1
|
Schulz-Hildebrandt H, Spasic S, Hou F, Ting KC, Batts S, Tearney G, Stankovic KM. Dynamic micro-optical coherence tomography enables structural and metabolic imaging of the mammalian cochlea. Front Mol Neurosci 2024; 17:1436837. [PMID: 39449964 PMCID: PMC11499234 DOI: 10.3389/fnmol.2024.1436837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/10/2024] [Indexed: 10/26/2024] Open
Abstract
Sensorineural hearing loss (SNHL) is caused by damage to the mechanosensory hair cells and auditory neurons of the cochlea. The development of imaging tools that can directly visualize or provide functional information about a patient's cochlear cells is critical to identify the pathobiological defect and determine the cells' receptiveness to emerging SNHL treatments. However, the cochlea's small size, embedded location within dense bone, and sensitivity to perturbation have historically precluded high-resolution clinical imaging. Previously, we developed micro-optical coherence tomography (μOCT) as a platform for otologic imaging in animal models and human cochleae. Here we report on advancing μOCT technology to obtain simultaneously acquired and co-localized images of cell viability/metabolic activity through dynamic μOCT (DμOCT) imaging of intracellular motion. DμOCT obtains cross-sectional images of ATP-dependent movement of intracellular organelles and cytoskeletal polymerization by acquiring sequential μOCT images and computing intensity fluctuation frequency metrics on a pixel-wise basis. Using a customized benchtop DμOCT system, we demonstrate the detailed resolution of anatomical and metabolic features of cells within the organ of Corti, via an apical cochleostomy, in freshly-excised adult mouse cochleae. Further, we show that DμOCT is capable of capturing rapid changes in cochlear cell metabolism following an ototoxic insult to induce cell death and actin stabilization. Notably, as few as 6 frames can be used to reconstruct cochlear DμOCT images with sufficient detail to discern individual cells and their metabolic state. Taken together, these results motivate future development of a DμOCT imaging probe for cellular and metabolic diagnosis of SNHL in humans.
Collapse
Affiliation(s)
- Hinnerk Schulz-Hildebrandt
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Svetolik Spasic
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Fang Hou
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Kuan-Chung Ting
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Shelley Batts
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Guillermo Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Pathology, Massachusetts General Hospital, Boston, MA, United States
- Harvard-MIT Division of Health Science and Technology, Cambridge, MA, United States
| | - Konstantina M. Stankovic
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, United States
| |
Collapse
|
2
|
Sriram S, Creighton FX, Galaiya D. Autonomous Robotic Systems in Otolaryngology-Head and Neck Surgery. Otolaryngol Clin North Am 2024; 57:767-779. [PMID: 38971627 DOI: 10.1016/j.otc.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Robotic surgery is a growing field with increasing applications to patient care. With the rising use of artificial intelligence (AI), a new frontier emerges, allowing semiautonomous robotics. This article reviews the origins of robotic surgery and subsequent trials of automaticity in all fields. It then describes specific nascent robotic and semiautonomous surgical prototypes within the field of otolaryngology. Finally, broader systemic considerations are posited regarding the implementation of AI-driven robotics in surgery.
Collapse
Affiliation(s)
- Shreya Sriram
- Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Francis X Creighton
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Deepa Galaiya
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Hospital, Baltimore, MD, USA.
| |
Collapse
|
3
|
Menke C, Kluge M, Welke B, Lenarz T, Majdani O, S. Rau T. Pull-Out Strength of Orthodontic Miniscrews in the Temporal Bone. J Otolaryngol Head Neck Surg 2024; 53:19160216241248669. [PMID: 38903014 PMCID: PMC11191615 DOI: 10.1177/19160216241248669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/07/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Minimally invasive cochlear implant surgery by using a microstereotactic frame demands solid connection to the bone. We aimed to determine the stability of commercially available orthodontic miniscrews to evaluate their feasibility for frame's fixation. In addition, which substitute material most closely resembles the mechanical properties of the human temporal bone was evaluated. METHODS Pull-out tests were carried out with five different types of orthodontic miniscrews in human temporal bone specimens. Furthermore, short fiber filled epoxy (SFFE), solid rigid polyurethane (SRPU50), bovine femur, and porcine iliac bone were evaluated as substitute materials. In total, 57 tests in human specimens and 180 tests in the substitute materials were performed. RESULTS In human temporal bone, average pull-out forces ranged from 220 N to 285 N between screws. Joint stiffness in human temporal bone ranged between 14 N/mm and 358 N/mm. Statistically significant differences between the tested screws were measured in terms of stiffness and elastic energy. One screw type failed insertion due to tip breakage. No significant differences occurred between screws in maximum pull-out force. The average pull-out values of SFFE were 14.1 N higher compared to human specimen. CONCLUSION Orthodontic miniscrews provided rigid fixation when partially inserted in human temporal bone, as evidenced by pull-out forces and joint stiffness. Average values exceeded requirements despite variations between screws. Differences in stiffness and elastic energy indicate screw-specific interface mechanics. With proper insertion, orthodontic miniscrews appear suitable for microstereotactic frame anchoring during minimally invasive cochlear implant surgery. However, testing under more complex loading is needed to better predict clinical performance. For further pull-out tests, the most suitable substitute material is SFFE.
Collapse
Affiliation(s)
- Christian Menke
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | | | - Bastian Welke
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic Surgery, Hannover Medical School, Hannover, Germany
| | - Thomas Lenarz
- Department of Otolaryngology and Cluster of Excellence, “Hearing4all,” Hannover Medical School, Hannover, Germany
| | - Omid Majdani
- Department of Otolaryngology, Medizincampus Wolfsburg der Universitätsmedizin Göttingen, Wolfsburg, Germany
| | - Thomas S. Rau
- Department of Otolaryngology and Cluster of Excellence, “Hearing4all,” Hannover Medical School, Hannover, Germany
| |
Collapse
|
4
|
Heuninck E, Van de Heyning P, Van Rompaey V, Mertens G, Topsakal V. Audiological outcomes of robot-assisted cochlear implant surgery. Eur Arch Otorhinolaryngol 2023; 280:4433-4444. [PMID: 37043021 DOI: 10.1007/s00405-023-07961-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/03/2023] [Indexed: 04/13/2023]
Abstract
PURPOSE The main objective of this study is to evaluate the short-term and long-term audiological outcomes in patients who underwent cochlear implantation with a robot-assisted system to enable access to the cochlea, and to compare outcomes with a matched control group of patients who underwent cochlear implantation with conventional access to the cochlea. METHODS In total, 23 patients were implanted by robot-assisted cochlear implant surgery (RACIS). To evaluate the effectiveness of robotic surgery in terms of audiological outcomes, a statistically balanced control group of conventionally implanted patients was created. Minimal outcome measures (MOM), consisting of pure-tone audiometry, speech understanding in quiet and speech understanding in noise were performed pre-operatively and at 3 months, 6 months, 12 months and 2 years post-activation of the audioprocessor. RESULTS There was no statistically significant difference in pure-tone audiometry, speech perception in quiet and speech perception in noise between robotically implanted and conventionally implanted patients pre-operatively, 3 months, 6 months, 12 months and 2 years post-activation. A significant improvement in pure-tone hearing thresholds, speech understanding in quiet and speech understanding in noise with the cochlear implant has been quantified as of the first measurements at 3 months and this significant improvement remained stable over a time period of 2 years for HEARO implanted patients. CONCLUSION Clinical outcomes in robot-assisted cochlear implant surgery are comparable to conventional cochlear implantation. CLINICALTRAILS. GOV TRAIL REGISTRATION NUMBERS NCT03746613 (date of registration: 19/11/2018), NCT04102215 (date of registration: 25/09/2019).
Collapse
Affiliation(s)
- Emilie Heuninck
- Department of Otorhinolaryngology Head and Neck Surgery, University Hospital Brussels, Vrije Universiteit Brussel, Brussels Health Campus, Brussels, Belgium.
| | - Paul Van de Heyning
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, Antwerp, Belgium
- Experimental Laboratory of Translational Neurosciences and Dento-Otolaryngology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Vincent Van Rompaey
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, Antwerp, Belgium
- Experimental Laboratory of Translational Neurosciences and Dento-Otolaryngology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Griet Mertens
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, Antwerp, Belgium
- Experimental Laboratory of Translational Neurosciences and Dento-Otolaryngology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Vedat Topsakal
- Department of Otorhinolaryngology Head and Neck Surgery, University Hospital Brussels, Vrije Universiteit Brussel, Brussels Health Campus, Brussels, Belgium
| |
Collapse
|
5
|
Geiger L, Zuniga MG, Lenarz T, Majdani O, Rau TS. Drilling accuracy evaluation of a mouldable surgical targeting system for minimally invasive access to anatomic targets in the temporal bone. Eur Arch Otorhinolaryngol 2023; 280:4371-4379. [PMID: 37010602 PMCID: PMC10477231 DOI: 10.1007/s00405-023-07925-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/13/2023] [Indexed: 04/04/2023]
Abstract
PURPOSE Minimally invasive cochlear implant surgery using a micro-stereotactic surgical targeting system with on-site moulding of the template aims for a reliable, less experience-dependent access to the inner ear under maximal reduction of trauma to anatomic structures. We present an accuracy evaluation of our system in ex-vivo testing. METHODS Eleven drilling experiments were performed on four cadaveric temporal bone specimens. The process involved preoperative imaging after affixing the reference frame to the skull, planning of a safe trajectory preserving relevant anatomical structures, customization of the surgical template, execution of the guided drilling and postoperative imaging for determination of the drilling accuracy. Deviation between the drilled and desired trajectories was measured at different depths. RESULTS All drilling experiments were successfully performed. Other than purposely sacrificing the chorda tympani in one experiment, no other relevant anatomy, such as facial nerve, chorda tympani, ossicles or external auditory canal were harmed. Deviation between the desired and achieved path was found to be 0.25 ± 0.16 mm at skulls' surface and 0.51 ± 0.35 mm at the target level. The closest distance of the drilled trajectories' outer circumference to the facial nerve was 0.44 mm. CONCLUSIONS We demonstrated the usability for drilling to the middle ear on human cadaveric specimen in a pre-clinical setting. Accuracy proved to be suitable for many applications such as procedures within the field of image-guided neurosurgery. Promising approaches to reach sufficient submillimetre accuracy for CI surgery have been outlined.
