografts. In this context, many biomaterials have been developed for regenerating tissues and are considered revolutionary in TE due to their flexibility, biocompatibility, and biodegradability. One such well-documented biomaterial is bioactive glasses (BGs), known for their osteoconductive and osteogenic potential and their abundant orthopedic and dental clinical applications. However, in the last few decades, the soft tissue regenerative potential of BGs has demonstrated great promise. Therefore, this review comprehensively covers the biological application of BGs in the repair and regeneration of tissues outside the skeleton system. BGs promote neovascularization, which is crucial to encourage host tissue integration with the implanted construct, making them suitable biomaterial scaffolds for TE. Moreover, they heal acute and chronic wounds and also have been reported to restore the injured superficial intestinal mucosa, aiding in gastroduodenal regeneration. In addition, BGs promote regeneration of the tissues with minimal renewal capacity like the heart and lungs. Besides, the peripheral nerve and musculoskeletal reparative properties of BGs are also reported. These results show promising soft tissue regenerative potential of BGs under preclinical settings without posing significant adverse effects. Albeit, there is limited bench-to-bedside clinical translation of elucidative research on BGs as they require rigorous pharmacological evaluations using standardized animal models for assessing biomolecular downstream pathways.
Collapse
Affiliation(s)
- Shreyasi Majumdar
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India.
| | - Smriti Gupta
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India.
| | - Sairam Krishnamurthy
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India.
| |
Collapse
|
3
|
Dynamic flow priming programs allow tuning up the cell layers properties for engineered vascular graft. Sci Rep 2021; 11:14666. [PMID: 34282200 PMCID: PMC8290030 DOI: 10.1038/s41598-021-94023-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/29/2021] [Indexed: 12/15/2022] Open
Abstract
Tissue engineered vascular grafts (TEVG) are potentially clear from ethical and epidemiological concerns sources for reconstructive surgery for small diameter blood vessels replacement. Here, we proposed a novel method to create three-layered TEVG on biocompatible glass fiber scaffolds starting from flat sheet state into tubular shape and to train the resulting tissue by our developed bioreactor system. Constructed tubular tissues were matured and trained under 3 types of individual flow programs, and their mechanical and biological properties were analyzed. Training in the bioreactor significantly increased the tissue burst pressure resistance (up to 18 kPa) comparing to untrained tissue. Fluorescent imaging and histological examination of trained vascular tissue revealed that each cell layer has its own individual response to training flow rates. Histological analysis suggested reverse relationship between tissue thickness and shear stress, and the thickness variation profiles were individual between all three types of cell layers. Concluding: a three-layered tissue structure similar to physiological can be assembled by seeding different cell types in succession; the following training of the formed tissue with increasing flow in a bioreactor is effective for promoting cell survival, improving pressure resistance, and cell layer formation of desired properties.
Collapse
|
4
|
Alvites RD, Branquinho MV, Sousa AC, Lopes B, Sousa P, Mendonça C, Atayde LM, Maurício AC. Small Ruminants and Its Use in Regenerative Medicine: Recent Works and Future Perspectives. BIOLOGY 2021; 10:biology10030249. [PMID: 33810087 PMCID: PMC8004958 DOI: 10.3390/biology10030249] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/16/2022]
Abstract
Simple Summary Small ruminants such as sheep and goats have been increasingly used as animal models due to their dimensions, physiology and anatomy identical to those of humans. Their low costs, ease of accommodation, great longevity and easy handling make them advantageous animals to be used in a wide range of research work. Although there is already a lot of scientific literature describing these species, their use still lacks some standardization. The purpose of this review is to summarize the general principles related to the use of small ruminants as animal models for scientific research. Abstract Medical and translational scientific research requires the use of animal models as an initial approach to the study of new therapies and treatments, but when the objective is an exploration of translational potentialities, classical models fail to adequately mimic problems in humans. Among the larger animal models that have been explored more intensely in recent decades, small ruminants, namely sheep and goats, have emerged as excellent options. The main advantages associated to the use of these animals in research works are related to their anatomy and dimensions, larger than conventional laboratory animals, but very similar to those of humans in most physiological systems, in addition to their low maintenance and feeding costs, tendency to be docile, long life expectancies and few ethical complications raised in society. The most obvious disadvantages are the significant differences in some systems such as the gastrointestinal, and the reduced amount of data that limits the comparison between works and the validation of the characterization essays. Despite everything, recently these species have been increasingly used as animal models for diseases in different systems, and the results obtained open doors for their more frequent and advantageous use in the future. The purpose of this review is to summarize the general principles related to the use of small ruminants as animal models, with a focus on regenerative medicine, to group the most relevant works and results published recently and to highlight the potentials for the near future in medical research.