Collapse
Affiliation(s)
- Lena Geiger
- Department of Otolaryngology and Cluster of Excellence EXC 2177/1 "Hearing4all", Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - M Geraldine Zuniga
- Department of Otolaryngology and Cluster of Excellence EXC 2177/1 "Hearing4all", Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Ear Medical Group, San Antonio, TX, USA
- Tecnologico de Monterrey, Instituto de Otorrinolaringologia, Hospital Zambrano Hellion, TecSalud, San Pedro Garza Garcia, Mexico
| | - Thomas Lenarz
- Department of Otolaryngology and Cluster of Excellence EXC 2177/1 "Hearing4all", Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Omid Majdani
- Department of Otolaryngology and Cluster of Excellence EXC 2177/1 "Hearing4all", Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Thomas S Rau
- Department of Otolaryngology and Cluster of Excellence EXC 2177/1 "Hearing4all", Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
6
|
Evaluation of a Less Invasive Cochlear Implant Surgery in OPA1 Mutations Provoking Deafblindness. Genes (Basel) 2023; 14:genes14030627. [PMID: 36980899 PMCID: PMC10048538 DOI: 10.3390/genes14030627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/10/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Cochlear implantation (CI) for deafblindness may have more impact than for non-syndromic hearing loss. Deafblind patients have a double handicap in a society that is more and more empowered by fast communication. CI is a remedy for deafness, but requires revision surgery every 20 to 25 years, and thus placement should be minimally invasive. Furthermore, failed reimplantation surgery will have more impact on a deafblind person. In this context, we assessed the safety of minimally invasive robotically assisted cochlear implant surgery (RACIS) for the first time in a deafblind patient. Standard pure tone audiometry and speech audiometry were performed in a patient with deafblindness as part of this robotic-assisted CI study before and after surgery. This patient, with an optic atrophy 1 (OPA1) (OMIM#165500) mutation consented to RACIS for the second (contralateral) CI. The applicability and safety of RACIS were evaluated as well as her subjective opinion on her disability. RACIS was uneventful with successful surgical and auditory outcomes in this case of deafblindness due to the OPA1 mutation. RACIS appears to be a safe and beneficial intervention to increase communication skills in the cases of deafblindness due to an OPA1 mutation. The use of RACIS use should be widespread in deafblindness as it minimizes surgical trauma and possible failures.
Collapse
|
7
|
Robot-Assisted Electrode Insertion in Cochlear Implantation Controlled by Intraoperative Electrocochleography-A Pilot Study. J Clin Med 2022; 11:jcm11237045. [PMID: 36498620 PMCID: PMC9737018 DOI: 10.3390/jcm11237045] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
Robotics in otology has been developing in many directions for more than two decades. Current clinical trials focus on more accurate stapes surgery, minimally invasive access to the cochlea and less traumatic insertion of cochlear implant (CI) electrode arrays. In this study we evaluated the use of the RobOtol® (Collin, Bagneux, France) otologic robot to insert CI electrodes into the inner ear with intraoperative ECochG analysis. This prospective, pilot study included two adult patients implanted with Advanced Bionics (Westinghouse PI, CA, USA) cochlear implant, with HiFocus™ Mid-Scala electrode array. The standard surgical approach was used. For both subjects, who had residual hearing in the implanted ear, intraoperative and postoperative ECochG was performed with the AIMTM system. The surgeries were uneventful. A credible ECochG response was obtained after complete electrode insertion in both cases. Preoperative BC thresholds compared to intraoperative estimated ECochG thresholds and 2-day postoperative BC thresholds had similar values at frequencies where all thresholds were measurable. The results of the ECochG performed one month after the surgery showed that in both patients the hearing residues were preserved for the selected frequencies. The RobOtol® surgical robot allows for the correct, safe and gentle insertion of the cochlear implant electrode inside the cochlea. The use of electrocochleography measurements during robotic cochlear implantation offers an additional opportunity to evaluate and modify the electrode array insertion on an ongoing basis, which may contribute to the preservation of residual hearing.
Collapse
|
8
|
Robotics and cochlear implant surgery: goals and developments. Curr Opin Otolaryngol Head Neck Surg 2022; 30:314-319. [PMID: 36036531 DOI: 10.1097/moo.0000000000000837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Cochlear implantation (CI) is a viable option for patients with severe sensorineural hearing loss. Advances in CI have focused on minimizing cochlear trauma to improve hearing preservation outcomes, and in doing so expanding candidacy to patients with useful cochlear reserve. Robotics holds promise as a potential tool to minimize intracochlear trauma with electrode insertion, improve surgical efficiency, and reduce surgical complications. The purpose of this review is to summarize efforts and advances in the field of robotic-assisted CI. RECENT FINDINGS Work on robotics and CI over the past few decades has explored distinct surgical aspects, including image-based surgical planning and intraoperative guidance, minimally invasive robotic-assisted approaches mainly through percutaneous keyhole direct cochlear access, robotic electrode insertion systems, robotic manipulators, and drilling feedback control through end effector sensors. Feasibility and safety have been established and many devices are undergoing clinical trials for clinical adoption, with some having already achieved approval of national licensing bodies. SUMMARY Significant work has been done over the past two decades that has shown robotic-assisted CI to be feasible and safe. Wider clinical adoption can potentially result in improved hearing preservation and quality of life outcomes to more CI candidates.
Collapse
|
9
|
Hussain T. Patient Benefit and Quality of Life after Robot-Assisted Head and Neck Surgery. Laryngorhinootologie 2022; 101:S160-S185. [PMID: 35605618 DOI: 10.1055/a-1647-8650] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Robotic systems for head and neck surgery are at different stages of technical development and clinical application. Currently, robotic systems are predominantly used for transoral surgery of the pharynx and larynx. Robotic surgery of the neck, the thyroid, and the middle and inner ear is much less common; however, some oncological and functional outcomes have been reported. This article provides an overview of the current state of robot-assisted head and neck surgery with a special emphasis on patient benefit and postoperative quality of life (QoL). The focus is placed on the role of transoral robotic surgery (TORS) for the resection of oropharyngeal carcinomas. For this application, reported long-term outcomes show functional post-operative advantages for selected oropharyngeal cancer patients after TORS compared to open surgery and primary radiotherapy. Since TORS also plays a significant role in the context of potential therapy de-escalation for HPV-positive oropharyngeal cancer patients, ongoing trials are presented. Regarding the evaluation of the therapeutic benefit and the QoL of cancer patients, special attention has to be paid to the large degree of variability of individual patients' preferences. Influencing factors and tools for a detailed assessment of QoL parameters are therefore detailed at the beginning of this article. Notably, while some robotic systems for ear and skull base surgery are being developed in Europe, TORS systems are mainly used in North America and Asia. In Europe and Germany in particular, transoral laser microsurgery (TLM) is a well-established technology for transoral tumor resection. Future trials comparing TORS and TLM with detailed investigation of QoL parameters are therefore warranted and might contribute to identifying suitable fields for the application of the different techniques.
Collapse
Affiliation(s)
- Timon Hussain
- Klinik für Hals-Nasen-Ohrenheilkunde, Kopf- und Halschirurgie, Universitätsklinikum Essen, Universität Duisburg-Essen
| |
Collapse
|
10
|
Salcher R, John S, Stieghorst J, Kluge M, Repp F, Fröhlich M, Lenarz T. Minimally Invasive Cochlear Implantation: First-in-Man of Patient-Specific Positioning Jigs. Front Neurol 2022; 13:829478. [PMID: 35547379 PMCID: PMC9082655 DOI: 10.3389/fneur.2022.829478] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 02/16/2022] [Indexed: 11/20/2022] Open
Abstract
A minimally-invasive surgical (MIS) approach to cochlear implantation, if safe, practical, simple in surgical handling, and also affordable has the potential to replace the conventional surgical approaches. Our MIS approach uses patient-specific drilling templates (positioning jigs). While the most popular MIS approaches use robots, the robotic aspect is literally put aside, because our high-precision parallel kinematics is only used to individualize a positioning jig. This jig can then be mounted onto a bone-anchored mini-stereotactic frame at the patient's skull and used to create a drill-hole through the temporal bone to the patient's cochlea. We present the first clinical experience where we use sham drill bits of different diameters instead of drilling into the bone in order to demonstrate the feasibility and accuracy.
Collapse
Affiliation(s)
- Rolf Salcher
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | - Max Fröhlich
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
- MED-EL Research Center, Hannover, Germany
| | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
11
|
Topsakal V, Heuninck E, Matulic M, Tekin AM, Mertens G, Van Rompaey V, Galeazzi P, Zoka-Assadi M, van de Heyning P. First Study in Men Evaluating a Surgical Robotic Tool Providing Autonomous Inner Ear Access for Cochlear Implantation. Front Neurol 2022; 13:804507. [PMID: 35386404 PMCID: PMC8979022 DOI: 10.3389/fneur.2022.804507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/10/2022] [Indexed: 11/17/2022] Open
Abstract
Image-guided and robot-assisted surgeries have found their applications in skullbase surgery. Technological improvements in terms of accuracy also opened new opportunities for robotically-assisted cochlear implantation surgery (RACIS). The HEARO® robotic system is an otological next-generation surgical robot to assist the surgeon. It first provides software-defined spatial boundaries for orientation and reference information to anatomical structures during otological and neurosurgical procedures. Second, it executes a preplanned drill trajectory through the temporal bone. Here, we report how safe the HEARO procedure can provide an autonomous minimally invasive inner ear access and the efficiency of this access to subsequently insert the electrode array during cochlear implantation. In 22 out of 25 included patients, the surgeon was able to complete the HEARO® procedure. The dedicated planning software (OTOPLAN®) allowed the surgeon to reconstruct a three-dimensional representation of all the relevant anatomical structures, designate the target on the cochlea, i.e., the round window, and plan the safest trajectory to reach it. This trajectory accommodated the safety distance to the critical structures while minimizing the insertion angles. A minimal distance of 0.4 and 0.3 mm was planned to facial nerve and chorda tympani, respectively. Intraoperative cone-beam CT supported safe passage for the 22 HEARO® procedures. The intraoperative accuracy analysis reported the following mean errors: 0.182 mm to target, 0.117 mm to facial nerve, and 0.107 mm to chorda tympani. This study demonstrates that microsurgical robotic technology can be used in different anatomical variations, even including a case of inner ear anomalies, with the geometrically correct keyhole to access to the inner ear. Future perspectives in RACIS may focus on improving intraoperative imaging, automated segmentation and trajectory, robotic insertion with controlled speed, and haptic feedback. This study [Experimental Antwerp robotic research otological surgery (EAR2OS) and Antwerp Robotic cochlear implantation (25 refers to 25 cases) (ARCI25)] was registered at clinicalTrials.gov under identifier NCT03746613 and NCT04102215.
Collapse
Affiliation(s)
- Vedat Topsakal
- Department of Otorhinolaryngology Head and Neck Surgery, University Hospital UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
- *Correspondence: Vedat Topsakal
| | - Emilie Heuninck
- Department of Otorhinolaryngology Head and Neck Surgery, University Hospital UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Ahmet M. Tekin
- Department of Otorhinolaryngology Head and Neck Surgery, University Hospital UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Otorhinolaryngology, Klinikum Bad Salzungen, Bad Salzungen, Germany
| | - Griet Mertens
- Department of Otorhinolaryngology, Head and Neck Surgery, Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Vincent Van Rompaey
- Department of Otorhinolaryngology, Head and Neck Surgery, Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | | | | | - Paul van de Heyning
- Department of Otorhinolaryngology, Head and Neck Surgery, Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
12
|
Auinger AB, Riss D, Baumgartner WD, Arnoldner C, Gstöttner W. Robot-assisted cochlear implant surgery in a patient with partial ossification of the basal cochlear turn: a technical note. Clin Otolaryngol 2022; 47:504-507. [PMID: 35286758 PMCID: PMC9314985 DOI: 10.1111/coa.13930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/14/2022] [Accepted: 01/30/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Alice Barbara Auinger
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Dominik Riss
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Wolf-Dieter Baumgartner
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Christoph Arnoldner
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Gstöttner
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Robotics, automation, active electrode arrays, and new devices for cochlear implantation: A contemporary review. Hear Res 2022; 414:108425. [PMID: 34979455 DOI: 10.1016/j.heares.2021.108425] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 01/14/2023]
Abstract
In the last two decades, cochlear implant surgery has evolved into a minimally invasive, hearing preservation surgical technique. The devices used during surgery have benefited from technological advances that have allowed modification and possible improvement of the surgical technique. Robotics has recently gained popularity in otology as an effective tool to overcome the surgeon's limitations such as tremor, drift and accurate force control feedback in laboratory testing. Cochlear implantation benefits from robotic assistance in several steps during the surgical procedure: (i) during the approach to the middle ear by automated mastoidectomy and posterior tympanotomy or through a tunnel from the postauricular skin to the middle ear (i.e. direct cochlear access); (ii) a minimally invasive cochleostomy by a robot-assisted drilling tool; (iii) alignment of the correct insertion axis on the basal cochlear turn; (iv) insertion of the electrode array with a motorized insertion tool. In recent years, the development of bone-attached parallel robots and image-guided surgical robotic systems has allowed the first successful cochlear implantation procedures in patients via a single hole drilled tunnel. Several other robotic systems, new materials, sensing technologies applied to the electrodes, and smart devices have been developed, tested in experimental models and finally some have been used in patients with the aim of reducing trauma in cochleostomy, and permitting slow and more accurate insertion of the electrodes. Despite the promising results in laboratory tests in terms of minimal invasiveness, reduced trauma and better hearing preservation, so far, no clinical benefits on residual hearing preservation or better speech performance have been demonstrated. Before these devices can become the standard approach for cochlear implantation, several points still need to be addressed, primarily cost and duration of the procedure. One can hope that improvement in the cost/benefit ratio will expand the technology to every cochlear implantation procedure. Laboratory research and clinical studies on patients should continue with the aim of making intracochlear implant insertion an atraumatic and reversible gesture for total preservation of the inner ear structure and physiology.
Collapse
|
14
|
Hermann J, Mueller F, Schneider D, O'Toole Bom Braga G, Weber S. Robotic Milling of Electrode Lead Channels During Cochlear Implantation in an ex-vivo Model. Front Surg 2021; 8:742147. [PMID: 34859039 PMCID: PMC8631814 DOI: 10.3389/fsurg.2021.742147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: Robotic cochlear implantation is an emerging surgical technique for patients with sensorineural hearing loss. Access to the middle and inner ear is provided through a small-diameter hole created by a robotic drilling process without a mastoidectomy. Using the same image-guided robotic system, we propose an electrode lead management technique using robotic milling that replaces the standard process of stowing excess electrode lead in the mastoidectomy cavity. Before accessing the middle ear, an electrode channel is milled robotically based on intraoperative planning. The goal is to further standardize cochlear implantation, minimize the risk of iatrogenic intracochlear damage, and to create optimal conditions for a long implant life through protection from external trauma and immobilization in a slight press fit to prevent mechanical fatigue and electrode migrations. Methods: The proposed workflow was executed on 12 ex-vivo temporal bones and evaluated for safety and efficacy. For safety, the difference between planned and resulting channels were measured postoperatively in micro-computed tomography, and the length outside the planned safety margin of 1.0 mm was determined. For efficacy, the channel width and depth were measured to assess the press fit immobilization and the protection from external trauma, respectively. Results: All 12 cases were completed with successful electrode fixations after cochlear insertions. The milled channels stayed within the planned safety margins and the probability of their violation was lower than one in 10,000 patients. Maximal deviations in lateral and depth directions of 0.35 and 0.29 mm were measured, respectively. The channels could be milled with a width that immobilized the electrode leads. The average channel depth was 2.20 mm, while the planned channel depth was 2.30 mm. The shallowest channel depth was 1.82 mm, still deep enough to contain the full 1.30 mm diameter of the electrode used for the experiments. Conclusion: This study proposes a robotic electrode lead management and fixation technique and verified its safety and efficacy in an ex-vivo study. The method of image-guided robotic bone removal presented here with average errors of 0.2 mm and maximal errors below 0.5 mm could be used for a variety of other otologic surgical procedures.
Collapse
Affiliation(s)
- Jan Hermann
- ARTORG Center for Biomedical Engineering Research, Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Fabian Mueller
- ARTORG Center for Biomedical Engineering Research, Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Daniel Schneider
- ARTORG Center for Biomedical Engineering Research, Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Gabriela O'Toole Bom Braga
- ARTORG Center for Biomedical Engineering Research, Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Stefan Weber
- ARTORG Center for Biomedical Engineering Research, Faculty of Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
15
|
Fan Y, Zhang D, Banalagay R, Wang J, Noble JH, Dawant BM. Hybrid active shape and deep learning method for the accurate and robust segmentation of the intracochlear anatomy in clinical head CT and CBCT images. J Med Imaging (Bellingham) 2021; 8:064002. [PMID: 34853805 DOI: 10.1117/1.jmi.8.6.064002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 11/08/2021] [Indexed: 11/14/2022] Open
Abstract
Purpose: Robust and accurate segmentation methods for the intracochlear anatomy (ICA) are a critical step in the image-guided cochlear implant programming process. We have proposed an active shape model (ASM)-based method and a deep learning (DL)-based method for this task, and we have observed that the DL method tends to be more accurate than the ASM method while the ASM method tends to be more robust. Approach: We propose a DL-based U-Net-like architecture that incorporates ASM segmentation into the network. A quantitative analysis is performed on a dataset that consists of 11 cochlea specimens for which a segmentation ground truth is available. To qualitatively evaluate the robustness of the method, an experienced expert is asked to visually inspect and grade the segmentation results on a clinical dataset made of 138 image volumes acquired with conventional CT scanners and of 39 image volumes acquired with cone beam CT (CBCT) scanners. Finally, we compare training the network (1) first with the ASM results, and then fine-tuning it with the ground truth segmentation and (2) directly with the specimens with ground truth segmentation. Results: Quantitative and qualitative results show that the proposed method increases substantially the robustness of the DL method while having only a minor detrimental effect (though not significant) on its accuracy. Expert evaluation of the clinical dataset shows that by incorporating the ASM segmentation into the DL network, the proportion of good segmentation cases increases from 60/177 to 119/177 when training only with the specimens and increases from 129/177 to 151/177 when pretraining with the ASM results. Conclusions: A hybrid ASM and DL-based segmentation method is proposed to segment the ICA in CT and CBCT images. Our results show that combining DL and ASM methods leads to a solution that is both robust and accurate.
Collapse
Affiliation(s)
- Yubo Fan
- Vanderbilt University, Department of Computer Science, Nashville, Tennessee, United States
| | | | - Rueben Banalagay
- Vanderbilt University, Department of Electrical and Computer Engineering, Nashville, Tennessee, United States
| | - Jianing Wang
- Vanderbilt University, Department of Electrical and Computer Engineering, Nashville, Tennessee, United States
| | - Jack H Noble
- Vanderbilt University, Department of Electrical and Computer Engineering, Nashville, Tennessee, United States
| | - Benoit M Dawant
- Vanderbilt University, Department of Electrical and Computer Engineering, Nashville, Tennessee, United States
| |
Collapse
|
16
|
Ding AS, Capostagno S, Razavi CR, Li Z, Taylor RH, Carey JP, Creighton FX. Volumetric Accuracy Analysis of Virtual Safety Barriers for Cooperative-Control Robotic Mastoidectomy. Otol Neurotol 2021; 42:e1513-e1517. [PMID: 34325455 PMCID: PMC8595530 DOI: 10.1097/mao.0000000000003309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
HYPOTHESIS Virtual fixtures can be enforced in cooperative-control robotic mastoidectomies with submillimeter accuracy. BACKGROUND Otologic procedures are well-suited for robotic assistance due to consistent osseous landmarks. We have previously demonstrated the feasibility of cooperative-control robots (CCRs) for mastoidectomy. CCRs manipulate instruments simultaneously with the surgeon, allowing the surgeon to control instruments with robotic augmentation of motion. CCRs can also enforce virtual fixtures, which are safety barriers that prevent motion into undesired locations. Previous studies have validated the ability of CCRs to allow a novice surgeon to safely complete a cortical mastoidectomy. This study provides objective accuracy data for CCR-imposed safety barriers in cortical mastoidectomies. METHODS Temporal bone phantoms were registered to a CCR using preoperative computed tomography (CT) imaging. Virtual fixtures were created using 3D Slicer, with 2D planes placed along the external auditory canal, tegmen, and sigmoid, converging on the antrum. Five mastoidectomies were performed by a novice surgeon, moving the drill to the limit of the barriers. Postoperative CT scans were obtained, and Dice coefficients and Hausdorff distances were calculated. RESULTS The average modified Hausdorff distance between drilled bone and the preplanned volume was 0.351 ± 0.093 mm. Compared with the preplanned volume of 0.947 cm3, the mean volume of bone removed was 1.045 cm3 (difference of 0.0982 cm3 or 10.36%), with an average Dice coefficient of 0.741 (range, 0.665-0.802). CONCLUSIONS CCR virtual fixtures can be enforced with a high degree of accuracy. Future studies will focus on improving accuracy and developing 3D fixtures around relevant surgical anatomy.
Collapse
Affiliation(s)
- Andy S. Ding
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA
| | - Sarah Capostagno
- Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA
| | - Christopher R. Razavi
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhaoshuo Li
- Department of Computer Science, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA
| | - Russell H. Taylor
- Department of Computer Science, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA
| | - John P. Carey
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Francis X. Creighton
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
17
|
Jablonski GE, Falkenberg-Jensen B, Bunne M, Iftikhar M, Greisiger R, Opheim LR, Korslund H, Myhrum M, Sørensen TM. Fusion of Technology in Cochlear Implantation Surgery: Investigation of Fluoroscopically Assisted Robotic Electrode Insertion. Front Surg 2021; 8:741401. [PMID: 34820415 PMCID: PMC8606737 DOI: 10.3389/fsurg.2021.741401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/29/2021] [Indexed: 11/29/2022] Open
Abstract
The HEARO cochlear implantation surgery aims to replace the conventional wide mastoidectomy approach with a minimally invasive direct cochlear access. The main advantage of the HEARO access would be that the trajectory accommodates the optimal and individualized insertion parameters such as type of cochlear access and trajectory angles into the cochlea. To investigate the quality of electrode insertion with the HEARO procedure, the insertion process was inspected under fluoroscopy in 16 human cadaver temporal bones. Prior to the insertion, the robotic middle and inner ear access were performed through the HEARO procedures. The status of the insertion was analyzed on the post-operative image with Siemens Artis Pheno (Siemens AG, Munich, Germany). The completion of the full HEARO procedure, including the robotic inner ear access and fluoroscopy electrode insertion, was possible in all 16 cases. It was possible to insert the electrode in all 16 cases through the drilled tunnel. However, one case in which the full cochlea was not visible on the post-operative image for analysis was excluded. The post-operative analysis of the electrode insertion showed an average insertion angle of 507°, which is equivalent to 1.4 turns of the cochlea, and minimal and maximal insertion angles were recorded as 373° (1 cochlear turn) and 645° (1.8 cochlear turn), respectively. The fluoroscopy inspection indicated no sign of complications during the insertion.