Collapse
Affiliation(s)
- Rui Damásio Alvites
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Mariana Vieira Branquinho
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Ana Catarina Sousa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Bruna Lopes
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Patrícia Sousa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Carla Mendonça
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Luís Miguel Atayde
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Ana Colette Maurício
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (C.M.); (L.M.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
- Correspondence: ; Tel.: +351-919-071-286 or +351-220-428-000
| |
Collapse
|
5
|
Ribitsch I, Baptista PM, Lange-Consiglio A, Melotti L, Patruno M, Jenner F, Schnabl-Feichter E, Dutton LC, Connolly DJ, van Steenbeek FG, Dudhia J, Penning LC. Large Animal Models in Regenerative Medicine and Tissue Engineering: To Do or Not to Do. Front Bioeng Biotechnol 2020; 8:972. [PMID: 32903631 PMCID: PMC7438731 DOI: 10.3389/fbioe.2020.00972] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022] Open
Abstract
Rapid developments in Regenerative Medicine and Tissue Engineering has witnessed an increasing drive toward clinical translation of breakthrough technologies. However, the progression of promising preclinical data to achieve successful clinical market authorisation remains a bottleneck. One hurdle for progress to the clinic is the transition from small animal research to advanced preclinical studies in large animals to test safety and efficacy of products. Notwithstanding this, to draw meaningful and reliable conclusions from animal experiments it is critical that the species and disease model of choice is relevant to answer the research question as well as the clinical problem. Selecting the most appropriate animal model requires in-depth knowledge of specific species and breeds to ascertain the adequacy of the model and outcome measures that closely mirror the clinical situation. Traditional reductionist approaches in animal experiments, which often do not sufficiently reflect the studied disease, are still the norm and can result in a disconnect in outcomes observed between animal studies and clinical trials. To address these concerns a reconsideration in approach will be required. This should include a stepwise approach using in vitro and ex vivo experiments as well as in silico modeling to minimize the need for in vivo studies for screening and early development studies, followed by large animal models which more closely resemble human disease. Naturally occurring, or spontaneous diseases in large animals remain a largely untapped resource, and given the similarities in pathophysiology to humans they not only allow for studying new treatment strategies but also disease etiology and prevention. Naturally occurring disease models, particularly for longer lived large animal species, allow for studying disorders at an age when the disease is most prevalent. As these diseases are usually also a concern in the chosen veterinary species they would be beneficiaries of newly developed therapies. Improved awareness of the progress in animal models is mutually beneficial for animals, researchers, human and veterinary patients. In this overview we describe advantages and disadvantages of various animal models including domesticated and companion animals used in regenerative medicine and tissue engineering to provide an informed choice of disease-relevant animal models.
Collapse
Affiliation(s)
- Iris Ribitsch
- Veterm, Department for Companion Animals and Horses, University Equine Hospital, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Pedro M. Baptista
- Laboratory of Organ Bioengineering and Regenerative Medicine, Health Research Institute of Aragon (IIS Aragon), Zaragoza, Spain
| | - Anna Lange-Consiglio
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Luca Melotti
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Marco Patruno
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Florien Jenner
- Veterm, Department for Companion Animals and Horses, University Equine Hospital, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Eva Schnabl-Feichter
- Clinical Unit of Small Animal Surgery, Department for Companion Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Luke C. Dutton
- Department of Clinical Sciences and Services, Royal Veterinary College, Hertfordshire, United Kingdom
| | - David J. Connolly
- Clinical Unit of Small Animal Surgery, Department for Companion Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Frank G. van Steenbeek
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Jayesh Dudhia
- Department of Clinical Sciences and Services, Royal Veterinary College, Hertfordshire, United Kingdom
| | - Louis C. Penning
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
6
|
Wang W, Degrugillier L, Tremp M, Prautsch K, Sottaz L, Schaefer DJ, Madduri S, Kalbermatten D. Nerve Repair With Fibrin Nerve Conduit and Modified Suture Placement. Anat Rec (Hoboken) 2018; 301:1690-1696. [PMID: 30353694 DOI: 10.1002/ar.23921] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/21/2018] [Accepted: 04/05/2018] [Indexed: 12/15/2022]
Abstract
Sutureless nerve repair has been regarded as a promising technique for nerve repair as the suture materials often results in neuroma formation and scar tissue that impede nerve regeneration. The aim of this study was to analyze the mechanical stability and morphological outcome of sutureless repair using fibrin glue conduit and an alternative approach of modified suture placement. Using rat sciatic nerve, we tested the following experimental conditions: conventional suture repair; single suture combined with fibrin glue repair, and fibrin conduit reinforced with modified suture or fibrin glue. Nerve detachment anatomical measures such as axon density, myelin, and fiber caliber were analyzed for evaluation of nerve regeneration. Muscle atrophy were evaluated by muscle wet weight and H&E staining. All animals in sutureless repair group exhibited complete detachment or elongation by two or four weeks after repair. No detachment was found in any other groups. Animals treated with fibrin conduit reinforced with modified suture showed better axonal regeneration with good alignment. There were no significant differences in axon caliber among the groups. Muscle atrophy was found in all groups and there was no significant difference in muscle wet-weight among the groups. In summary, sutureless nerve repair with fibrin glue was mechanically unstable for resistance of mechanical stretches, fibrin glue conduit with modified suture placement is mechanically stable and resulted in better morphological outcome. Anat Rec, 301:1690-1696, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Wenjin Wang
- Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospital Basel, CH-4031, Basel, Switzerland.,Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai, 200011, China
| | - Lucas Degrugillier
- Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospital Basel, CH-4031, Basel, Switzerland
| | - Mathias Tremp
- Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospital Basel, CH-4031, Basel, Switzerland
| | - Katharina Prautsch
- Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospital Basel, CH-4031, Basel, Switzerland
| | - Lima Sottaz
- Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospital Basel, CH-4031, Basel, Switzerland
| | - Dirk J Schaefer
- Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospital Basel, CH-4031, Basel, Switzerland
| | - Srinivas Madduri
- Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospital Basel, CH-4031, Basel, Switzerland.,Department of Biomedicine, University of Basel, CH-4031, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, CH-4123, Allschwil, Switzerland
| | - Daniel Kalbermatten
- Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospital Basel, CH-4031, Basel, Switzerland
| |
Collapse
|
7
|
Yi S, Xu L, Gu X. Scaffolds for peripheral nerve repair and reconstruction. Exp Neurol 2018; 319:112761. [PMID: 29772248 DOI: 10.1016/j.expneurol.2018.05.016] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/05/2018] [Accepted: 05/13/2018] [Indexed: 12/22/2022]
Abstract
Trauma-associated peripheral nerve defect is a widespread clinical problem. Autologous nerve grafting, the current gold standard technique for the treatment of peripheral nerve injury, has many internal disadvantages. Emerging studies showed that tissue engineered nerve graft is an effective substitute to autologous nerves. Tissue engineered nerve graft is generally composed of neural scaffolds and incorporating cells and molecules. A variety of biomaterials have been used to construct neural scaffolds, the main component of tissue engineered nerve graft. Synthetic polymers (e.g. silicone, polyglycolic acid, and poly(lactic-co-glycolic acid)) and natural materials (e.g. chitosan, silk fibroin, and extracellular matrix components) are commonly used along or together to build neural scaffolds. Many other materials, including the extracellular matrix, glass fabrics, ceramics, and metallic materials, have also been used to construct neural scaffolds. These biomaterials are fabricated to create specific structures and surface features. Seeding supporting cells and/or incorporating neurotrophic factors to neural scaffolds further improve restoration effects. Preliminary studies demonstrate that clinical applications of these neural scaffolds achieve satisfactory functional recovery. Therefore, tissue engineered nerve graft provides a good alternative to autologous nerve graft and represents a promising frontier in neural tissue engineering.