Collapse
Affiliation(s)
- Greg Eigner Jablonski
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Otorhinolaryngology & Head and Neck Surgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | | | - Marie Bunne
- Department of Otorhinolaryngology & Head and Neck Surgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Muneera Iftikhar
- Department of Otorhinolaryngology & Head and Neck Surgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Ralf Greisiger
- Department of Otorhinolaryngology & Head and Neck Surgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Leif Runar Opheim
- Department of Otorhinolaryngology & Head and Neck Surgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Hilde Korslund
- Interventional Centre, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Marte Myhrum
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Otorhinolaryngology & Head and Neck Surgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Torquil Mcdonald Sørensen
- Department of Otorhinolaryngology & Head and Neck Surgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| |
Collapse
|
18
|
Schneider D, Anschuetz L, Mueller F, Hermann J, O'Toole Bom Braga G, Wagner F, Weder S, Mantokoudis G, Weber S, Caversaccio M. Freehand Stereotactic Image-Guidance Tailored to Neurotologic Surgery. Front Surg 2021; 8:742112. [PMID: 34692764 PMCID: PMC8529212 DOI: 10.3389/fsurg.2021.742112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/09/2021] [Indexed: 11/13/2022] Open
Abstract
Hypothesis: The use of freehand stereotactic image-guidance with a target registration error (TRE) of μTRE + 3σTRE < 0.5 mm for navigating surgical instruments during neurotologic surgery is safe and useful. Background: Neurotologic microsurgery requires work at the limits of human visual and tactile capabilities. Anatomy localization comes at the expense of invasiveness caused by exposing structures and using them as orientation landmarks. In the absence of more-precise and less-invasive anatomy localization alternatives, surgery poses considerable risks of iatrogenic injury and sub-optimal treatment. There exists an unmet clinical need for an accurate, precise, and minimally-invasive means for anatomy localization and instrument navigation during neurotologic surgery. Freehand stereotactic image-guidance constitutes a solution to this. While the technology is routinely used in medical fields such as neurosurgery and rhinology, to date, it is not used for neurotologic surgery due to insufficient accuracy of clinically available systems. Materials and Methods: A freehand stereotactic image-guidance system tailored to the needs of neurotologic surgery-most importantly sub-half-millimeter accuracy-was developed. Its TRE was assessed preclinically using a task-specific phantom. A pilot clinical trial targeting N = 20 study participants was conducted (ClinicalTrials.gov ID: NCT03852329) to validate the accuracy and usefulness of the developed system. Clinically, objective assessment of the TRE is impossible because establishing a sufficiently accurate ground-truth is impossible. A method was used to validate accuracy and usefulness based on intersubjectivity assessment of surgeon ratings of corresponding image-pairs from the microscope/endoscope and the image-guidance system. Results: During the preclinical accuracy assessment the TRE was measured as 0.120 ± 0.05 mm (max: 0.27 mm, μTRE + 3σTRE = 0.27 mm, N = 310). Due to the COVID-19 pandemic, the study was terminated early after N = 3 participants. During an endoscopic cholesteatoma removal, a microscopic facial nerve schwannoma removal, and a microscopic revision cochlear implantation, N = 75 accuracy and usefulness ratings were collected from five surgeons each grading 15 image-pairs. On a scale from 1 (worst rating) to 5 (best rating), the median (interquartile range) accuracy and usefulness ratings were assessed as 5 (4-5) and 4 (4-5) respectively. Conclusion: Navigating surgery in the tympanomastoid compartment and potentially in the lateral skull base with sufficiently accurate freehand stereotactic image-guidance (μTRE + 3σTRE < 0.5 mm) is feasible, safe, and useful. Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT03852329.
Collapse
Affiliation(s)
- Daniel Schneider
- ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | - Lukas Anschuetz
- Department of Otorhinolaryngology, Head & Neck Surgery, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Fabian Mueller
- ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | - Jan Hermann
- ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | | | - Franca Wagner
- Department of Diagnostic and Interventional Neuroradiology, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Stefan Weder
- Department of Otorhinolaryngology, Head & Neck Surgery, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Georgios Mantokoudis
- Department of Otorhinolaryngology, Head & Neck Surgery, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Stefan Weber
- ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | - Marco Caversaccio
- Department of Otorhinolaryngology, Head & Neck Surgery, Inselspital, University Hospital Bern, Bern, Switzerland
| |
Collapse
|
19
|
Hermann J, Mueller F, Weber S, Caversaccio M, O'Toole Bom Braga G. In Silico Assessment of Safety and Efficacy of Screw Placement for Pediatric Image-Guided Otologic Surgery. Front Surg 2021; 8:736217. [PMID: 34660679 PMCID: PMC8511321 DOI: 10.3389/fsurg.2021.736217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Current high-accuracy image-guided systems for otologic surgery use fiducial screws for patient-to-image registration. Thus far, these systems have only been used in adults, and the safety and efficacy of the fiducial screw placement has not yet been investigated in the pediatric population. Materials and Methods: In a retrospective study, CT image data of the temporal region from 11 subjects meeting inclusion criteria (8–48 months at the time of surgery) were selected, resulting in n = 20 sides. These datasets were investigated with respect to screw stability efficacy in terms of the cortical layer thickness, and safety in terms of the distance of potential fiducial screws to the dura mater or venous sinuses. All of these results are presented as distributions, thickness color maps, and with descriptive statistics. Seven regions within the temporal bone were analyzed individually. In addition, four fiducial screws per case with 4 mm thread-length were placed in an additively manufactured model according to the guidelines for robotic cochlear implantation surgery. For all these screws, the minimal distance to the dura mater or venous sinuses was measured, or if applicable how much they penetrated these structures. Results: The cortical layer has been found to be mostly between 0.7–3.3 mm thick (from the 5th to the 95th percentile), while even thinner areas exist. The distance from the surface of the temporal bone to the dura mater or the venous sinuses varied considerably between the subjects and ranged mostly from 1.1–9.3 mm (from the 5th to the 95th percentile). From all 80 placed fiducial screws of 4 mm thread length in the pediatric subject younger than two years old, 22 touched or penetrated either the dura or the sigmoid sinus. The best regions for fiducial placement would be the mastoid area and along the petrous pyramid in terms of safety. In terms of efficacy, the parietal followed by the petrous pyramid, and retrosigmoid regions are most suited. Conclusion: The current fiducial screws and the screw placement guidelines for adults are insufficiently safe or effective for pediatric patients.
Collapse
Affiliation(s)
- Jan Hermann
- ARTORG Center for Biomedical Engineering Research, Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Fabian Mueller
- ARTORG Center for Biomedical Engineering Research, Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Stefan Weber
- ARTORG Center for Biomedical Engineering Research, Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Marco Caversaccio
- Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Gabriela O'Toole Bom Braga
- ARTORG Center for Biomedical Engineering Research, Faculty of Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
20
|
Auinger AB, Dahm V, Liepins R, Riss D, Baumgartner WD, Arnoldner C. Robotic Cochlear Implant Surgery: Imaging-Based Evaluation of Feasibility in Clinical Routine. Front Surg 2021; 8:742219. [PMID: 34660683 PMCID: PMC8511493 DOI: 10.3389/fsurg.2021.742219] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/30/2021] [Indexed: 01/10/2023] Open
Abstract
Background: Robotic surgery has been proposed in various surgical fields to reduce recovery time, scarring, and to improve patients' outcomes. Such innovations are ever-growing and have now reached the field of cochlear implantation. To implement robotic ear surgery in routine, it is of interest if preoperative planning of a safe trajectory to the middle ear is possible with clinically available image data. Methods: We evaluated the feasibility of robotic cochlear implant surgery in 50 patients (100 ears) scheduled for routine cochlear implant procedures based on clinically available imaging. The primary objective was to assess if available high-resolution computed tomography or cone beam tomography imaging is sufficient for planning a trajectory by an otological software. Secondary objectives were to assess the feasibility of cochlear implant surgery with a drill bit diameter of 1.8 mm, which is the currently used as a standard drill bit. Furthermore, it was evaluated if feasibility of robotic surgery could be increased when using smaller drill bit sizes. Cochlear and trajectory parameters of successfully planned ears were collected. Measurements were carried out by two observers and the interrater reliability was assessed using Cohen's Kappa. Results: Under the prerequisite of the available image data being sufficient for the planning of the procedure, up to two thirds of ears were eligible for robotic cochlear implant surgery with the standard drill bit size of 1.8 mm. The main reason for inability to plan the keyhole access was insufficient image resolution causing anatomical landmarks not being accurately identified. Although currently not applicable in robotic cochlear implantation, narrower drill bit sizes ranging from 1.0 to 1.7 mm in diameter could increase feasibility up to 100%. The interrater agreement between the two observers was good for this data set. Discussion: For robotic cochlear implant surgery, imaging with sufficient resolution is essential for preoperative assessment. A slice thickness of <0.3 mm is necessary for trajectory planning. This can be achieved by using digital volume tomography while radiation exposure can be kept to a minimum. Furthermore, surgeons who use the software tool, should be trained on a regular basis in order to achieve planning consistency.
Collapse
Affiliation(s)
- Alice Barbara Auinger
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Valerie Dahm
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Rudolfs Liepins
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Dominik Riss
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Wolf-Dieter Baumgartner
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Christoph Arnoldner
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
21
|
Bai W, Pan P, Shu L, Yang Y, Zhang J, Xu J, Sugita N. Design of a self-centring drill bit for orthopaedic surgery: A systematic comparison of the drilling performance. J Mech Behav Biomed Mater 2021; 123:104727. [PMID: 34492615 DOI: 10.1016/j.jmbbm.2021.104727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
Bone drilling is an indispensable and demanding operation among many orthopaedic operations. A dedicated drill bit that can achieve low-trauma and self-centring drilling is in urgent need. In this study, a three-step orthopaedic low-traumatic drill bit design was proposed. In order to evaluate the drilling performance of the proposed drill, comprehensive comparison tests were carried out with various commercial medical drills in terms of skiving force, thrust force, temperature rise, and surface quality. The experimental results show that the proposed three-step drill design with the optimal point angle, a small chisel edge, transition arc and web thinning can obtain lower and more stable thrust force, slighter bending force, smaller temperature rise, and higher hole quality compared with the commercial drill bits. The proposed drill shows satisfactory drilling performance and has great application potential in clinical surgery.
Collapse
Affiliation(s)
- Wei Bai
- State Key Lab of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China
| | - Pengfei Pan
- State Key Lab of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Liming Shu
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 1138656, Japan.
| | - Yuhang Yang
- Department of Mechanical and Aerospace Engineering, University of Miami, Coral Gables, FL, 33124, United States
| | - Jianguo Zhang
- State Key Lab of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China
| | - Jianfeng Xu
- State Key Lab of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Naohiko Sugita
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 1138656, Japan
| |
Collapse
|
22
|
Riojas KE, Tran ET, Freeman MH, Noble JH, Webster RJ, Labadie RF. Clinical Translation of an Insertion Tool for Minimally Invasive Cochlear Implant Surgery. J Med Device 2021; 15:031001. [PMID: 33995757 PMCID: PMC8086187 DOI: 10.1115/1.4050203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 01/22/2021] [Indexed: 11/08/2022] Open
Abstract
The objective of this paper is to describe the development of a minimally invasive cochlear implant surgery (MICIS) electrode array insertion tool concept to enable clinical translation. First, analysis of the geometric parameters of potential MICIS patients (N = 97) was performed to inform tool design, inform MICIS phantom model design, and provide further insight into MICIS candidacy. Design changes were made to the insertion tool based on clinical requirements and parameter analysis results. A MICIS phantom testing model was built to evaluate insertion force profiles in a clinically realistic manner, and the new tool design was evaluated in the model and in cadavers to test clinical viability. Finally, after regulatory approval, the tool was used for the first time in a clinical case. Results of this work included first, in the parameter analysis, approximately 20% of the population was not considered viable MICIS candidates. Additionally, one 3D printed tool could accommodate all viable candidates with polyimide sheath length adjustments accounting for interpatient variation. The insertion tool design was miniaturized out of clinical necessity and a disassembly method, necessary for removal around the cochlear implant, was developed and tested. Phantom model testing revealed that the force profile of the insertion tool was similar to that of traditional forceps insertion. Cadaver testing demonstrated that all clinical requirements (including complete disassembly) were achieved with the tool, and the new tool enabled 15% deeper insertions compared to the forceps approach. Finally, and most importantly, the tool helped achieve a full insertion in its first MICIS clinical case. In conclusion, the new insertion tool provides a clinically viable solution to one of the most difficult aspects of MICIS.