Collapse
Affiliation(s)
- Sheng Yi
- Key laboratory of neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Lai Xu
- Key laboratory of neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Xiaosong Gu
- Key laboratory of neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
8
|
Diogo CC, Camassa JA, Pereira JE, Costa LMD, Filipe V, Couto PA, Geuna S, Maurício AC, Varejão AS. The use of sheep as a model for studying peripheral nerve regeneration following nerve injury: review of the literature. Neurol Res 2017; 39:926-939. [DOI: 10.1080/01616412.2017.1331873] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Camila Cardoso Diogo
- Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, UTAD, Vila Real, Portugal
| | - José Arthur Camassa
- Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, UTAD, Vila Real, Portugal
| | - José Eduardo Pereira
- Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, UTAD, Vila Real, Portugal
- CECAV, Centre for Animal Sciences and Veterinary Studies, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Luís Maltez da Costa
- Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, UTAD, Vila Real, Portugal
- CECAV, Centre for Animal Sciences and Veterinary Studies, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Vítor Filipe
- Department of Engineering, School of Science and Technology, University of Trás-os-Montes e Alto Douro, UTAD, Vila Real, Portugal
- INESC TEC, Porto, Portugal
| | - Pedro Alexandre Couto
- Department of Engineering, School of Science and Technology, University of Trás-os-Montes e Alto Douro, UTAD, Vila Real, Portugal
- CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, University of Turin, Torino, Italy
| | - Ana Colette Maurício
- Department of Veterinary Clinics, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (UP), Porto, Portugal
- Animal Science and Study Centre (CECA), Food and Agrarian Sciences and Technologies Institute (ICETA), University of Porto, Porto, Portugal
| | - Artur Severo Varejão
- Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, UTAD, Vila Real, Portugal
- CECAV, Centre for Animal Sciences and Veterinary Studies, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| |
Collapse
|
9
|
Aibibu D, Hild M, Wöltje M, Cherif C. Textile cell-free scaffolds for in situ tissue engineering applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:63. [PMID: 26800694 PMCID: PMC4723636 DOI: 10.1007/s10856-015-5656-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/20/2015] [Indexed: 05/12/2023]
Abstract
In this article, the benefits offered by micro-fibrous scaffold architectures fabricated by textile manufacturing techniques are discussed: How can established and novel fiber-processing techniques be exploited in order to generate templates matching the demands of the target cell niche? The problems related to the development of biomaterial fibers (especially from nature-derived materials) ready for textile manufacturing are addressed. Attention is also paid on how biological cues may be incorporated into micro-fibrous scaffold architectures by hybrid manufacturing approaches (e.g. nanofiber or hydrogel functionalization). After a critical review of exemplary recent research works on cell-free fiber based scaffolds for in situ TE, including clinical studies, we conclude that in order to make use of the whole range of favors which may be provided by engineered fibrous scaffold systems, there are four main issues which need to be addressed: (1) Logical combination of manufacturing techniques and materials. (2) Biomaterial fiber development. (3) Adaption of textile manufacturing techniques to the demands of scaffolds for regenerative medicine. (4) Incorporation of biological cues (e.g. stem cell homing factors).
Collapse
Affiliation(s)
- Dilbar Aibibu
- Technische Universität Dresden, Fakultät Maschinenwesen, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik, 01062, Dresden, Germany.
| | - Martin Hild
- Technische Universität Dresden, Fakultät Maschinenwesen, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik, 01062, Dresden, Germany
| | - Michael Wöltje
- Technische Universität Dresden, Fakultät Maschinenwesen, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik, 01062, Dresden, Germany
| | - Chokri Cherif
- Technische Universität Dresden, Fakultät Maschinenwesen, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik, 01062, Dresden, Germany
| |
Collapse
|
10
|
|
11
|
Progress and perspectives of neural tissue engineering. Front Med 2015; 9:401-11. [DOI: 10.1007/s11684-015-0415-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/06/2015] [Indexed: 10/22/2022]
|
12
|
Fabrication and characterization of poly-(ε)-caprolactone and bioactive glass composites for tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 49:632-639. [DOI: 10.1016/j.msec.2015.01.060] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/20/2014] [Accepted: 01/14/2015] [Indexed: 11/22/2022]
|
13
|
Sabri F, Gerth D, Tamula GRM, Phung TCN, Lynch KJ, Boughter Jr JD. Novel Technique for Repair of Severed Peripheral Nerves in Rats Using Polyurea Crosslinked Silica Aerogel Scaffold. J INVEST SURG 2014; 27:294-303. [DOI: 10.3109/08941939.2014.906688] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Gu X, Ding F, Williams DF. Neural tissue engineering options for peripheral nerve regeneration. Biomaterials 2014; 35:6143-56. [PMID: 24818883 DOI: 10.1016/j.biomaterials.2014.04.064] [Citation(s) in RCA: 411] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 04/16/2014] [Indexed: 12/19/2022]
Abstract
Tissue engineered nerve grafts (TENGs) have emerged as a potential alternative to autologous nerve grafts, the gold standard for peripheral nerve repair. Typically, TENGs are composed of a biomaterial-based template that incorporates biochemical cues. A number of TENGs have been used experimentally to bridge long peripheral nerve gaps in various animal models, where the desired outcome is nerve tissue regeneration and functional recovery. So far, the translation of TENGs to the clinic for use in humans has met with a certain degree of success. In order to optimize the TENG design and further approach the matching of TENGs with autologous nerve grafts, many new cues, beyond the traditional ones, will have to be integrated into TENGs. Furthermore, there is a strong requirement for monitoring the real-time dynamic information related to the construction of TENGs. The aim of this opinion paper is to specifically and critically describe the latest advances in the field of neural tissue engineering for peripheral nerve regeneration. Here we delineate new attempts in the design of template (or scaffold) materials, especially in the context of biocompatibility, the choice and handling of support cells, and growth factor release systems. We further discuss the significance of RNAi for peripheral nerve regeneration, anticipate the potential application of RNAi reagents for TENGs, and speculate on the possible contributions of additional elements, including angiogenesis, electrical stimulation, molecular inflammatory mediators, bioactive peptides, antioxidant reagents, and cultured biological constructs, to TENGs. Finally, we consider that a diverse array of physicochemical and biological cues must be orchestrated within a TENG to create a self-consistent coordinated system with a close proximity to the regenerative microenvironment of the peripheral nervous system.