Collapse
Affiliation(s)
- Katherine E. Riojas
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37212
| | - Emily T. Tran
- Department of Mechanical Engineering, The University of Tulsa, Tulsa, OK 74104
| | - Michael H. Freeman
- Department of Otolaryngology–Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Jack H. Noble
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37212
| | - Robert J. Webster
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37212
| | - Robert F. Labadie
- Department of Otolaryngology–Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
23
|
Panara K, Shahal D, Mittal R, Eshraghi AA. Robotics for Cochlear Implantation Surgery: Challenges and Opportunities. Otol Neurotol 2021; 42:e825-e835. [PMID: 33993143 DOI: 10.1097/mao.0000000000003165] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Recent advancements in robotics have set forth a growing body of evidence for the clinical application of the robotic cochlear implantation (RCI), with many potential benefits. This review aims to summarize these efforts, provide the latest developments in this exciting field, and explore the challenges associated with the clinical implementation of RCI. DATA SOURCES MEDLINE, PubMed, and EMBASE databases. STUDY SELECTION A search was conducted using the keywords "robotics otolaryngology," "robotic cochlear implant," "minimally-invasive cochlear implantation," "minimally-invasive mastoidectomy," and "percutaneous cochlear implant" with all of their synonyms. Literature selection criteria included articles published in English, and articles from 1970 to present. RESULTS The use of robotics in neurotology is a relatively new endeavor that continues to evolve. Robotics is being explored by various groups to facilitate in the various steps of cochlear implant surgery, including drilling a keyhole approach to the middle ear for implants, inner ear access, and electrode insertion into the cochlea. Initial clinical trials have successfully implanted selected subjects using robotics. CONCLUSIONS The use of robotics in cochlear implants remains in its very early stages. It is hoped that robotics will improve clinical outcomes. Although successful implants with robots are reported in the literature, there are some challenges that need to be addressed before this approach can become an acceptable option for the conventional cochlear implant surgery, such as safety, time, efficiency, and cost. However, it is hoped that further advancements in robotic technology will help in overcoming these barriers leading to successful implementation for clinical utility.
Collapse
Affiliation(s)
- Kush Panara
- Department of Otolaryngology, Cochlear Implant and Hearing Research Laboratory
| | - David Shahal
- Department of Otolaryngology, Cochlear Implant and Hearing Research Laboratory
| | - Rahul Mittal
- Department of Otolaryngology, Cochlear Implant and Hearing Research Laboratory
| | - Adrien A Eshraghi
- Department of Otolaryngology, Cochlear Implant and Hearing Research Laboratory
- Department of Neurological Surgery
- Department of Pediatrics, University of Miami, Miller School of Medicine, Miami, Florida
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida
| |
Collapse
|
24
|
Klopp-Dutote N, Lefranc M, Strunski V, Page C. Minimally invasive fully ROBOT-assisted cochlear implantation in humans: Preliminary results in five consecutive patients. Clin Otolaryngol 2021; 46:1326-1330. [PMID: 34310841 DOI: 10.1111/coa.13840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/25/2021] [Accepted: 07/17/2021] [Indexed: 11/27/2022]
Affiliation(s)
| | - Michel Lefranc
- Neurosurgery Department, Amiens University Hospital, Amiens, France
| | - Vladimir Strunski
- ENT and Head & Neck Surgery Department, Amiens University Hospital, Amiens, France
| | - Cyril Page
- ENT and Head & Neck Surgery Department, Amiens University Hospital, Amiens, France
| |
Collapse
|
25
|
Jia H, Pan J, Gu W, Tan H, Chen Y, Zhang Z, Jiang M, Li Y, Sterkers O, Wu H. Robot-Assisted Electrode Array Insertion Becomes Available in Pediatric Cochlear Implant Recipients: First Report and an Intra-Individual Study. Front Surg 2021; 8:695728. [PMID: 34307444 PMCID: PMC8294934 DOI: 10.3389/fsurg.2021.695728] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/02/2021] [Indexed: 11/28/2022] Open
Abstract
Background: As an advanced surgical technique to reduce trauma to the inner ear, robot-assisted electrode array (EA) insertion has been applied in adult cochlear implantation (CI) and was approved as a safe surgical procedure that could result in better outcomes. As the mastoid and temporal bones are generally smaller in children, which would increase the difficulty for robot-assisted manipulation, the clinical application of these systems for CI in children has not been reported. Given that the pediatric candidate is the main population, we aim to investigate the safety and reliability of robot-assisted techniques in pediatric cochlear implantation. Methods: Retrospective cohort study at a referral center in Shanghai including all patients of simultaneous bilateral CI with robotic assistance on one side (RobOtol® system, Collin ORL, Bagneux, France), and manual insertion on the other (same brand of EA and CI in both side), from December 2019 to June 2020. The surgical outcomes, radiological measurements (EA positioning, EA insertion depth, mastoidectomy size), and audiological outcomes (Behavior pure-tone audiometry) were evaluated. Results: Five infants (17.8 ± 13.5 months, ranging from 10 to 42 months) and an adult (39 years old) were enrolled in this study. Both perimodiolar and lateral wall EAs were included. The robot-assisted EA insertion was successfully performed in all cases, although the surgical zone in infants was about half the size in adults, and no difference was observed in mastoidectomy size between robot-assisted and manual insertion sides (p = 0.219). The insertion depths of EA with two techniques were similar (P = 0.583). The robot-assisted technique showed no scalar deviation, but scalar deviation occurred for one manually inserted pre-curved EA (16%). Early auditory performance was similar to both techniques. Conclusion: Robot-assisted technique for EA insertion is approved to be used safely and reliably in children, which is possible and potential for better scalar positioning and might improve long-term auditory outcome. Standard mastoidectomy size was enough for robot-assisted technique. This first study marks the arrival of the era of robotic CI for all ages.
Collapse
Affiliation(s)
- Huan Jia
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Jinxi Pan
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Wenxi Gu
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Haoyue Tan
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Ying Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Zhihua Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Mengda Jiang
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Li
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Olivier Sterkers
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,APHP, Groupe hospitalo-Universitaire Pitié Salpêtrière, Otorhinolaryngology Department, Unit of Otology, Auditory Implants and Skull Base Surgery, Paris, France
| | - Hao Wu
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| |
Collapse
|
26
|
Labadie RF, Riojas K, Von Wahlde K, Mitchell J, Bruns T, Webster R, Dawant B, Fitzpatrick JM, Noble J. Clinical Implementation of Second-generation Minimally Invasive Image-guided Cochlear Implantation Surgery. Otol Neurotol 2021; 42:702-705. [PMID: 33967246 DOI: 10.1097/mao.0000000000003025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Minimally invasive, image-guided cochlear implantation (CI) surgery consists of drilling a precise tunnel from the surface of the mastoid cortex through the facial recess to target the scala tympani. In the first set of clinical trials of this technique, heat-induced facial nerve paresis (House-Brackmann II/VI) occurred on a patient on the last day of the initial trial which was scheduled to be halted secondary to a change in the regulatory requirements dictated by the 2012 the Food and Drug Administration Safety and Innovation Act requiring Investigational Device Exemption approval for previously exempted customized medical device testing. To address this adverse event, extensive changes were made to the drilling protocol; additionally, a custom insertion tool was developed. To address the Food and Drug Administration Safety and Innovation Act, an Investigational Device Exemption was submitted and, subsequently approved. Herein is described our first clinical implementation of the modified technique. PATIENT Seventy-year-old with profound, postlingual sensorineural hearing loss who had previously undergone right CI via traditional approach in 2015. INTERVENTION Minimally invasive image-guided left CI. MAIN OUTCOME MEASURE Time of intervention, final location of CI electrode array within cochlea. RESULTS Surgery took 155 minutes of which the largest components (in descending order) were soft tissue work, closure, and drilling. Full scala tympani insertion with angular insertion depth of 557 degrees of the electrode array was achieved. There were no complications, and the patient had an uneventful recovery and activation. CONCLUSIONS Minimally invasive, image-guided CI surgery is achievable and reduces the mastoid depression associated with traditional CI surgery. CLINICALTRIALSGOV INFORMATION Study NCT03101917, Microtable Microstereotactic Frame and Drill Press and Associated Method for Cochlear Implantation. LEVEL OF EVIDENCE Case Report.
Collapse
Affiliation(s)
- Robert F Labadie
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center
| | | | - Kathleen Von Wahlde
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center
| | | | | | | | - Benoit Dawant
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee
| | - J Michael Fitzpatrick
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee
| | - Jack Noble
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
27
|
黄 健, 夏 巍, 唐 翔, 谭 颂, 唐 安. [Progress of research on cone beam CT in cochlear implantation]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2021; 35:567-572. [PMID: 34304522 PMCID: PMC10128610 DOI: 10.13201/j.issn.2096-7993.2021.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 03/22/2021] [Indexed: 11/12/2022]
Abstract
Cochlear implant, as the most successful artificial auditory implant, brings tens of thousands of patients with severe or profound sensorineural hearing loss back to the world of sound every year. With the expansion of surgical indications, a large number of difficult cases bring new challenges for cochlear implantation. As a new technology, cone beam CT has the double advantages of high spatial resolution and low radiation. It is considered as the second revolution of CT technology, which shows unique value in the application of cochlear implantation. This article reviews the basic principles of cone beam CT and its application and research progress in cochlear implantation.
Collapse
Affiliation(s)
- 健健 黄
- 广西医科大学第一附属医院耳鼻咽喉头颈外科(南宁,530021)
| | - 巍 夏
- 广西医科大学第一附属医院耳鼻咽喉头颈外科(南宁,530021)
| | - 翔龙 唐
- 广西医科大学第一附属医院耳鼻咽喉头颈外科(南宁,530021)
| | - 颂华 谭
- 广西医科大学第一附属医院耳鼻咽喉头颈外科(南宁,530021)
| | - 安洲 唐
- 广西医科大学第一附属医院耳鼻咽喉头颈外科(南宁,530021)
| |
Collapse
|
28
|
Tekin AM, Matulic M, Wuyts W, Assadi MZ, Mertens G, van Rompaey V, Li Y, van de Heyning P, Topsakal V. A New Pathogenic Variant in POU3F4 Causing Deafness Due to an Incomplete Partition of the Cochlea Paved the Way for Innovative Surgery. Genes (Basel) 2021; 12:genes12050613. [PMID: 33919129 PMCID: PMC8143104 DOI: 10.3390/genes12050613] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 12/20/2022] Open
Abstract
Incomplete partition type III (IP-III) is a relatively rare inner ear malformation that has been associated with a POU3F4 gene mutation. The IP-III anomaly is mainly characterized by incomplete separation of the modiolus of the cochlea from the internal auditory canal. We describe a 71-year-old woman with profound sensorineural hearing loss diagnosed with an IP-III of the cochlea that underwent cochlear implantation. Via targeted sequencing with a non-syndromic gene panel, we identified a heterozygous c.934G > C p. (Ala31Pro) pathogenic variant in the POU3F4 gene that has not been reported previously. IP-III of the cochlea is challenging for cochlear implant surgery for two main reasons: liquor cerebrospinalis gusher and electrode misplacement. Surgically, it may be better to opt for a shorter array because it is less likely for misplacement with the electrode in a false route. Secondly, the surgeon has to consider the insertion angles of cochlear access very strictly to avoid misplacement along the inner ear canal. Genetic results in well describes genotype-phenotype correlations are a strong clinical tool and as in this case guided surgical planning and robotic execution.