Collapse
Affiliation(s)
- Xiaosong Gu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS 226001, China.
| | - Fei Ding
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS 226001, China
| | - David F Williams
- Wake Forest Institute of Regenerative Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW To present the most current literature regarding the management of acute and chronic facial paralysis. This review will focus primarily on smile reanimation in the setting of acute and chronic facial paralysis. The management of the flaccid and the hypertonic face will be discussed. RECENT FINDINGS Recent developments include advances in neural repair with fibrin glue and the use of cadaveric nerve grafts as interposition grafts. Advances in nerve substitutes have been shown to limit donor-site morbidity and provide similar outcomes to autografts. Techniques for muscle transfer continue to evolve to improve smile outcomes. SUMMARY The goal of facial reanimation surgery is to restore meaningful facial movement. The goal should be to have quality-driven clinical practice guidelines to better facilitate patient care. This process must be initiated by facial reanimation surgeons deciding to use consistent outcome measures to report their results. Currently, it is impossible to make a direct comparison between different surgical techniques because of inconsistent methods of evaluation. Despite the lack of consistent quantitative evaluation, there have been many exciting advances in the field.
Collapse
|
16
|
The Comparison of Histological Results of Experimentally Created Facial Nerve Defects Repaired by 2 Different Anastomosis Techniques. J Craniofac Surg 2014; 25:652-6. [DOI: 10.1097/scs.0000000000000605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
17
|
Siemionow M, Uygur S, Ozturk C, Siemionow K. Techniques and materials for enhancement of peripheral nerve regeneration: a literature review. Microsurgery 2013; 33:318-28. [PMID: 23568681 DOI: 10.1002/micr.22104] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 02/05/2013] [Accepted: 02/11/2013] [Indexed: 11/07/2022]
Abstract
Peripheral nerve surgery performed under unfavorable conditions results in increased scar formation and suboptimal clinical outcomes. Providing the operated nerve with a protective barrier, reduces fibrosis and adhesion formation and may lead to improved outcomes. The ideal coverage material should prevent scar and adhesion formation, and maintain nerve gliding during motion. Nerve protection using autologous tissues has shown good results, but shortcomings include donor site morbidity and limited availability. Various types of methods and materials have been used to protect nerves. There are both advantages and disadvantages associated with the various materials and techniques. In this report we summarize currently used protective materials applied for nerve coverage under various surgical conditions.
Collapse
Affiliation(s)
- Maria Siemionow
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, OH 44195, USA.
| | | | | | | |
Collapse
|
18
|
Kettle SJA, Starritt NE, Glasby MA, Hems TEJ. End-to-side nerve repair in a large animal model: how does it compare with conventional methods of nerve repair? J Hand Surg Eur Vol 2013; 38:192-202. [PMID: 22570321 DOI: 10.1177/1753193412445119] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A large animal (sheep) model was used to compare nerve axon regeneration and return of muscle function after a median-to-ulnar nerve end-to-side neurorrhaphy technique with conventional, clinically established, methods of nerve repair and untreated controls. Three groups of sheep were allocated to end-to-side repair (12 animals), a conventional method of nerve repair (18 animals), or a control group (eight animals). After a year nerve repairs were assessed electrophysiologically and histologically, and the muscles supplied by the repaired nerves were assessed physiologically. There were no significant differences in the outcomes of nerve repair between different conventional techniques. Half of the end-to-side nerve repairs supported nerve regeneration. The functional outcomes of the end-to-side repairs were inferior to conventional techniques which were, in turn, inferior to controls. End-to-side neurorrhaphy supported nerve regeneration, but the reliability of this technique is called into question and its use as a clinical tool can only be recommended as a salvage procedure.
Collapse
Affiliation(s)
- S J A Kettle
- Peripheral Nerve Research Group, Department of Clinical Neurosciences, University of Edinburgh, Western General Hospital, Edinburgh, UK.
| | | | | | | |
Collapse
|