Collapse
Affiliation(s)
- Ahmet M. Tekin
- Department of Otorhinolaryngology, Head and Neck Surgery, Brussels Health Campus, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (A.M.T.); (M.M.)
| | - Marco Matulic
- Department of Otorhinolaryngology, Head and Neck Surgery, Brussels Health Campus, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (A.M.T.); (M.M.)
| | - Wim Wuyts
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, 2650 Antwerp, Belgium;
| | | | - Griet Mertens
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, 2650 Edegem, Belgium; (G.M.); (V.v.R.); (P.v.d.H.)
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Vincent van Rompaey
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, 2650 Edegem, Belgium; (G.M.); (V.v.R.); (P.v.d.H.)
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Yongxin Li
- Department of Otolaryngology, Head and Neck Surgery, Capital Medical University, Beijing 100730, China;
| | - Paul van de Heyning
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, 2650 Edegem, Belgium; (G.M.); (V.v.R.); (P.v.d.H.)
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Vedat Topsakal
- Department of Otorhinolaryngology, Head and Neck Surgery, Brussels Health Campus, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (A.M.T.); (M.M.)
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital UZ Brussel, Brussels Health Campus, Vrije Universiteit Brussel, 1090 Brussels, Belgium
- Correspondence: ; Tel.: +32-24776882; Fax: +32-24776880
| |
Collapse
|
29
|
Minimally Invasive Cochlear Implantation Assisted by Intraoperative CT Scan Combined to Neuronavigation. Otol Neurotol 2021; 41:e441-e448. [PMID: 32176128 DOI: 10.1097/mao.0000000000002577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The objective of this work was to study the feasibility of minimally invasive cochlear implantation under intraoperative computerized tomography-scan coupled to navigation. MATERIALS AND METHODS Five human resin temporal bones (two adults and three children) were used. Initially, a temporal bone imaging was obtained by the intraoperative CT-scan coupled to the navigation (O-ARM). The navigation-assisted drilling began at the mastoid surface creating a conical tunnel (4-2 mm in diameter) through the facial recess and down to the round window. A cochleostomy was performed based on the navigation. A sham electrode array was inserted in the drilled tunnel and into the cochlea.Postoperative CT-scan and dissection were performed to evaluate the trajectory, and possible injury to the external auditory canal, ossicles, or facial nerve. RESULTS The mean duration of the procedure was 24.4 ± 3.79 minutes (range, 15-35). Cochleostomy was possible in all cases without injury to other structures. The sham array was inside the cochlea in all cases. The mean distance between the drilled canal and the mastoid portion of the facial nerve was 1.2 ± 0.07 mm (range, 1.08-1.38). The mean tracking error was 0.6 ± 0.26 mm (range, 0.20-0.72) at the entry point, 0.6 ± 0.33 mm (range, 0.2-1.02) at the facial nerve and 0.4 ± 0.07 mm (range, 0.36-0.51) at the cochleostomy. CONCLUSION Cochlear implantation through a minimally invasive approach assisted by intraoperative imaging combined with navigation was feasible in operating room environment and experimental conditions.
Collapse
|
30
|
Rau TS, Witte S, Uhlenbusch L, Kahrs LA, Lenarz T, Majdani O. Concept description and accuracy evaluation of a moldable surgical targeting system. J Med Imaging (Bellingham) 2021; 8:015003. [PMID: 33634206 PMCID: PMC7893323 DOI: 10.1117/1.jmi.8.1.015003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/19/2021] [Indexed: 11/14/2022] Open
Abstract
Purpose: We explain our concept for customization of a guidance instrument, present a prototype, and describe a set of experiments to evaluate its positioning and drilling accuracy. Methods: Our concept is characterized by the use of bone cement, which enables fixation of a specific configuration for each individual surgical template. This well-established medical product was selected to ensure future intraoperative fabrication of the template under sterile conditions. For customization, a manually operated alignment device is proposed that temporary defines the planned trajectory until the bone cement is hardened. Experiments (n=10) with half-skull phantoms were performed. Analysis of accuracy comprises targeting validations and experiments including drilling in bone substitutes. Results: The resulting mean positioning error was found to be 0.41±0.30 mm at the level of the target point whereas drilling was possible with a mean accuracy of 0.35±0.30 mm. Conclusion: We proposed a cost-effective, easy-to-use approach for accurate instrument guidance that enables template fabrication under sterile conditions. The utilization of bone cement was proven to fulfill the demands of an easy, quick, and prospectively intraoperatively doable customization. We could demonstrate sufficient accuracy for many surgical applications, e.g., in neurosurgery. The system in this early development stage already outperforms conventional stereotactic frames and image-guided surgery systems in terms of targeting accuracy.
Collapse
Affiliation(s)
- Thomas S Rau
- Hannover Medical School, Department of Otolaryngology, Cluster of Excellence EXC 2177/1 "Hearing4all", Hannover, Germany
| | - Sina Witte
- Hannover Medical School, Department of Otolaryngology, Cluster of Excellence EXC 2177/1 "Hearing4all", Hannover, Germany
| | - Lea Uhlenbusch
- Hannover Medical School, Department of Otolaryngology, Cluster of Excellence EXC 2177/1 "Hearing4all", Hannover, Germany
| | - Lüder A Kahrs
- University of Toronto Mississauga, Department of Mathematical and Computational Sciences, Mississauga, Ontario, Canada.,Hospital for Sick Children (SickKids), Centre for Image Guided Innovation and Therapeutic Intervention, Toronto, Ontario, Canada
| | - Thomas Lenarz
- Hannover Medical School, Department of Otolaryngology, Cluster of Excellence EXC 2177/1 "Hearing4all", Hannover, Germany
| | - Omid Majdani
- Hannover Medical School, Department of Otolaryngology, Cluster of Excellence EXC 2177/1 "Hearing4all", Hannover, Germany
| |
Collapse
|
31
|
Copson B, Wijewickrema S, Ma X, Zhou Y, Gerard JM, O'Leary S. Surgical approach to the facial recess influences the acceptable trajectory of cochlear implantation electrodes. Eur Arch Otorhinolaryngol 2021; 279:137-147. [PMID: 33547488 DOI: 10.1007/s00405-021-06633-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/20/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE To provide practical guidance to the operative surgeon by mapping the location, where acceptable straight-line virtual cochlear implant electrode trajectories intersect the facial recess. In addition, to investigate the influence of facial recess preparation, virtual electrode width and surgical approach to the cochlea on these available trajectories. METHODS The study was performed on imaging data from eight cadaveric temporal bones within the University of Melbourne Virtual Reality (VR) Temporal Bone Surgery Simulator. The facial recess was opened to varying degrees, and acceptable trajectory vectors with varying diameters were calculated for electrode insertions via cochleostomy or round window membrane (RWM). The percentage of acceptable insertion vectors through each location of the facial recess was visually represented using heatmaps. RESULTS Seven of the eight bones allowed for acceptable vector trajectories via both cochleostomy and RWM approaches. These acceptable trajectories were more likely to lie superiorly within the facial recess for insertion via the round window, and inferiorly for insertion via cochleostomy. Cochleostomy insertions required a greater degree of preparation and skeletonisation of the junction of the facial nerve and chorda tympani within the facial recess. The width of the virtual electrode had only marginal impact on the availability of acceptable trajectories. Heatmaps emphasised the intimate relationship the acceptable trajectories have with the facial nerve and chorda tympani. CONCLUSION These findings highlight the differences in the acceptable straight-line trajectories for electrodes when implanted via the round window or cochleostomy. There were notable exceptions to both surgical approaches, likely explained by the variation of hook region anatomy. The methodology used in this study holds promise for translation to patient specific surgical planning.
Collapse
Affiliation(s)
- Bridget Copson
- Department of Surgery (Otolaryngology), University of Melbourne, Level 5, Royal Victorian Eye and Ear Hospital, 32, Gisborne Street, East Melbourne, VIC, 3002, Australia.
| | - Sudanthi Wijewickrema
- Department of Surgery (Otolaryngology), University of Melbourne, Level 5, Royal Victorian Eye and Ear Hospital, 32, Gisborne Street, East Melbourne, VIC, 3002, Australia
| | - Xingjun Ma
- Department of Surgery (Otolaryngology), University of Melbourne, Level 5, Royal Victorian Eye and Ear Hospital, 32, Gisborne Street, East Melbourne, VIC, 3002, Australia
| | - Yun Zhou
- Department of Surgery (Otolaryngology), University of Melbourne, Level 5, Royal Victorian Eye and Ear Hospital, 32, Gisborne Street, East Melbourne, VIC, 3002, Australia
| | - Jean-Marc Gerard
- Department of Surgery (Otolaryngology), University of Melbourne, Level 5, Royal Victorian Eye and Ear Hospital, 32, Gisborne Street, East Melbourne, VIC, 3002, Australia
| | - Stephen O'Leary
- Department of Surgery (Otolaryngology), University of Melbourne, Level 5, Royal Victorian Eye and Ear Hospital, 32, Gisborne Street, East Melbourne, VIC, 3002, Australia
| |
Collapse
|
32
|
Li Q, Du Z, Yu H. Grinding trajectory generator in robot-assisted laminectomy surgery. Int J Comput Assist Radiol Surg 2021; 16:485-494. [PMID: 33507483 DOI: 10.1007/s11548-021-02316-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/15/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE Grinding trajectory planning for robot-assisted laminectomy is a complicated and cumbersome task. The purpose of this research is to automatically obtain the surgical target area from the CT image, and based on this, formulate a reasonable robotic grinding trajectory. METHODS We propose a deep neural network for laminae positioning, a trajectory generation strategy, and a grinding speed adjusting strategy. These algorithms can obtain surgical information from CT images and automatically complete grinding trajectory planning. RESULTS The proposed laminae positioning network can reach a recognition accuracy of 95.7%, and the positioning error is only 1.12 mm in the desired direction. The simulated surgical planning on the public dataset has achieved the expected results. In a set of comparative robotic grinding experiments, those using the speed adjustment algorithm obtained a smoother grinding force. CONCLUSION Our work can automatically extract laminar centers from the CT image precisely to formulate a reasonable surgical trajectory plan. It simplifies the surgical planning process and reduces the time needed for surgeons to perform such a cumbersome operation manually.
Collapse
Affiliation(s)
- Qian Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Zhijiang Du
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Hongjian Yu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
33
|
Schneider D, Hermann J, Mueller F, Braga GOB, Anschuetz L, Caversaccio M, Nolte L, Weber S, Klenzner T. Evolution and Stagnation of Image Guidance for Surgery in the Lateral Skull: A Systematic Review 1989-2020. Front Surg 2021; 7:604362. [PMID: 33505986 PMCID: PMC7831154 DOI: 10.3389/fsurg.2020.604362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/13/2020] [Indexed: 11/13/2022] Open
Abstract
Objective: Despite three decades of pre-clinical and clinical research into image guidance solutions as a more accurate and less invasive alternative for instrument and anatomy localization, translation into routine clinical practice for surgery in the lateral skull has not yet happened. The aim of this review is to identify challenges that need to be solved in order to provide image guidance solutions that are safe and beneficial for use during lateral skull surgery and to synthesize factors that facilitate the development of such solutions. Methods: Literature search was conducted via PubMed using terms relating to image guidance and the lateral skull. Data extraction included the following variables: image guidance error, imaging resolution, image guidance system, tracking technology, registration method, study endpoints, clinical target application, and publication year. A subsequent search of FDA 510(k) database for identified image guidance systems and extraction of the year of approval, intended use, and indications for use was performed. The study objectives and endpoints were subdivided in three time phases and summarized. Furthermore, it was analyzed which factors correlated with the image guidance error. Factor values for which an error ≤0.5 mm (μerror + 3σerror) was measured in more than one study were identified and inspected for time trends. Results: A descriptive statistics-based summary of study objectives and findings separated in three time intervals is provided. The literature provides qualitative and quantitative evidence that image guidance systems must provide an accuracy ≤0.5 mm (μerror + 3σerror) for their safe and beneficial application during surgery in the lateral skull. Spatial tracking accuracy and precision and medical image resolution both correlate with the image guidance accuracy, and all of them improved over the years. Tracking technology with accuracy ≤0.05 mm, computed tomography imaging with slice thickness ≤0.2 mm, and registration based on bone-anchored titanium fiducials are components that provide a sufficient setting for the development of sufficiently accurate image guidance. Conclusion: Image guidance systems must reliably provide an accuracy ≤0.5 mm (μerror + 3σerror) for their safe and beneficial use during surgery in the lateral skull. Advances in tracking and imaging technology contribute to the improvement of accuracy, eventually enabling the development and wide-scale adoption of image guidance solutions that can be used safely and beneficially during lateral skull surgery.
Collapse
Affiliation(s)
- Daniel Schneider
- ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | - Jan Hermann
- ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | - Fabian Mueller
- ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | | | - Lukas Anschuetz
- Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Marco Caversaccio
- Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Lutz Nolte
- ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | - Stefan Weber
- ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | - Thomas Klenzner
- Department of Otorhinolaryngology, University Hospital Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
34
|
|
35
|
Wang J, Liu H, Ke J, Hu L, Zhang S, Yang B, Sun S, Guo N, Ma F. Image-guided cochlear access by non-invasive registration: a cadaveric feasibility study. Sci Rep 2020; 10:18318. [PMID: 33110188 PMCID: PMC7591497 DOI: 10.1038/s41598-020-75530-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/15/2020] [Indexed: 11/09/2022] Open
Abstract
Image-guided cochlear implant surgery is expected to reduce volume of mastoidectomy, accelerate recovery, and improve safety. The purpose of this study was to investigate the safety and effectiveness of image-guided cochlear implant surgery by a non-invasive registration method, in a cadaveric study. We developed a visual positioning frame that can utilize the maxillary dentition as a registration tool and completed the tunnels experiment on 5 cadaver specimens (8 cases in total). The accuracy of the entry point and the target point were 0.471 ± 0.276 mm and 0.671 ± 0.268 mm, respectively. The shortest distance from the margin of the tunnel to the facial nerve and the ossicular chain were 0.790 ± 0.709 mm and 1.960 ± 0.630 mm, respectively. All facial nerves, tympanic membranes, and ossicular chains were completely preserved. Using this approach, high accuracy was achieved in this preliminary study, suggesting that the non-invasive registration method can meet the accuracy requirements for cochlear implant surgery. Based on the above accuracy, we speculate that our method can also be applied to neurosurgery, orbitofacial surgery, lateral skull base surgery, and anterior skull base surgery with satisfactory accuracy.
Collapse
Affiliation(s)
- Jiang Wang
- Department of Otorhinolaryngology - Head and Neck Surgery, Peking University Third Hospital, Peking University, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Hongsheng Liu
- The Robotics Institute, School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Jia Ke
- Department of Otorhinolaryngology - Head and Neck Surgery, Peking University Third Hospital, Peking University, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Lei Hu
- The Robotics Institute, School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Shaoxing Zhang
- Department of Otorhinolaryngology - Head and Neck Surgery, Peking University Third Hospital, Peking University, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Biao Yang
- The Robotics Institute, School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Shilong Sun
- Department of Otorhinolaryngology - Head and Neck Surgery, Peking University Third Hospital, Peking University, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Na Guo
- The Robotics Institute, School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Furong Ma
- Department of Otorhinolaryngology - Head and Neck Surgery, Peking University Third Hospital, Peking University, No. 49 North Garden Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
36
|
Jank BJ, Haas M, Riss D, Baumgartner WD. Acceptance of patients towards task-autonomous robotic cochlear implantation: An exploratory study. Int J Med Robot 2020; 17:1-6. [PMID: 32949426 PMCID: PMC7900970 DOI: 10.1002/rcs.2172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/08/2020] [Accepted: 09/17/2020] [Indexed: 01/03/2023]
Abstract
Background Recently, task‐autonomous image‐guided robotic cochlear implantation has been successfully completed in patients. However, no data exist on patients' perspective of this new technology. The aim of this study was to evaluate the acceptance of patients towards task‐autonomous robotic cochlear implantation (TARCI). Methods We prospectively surveyed 63 subjects (51 patients and 12 parents of infants) scheduled for manual cochlear implantation. We collected sociodemographic and clinico‐pathological characteristics and their attitude towards TARCI for themselves or their child using a questionnaire. Differences between variables were analysed using one‐way analysis of variance and Spearman's rho was used to test for correlation. Results Seventy‐three percent of patients and 84% of parents expressed a high acceptance towards TARCI for themselves, or their child, respectively. Interestingly, patients with a negative attitude towards TARCI were significantly younger. Conclusion The attitude of patients and parents likely does not represent a barrier towards application of this new technology.
Collapse
Affiliation(s)
- Bernhard J Jank
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Markus Haas
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Dominik Riss
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Wolf-Dieter Baumgartner
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
37
|
Zaffino P, Moccia S, De Momi E, Spadea MF. A Review on Advances in Intra-operative Imaging for Surgery and Therapy: Imagining the Operating Room of the Future. Ann Biomed Eng 2020; 48:2171-2191. [PMID: 32601951 DOI: 10.1007/s10439-020-02553-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/17/2020] [Indexed: 12/19/2022]
Abstract
With the advent of Minimally Invasive Surgery (MIS), intra-operative imaging has become crucial for surgery and therapy guidance, allowing to partially compensate for the lack of information typical of MIS. This paper reviews the advancements in both classical (i.e. ultrasounds, X-ray, optical coherence tomography and magnetic resonance imaging) and more recent (i.e. multispectral, photoacoustic and Raman imaging) intra-operative imaging modalities. Each imaging modality was analyzed, focusing on benefits and disadvantages in terms of compatibility with the operating room, costs, acquisition time and image characteristics. Tables are included to summarize this information. New generation of hybrid surgical room and algorithms for real time/in room image processing were also investigated. Each imaging modality has its own (site- and procedure-specific) peculiarities in terms of spatial and temporal resolution, field of view and contrasted tissues. Besides the benefits that each technique offers for guidance, considerations about operators and patient risk, costs, and extra time required for surgical procedures have to be considered. The current trend is to equip surgical rooms with multimodal imaging systems, so as to integrate multiple information for real-time data extraction and computer-assisted processing. The future of surgery is to enhance surgeons eye to minimize intra- and after-surgery adverse events and provide surgeons with all possible support to objectify and optimize the care-delivery process.
Collapse
Affiliation(s)
- Paolo Zaffino
- Department of Experimental and Clinical Medicine, Universitá della Magna Graecia, Catanzaro, Italy
| | - Sara Moccia
- Department of Information Engineering (DII), Universitá Politecnica delle Marche, via Brecce Bianche, 12, 60131, Ancona, AN, Italy.
| | - Elena De Momi
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133, Milano, MI, Italy
| | - Maria Francesca Spadea
- Department of Experimental and Clinical Medicine, Universitá della Magna Graecia, Catanzaro, Italy
| |
Collapse
|
38
|
Nguy PL, Saidha S, Jay A, Jeffrey Kim H, Hoa M. Radiologic anatomy of the round window relevant to cochlear implantation and inner ear drug delivery. World J Otorhinolaryngol Head Neck Surg 2020; 7:9-16. [PMID: 33474538 PMCID: PMC7801246 DOI: 10.1016/j.wjorl.2018.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/03/2018] [Accepted: 12/03/2018] [Indexed: 11/28/2022] Open
Abstract
Objective To determine anatomic relationships and variation of the round window membrane to bony surgical landmarks on computed tomography. Study design Retrospective imaging review. Methods 100 temporal bone images were evaluated. Direct measurements were obtained for membrane position. Vector distances and angulation from umbo and bony annulus were calculated from image viewer software coordinates. Results The angle of round window membrane at junction with cochlear basal turn was (42.1 ± 8.6)°. The membrane's position relative to plane of the facial nerve through facial recess was (14.7 ± 5.2)° posterior from a reference line drawn through facial recess to carotid canal. Regarding transtympanic drug delivery, the round window membrane was directed 4.1 mm superiorly from the inferior annulus and 5.4 mm anteriorly from the posterior annulus. The round window membrane on average was angled superiorly from the inferior annulus (77.1 ± 27.9)° and slightly anteriorly from the posterior annulus (19.1 ± 11.1°). The mean distance of round window membrane from umbo was 4 mm and posteriorly rotated 30° clockwise from a perpendicular drawn from umbo to inferior annulus towards posterior annulus. Together, these measurements approximate the round window membrane in the tympanic membrane's posteroinferior quadrant. Conclusions These radiologic measurements demonstrate normal variations seen in round window anatomy relative to facial recess approach and bony tympanic annulus, providing a baseline to assess round window insertion for cochlear implantation and outlines anatomic factors affecting transtympanic drug delivery.
Collapse
Affiliation(s)
- Peter L Nguy
- Department of Otolaryngology-Head and Neck Surgery, Georgetown University Medical Center, Washington DC, USA
| | - Sheela Saidha
- Department of Otolaryngology, University of Rochester Medical Center, Rochester, NY, USA
| | - Ann Jay
- Department of Radiology, Georgetown University Medical Center, Washington DC, USA
| | - H Jeffrey Kim
- Department of Otolaryngology-Head and Neck Surgery, Georgetown University Medical Center, Washington DC, USA
| | - Michael Hoa
- Department of Otolaryngology-Head and Neck Surgery, Georgetown University Medical Center, Washington DC, USA
| |
Collapse
|
39
|
Kügler D, Sehring J, Stefanov A, Stenin I, Kristin J, Klenzner T, Schipper J, Mukhopadhyay A. i3PosNet: instrument pose estimation from X-ray in temporal bone surgery. Int J Comput Assist Radiol Surg 2020; 15:1137-1145. [PMID: 32440956 PMCID: PMC7316684 DOI: 10.1007/s11548-020-02157-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/03/2020] [Indexed: 11/03/2022]
Abstract
PURPOSE Accurate estimation of the position and orientation (pose) of surgical instruments is crucial for delicate minimally invasive temporal bone surgery. Current techniques lack in accuracy and/or line-of-sight constraints (conventional tracking systems) or expose the patient to prohibitive ionizing radiation (intra-operative CT). A possible solution is to capture the instrument with a c-arm at irregular intervals and recover the pose from the image. METHODS i3PosNet infers the position and orientation of instruments from images using a pose estimation network. Said framework considers localized patches and outputs pseudo-landmarks. The pose is reconstructed from pseudo-landmarks by geometric considerations. RESULTS We show i3PosNet reaches errors [Formula: see text] mm. It outperforms conventional image registration-based approaches reducing average and maximum errors by at least two thirds. i3PosNet trained on synthetic images generalizes to real X-rays without any further adaptation. CONCLUSION The translation of deep learning-based methods to surgical applications is difficult, because large representative datasets for training and testing are not available. This work empirically shows sub-millimeter pose estimation trained solely based on synthetic training data.
Collapse
Affiliation(s)
- David Kügler
- Department of Computer Science, Technischer Universität Darmstadt, Darmstadt, Germany. .,German Center for Degenerative Diseases (DZNE) e.V., Bonn, Germany.
| | - Jannik Sehring
- Department of Computer Science, Technischer Universität Darmstadt, Darmstadt, Germany
| | - Andrei Stefanov
- Department of Computer Science, Technischer Universität Darmstadt, Darmstadt, Germany
| | - Igor Stenin
- ENT Clinic, University Düsseldorf, Düsseldorf, Germany
| | - Julia Kristin
- ENT Clinic, University Düsseldorf, Düsseldorf, Germany
| | | | - Jörg Schipper
- ENT Clinic, University Düsseldorf, Düsseldorf, Germany
| | - Anirban Mukhopadhyay
- Department of Computer Science, Technischer Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
40
|
Topsakal V, Matulic M, Assadi MZ, Mertens G, Rompaey VV, Van de Heyning P. Comparison of the Surgical Techniques and Robotic Techniques for Cochlear Implantation in Terms of the Trajectories Toward the Inner Ear. J Int Adv Otol 2020; 16:3-7. [PMID: 32209514 PMCID: PMC7224420 DOI: 10.5152/iao.2020.8113] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES The ideal outcome of cochlear implant surgery involves the insertion of the array inside the scala tympani of the cochlea with the least mechanical trauma. Recently, round window insertion and the direction in which the cochlea is approached have gained attention in this respect. The Angles of Cochlear Approach (ACA) can be defined with a plane in the plane of the basal turn, termed the in-plane angle, and the plane orthogonal to this plane, termed the out-plane angle. The aim of this study was to compare the trajectory angles for different surgical techniques of Veria, suprameatal, pericanal, and multiple posterior tympanotomy (PT) approaches, including an optimal trajectory that is simulated for robotic surgery. MATERIALS AND METHODS The trajectories of these surgical techniques were simulated on the same high-resolution computed tomography scan. The simulated trajectory angles were analyzed with dedicated software for medical images, defining the ACA and distances to critical otological structures. RESULTS The ACA are the smallest for surgical techniques that pass thought the PT. However, performing a surgical PT can include variability in the ACA, ranging from almost 0° to 20.8° in an out-plane angle, depending on how close a surgeon would approach the facial nerve. The Veria, Suprameatal approach (SMA), and peri-canal approaches have larger ACA and minimal distances to the ossicular chain and the ear canal. The maximum distance to the facial nerve and the widest out-plane angle is observe with a pericanal approach. The optimal PT approach refers to the trajectory without collisions and with the best possible ACA that can be planned. CONCLUSION Different surgical approaches yield important differences in the ACA. PT allows better ACA with maximum distances to the critical structures. However, the optimal PT trajectory simulated for robotic keyhole surgery is a further improvement on the trajectories through the facial recess.
Collapse
Affiliation(s)
- Vedat Topsakal
- Department of Otorhinolaryngology Head and Neck Surgery, Antwerp University Hospital (UZA), Edegem, Belgium;Department of Translational Neurosciences, University of Antwerp, Antwerp, Belgium
| | - Marco Matulic
- Department of Translational Neurosciences, University of Antwerp, Antwerp, Belgium
| | | | - Griet Mertens
- Department of Otorhinolaryngology Head and Neck Surgery, Antwerp University Hospital (UZA), Edegem, Belgium;Department of Translational Neurosciences, University of Antwerp, Antwerp, Belgium
| | - Vincent Van Rompaey
- Department of Otorhinolaryngology Head and Neck Surgery, Antwerp University Hospital (UZA), Edegem, Belgium;Department of Translational Neurosciences, University of Antwerp, Antwerp, Belgium
| | - Paul Van de Heyning
- Department of Otorhinolaryngology Head and Neck Surgery, Antwerp University Hospital (UZA), Edegem, Belgium;Department of Translational Neurosciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
41
|
Labadie RF, Schefano AD, Holder JT, Dwyer RT, Rivas A, O’Malley MR, Noble JH, Dawant BM. Use of intraoperative CT scanning for quality control assessment of cochlear implant electrode array placement. Acta Otolaryngol 2020; 140:206-211. [PMID: 31859576 DOI: 10.1080/00016489.2019.1698768] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Background: Imaging of cochlear implant (CI) electrode arrays (EAs) consists of intraoperative fluoroscopy to rule out tip fold-over and/or post-operative computerized tomography (CT) if concern exists regarding extrusion or misplacement of the EA. Intraoperative CT (iCT) can satisfy these current needs and enables specification of final intracochlear position.Aims/objectives: To describe iCT scanning of CI recipients at an academic medical center.Materials and methods: iCT was used to scan CI recipients within the operating room before recovering from general anesthesia.Results: In fiscal year 2019, 301 CI were placed (83 children, 218 adult). One hundred, seventy-five iCTs were performed (58% of total CIs) of which 52 were children (63% of pediatric CIs) and 123 were adult (57% of adult CIs). Of 7 CI surgeons, use of iCT ranged from 14% to 100% (mean 60%). Four tip fold-overs were identified and corrected intraoperatively. Surgeons reported using the images to improve technique (i.e. pulling back precurved EAs to improve perimodiolar positioning).Conclusion and significance: The current standard of care for CI is to insert EAs without feedback as to final location. iCT provides surgeons with rapid post-insertion feedback which allows detection and correction of suboptimally placed EAs as well as refinement of surgical technique.
Collapse
Affiliation(s)
- Robert F. Labadie
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University, Nashville, TN, USA
| | - Antonio D. Schefano
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University, Nashville, TN, USA
| | - Jourdan T. Holder
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN, USA
| | - Robert T. Dwyer
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN, USA
| | - Alejandro Rivas
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University, Nashville, TN, USA
| | - Matthew R. O’Malley
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University, Nashville, TN, USA
| | - Jack H. Noble
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Benoit M. Dawant
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
42
|
|
43
|
Bruns TL, Riojas KE, Ropella DS, Cavilla MS, Petruska AJ, Freeman MH, Labadie RF, Abbott JJ, Webster RJ. Magnetically Steered Robotic Insertion of Cochlear-Implant Electrode Arrays: System Integration and First-In-Cadaver Results. IEEE Robot Autom Lett 2020; 5:2240-2247. [PMID: 34621979 DOI: 10.1109/lra.2020.2970978] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cochlear-implant electrode arrays (EAs) must be inserted accurately and precisely to avoid damaging the delicate anatomical structures of the inner ear. It has previously been shown on the benchtop that using magnetic fields to steer magnet-tipped EAs during insertion reduces insertion forces, which correlate with insertion errors and damage to internal cochlear structures. This paper presents several advancements toward the goal of deploying magnetic steering of cochlear-implant EAs in the operating room. In particular, we integrate image guidance with patient-specific insertion vectors, we incorporate a new nonmagnetic insertion tool, and we use an electromagnetic source, which provides programmable control over the generated field. The electromagnet is safer than prior permanent-magnet approaches in two ways: it eliminates motion of the field source relative to the patient's head and creates a field-free source in the power-off state. Using this system, we demonstrate system feasibility by magnetically steering EAs into a cadaver cochlea for the first time. We show that magnetic steering decreases average insertion forces, in comparison to manual insertions and to image-guided robotic insertions alone.
Collapse
Affiliation(s)
- Trevor L Bruns
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Katherine E Riojas
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Dominick S Ropella
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Matt S Cavilla
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Andrew J Petruska
- Department of Mechanical Engineering, Colorado School of Mines, Golden, CO, USA
| | - Michael H Freeman
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robert F Labadie
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jake J Abbott
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Robert J Webster
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
44
|
|
45
|
Ansó J, Dür C, Apelt M, Venail F, Scheidegger O, Seidel K, Rohrbach H, Forterre F, Dettmer MS, Zlobec I, Weber K, Matulic M, Zoka-Assadi M, Huth M, Caversaccio M, Weber S. Prospective Validation of Facial Nerve Monitoring to Prevent Nerve Damage During Robotic Drilling. Front Surg 2019; 6:58. [PMID: 31632981 PMCID: PMC6781655 DOI: 10.3389/fsurg.2019.00058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/09/2019] [Indexed: 11/30/2022] Open
Abstract
Facial nerve damage has a detrimental effect on a patient's life, therefore safety mechanisms to ensure its preservation are essential during lateral skull base surgery. During robotic cochlear implantation a trajectory passing the facial nerve at <0.5 mm is needed. Recently a stimulation probe and nerve monitoring approach were developed and introduced clinically, however for patient safety no trajectory was drilled closer than 0.4 mm. Here we assess the performance of the nerve monitoring system at closer distances. In a sheep model eight trajectories were drilled to test the setup followed by 12 trajectories during which the ENT surgeon relied solely on the nerve monitoring system and aborted the robotic drilling process if intraoperative nerve monitoring alerted of a distance <0.1 mm. Microcomputed tomography images and histopathology showed prospective use of the technology prevented facial nerve damage. Facial nerve monitoring integrated in a robotic system supports the surgeon's ability to proactively avoid damage to the facial nerve during robotic drilling in the mastoid.
Collapse
Affiliation(s)
- Juan Ansó
- ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | - Cilgia Dür
- Department of Head and Neck Surgery, Inselspital, University of Bern, Bern, Switzerland
| | - Mareike Apelt
- ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | - Frederic Venail
- Department of Otolaryngology-Head and Neck Surgery, University Hospital of Montpellier, Montpellier, France
| | | | - Kathleen Seidel
- Department of Neurosurgery, Inselspital, University of Bern, Bern, Switzerland
| | - Helene Rohrbach
- Vetsuisse Faculty, Veterinary Hospital, University of Bern, Bern, Switzerland
| | - Franck Forterre
- Vetsuisse Faculty, Veterinary Hospital, University of Bern, Bern, Switzerland
| | | | - Inti Zlobec
- Institute of Pathology, University of Bern, Bern, Switzerland
| | | | | | | | - Markus Huth
- Department of Head and Neck Surgery, Inselspital, University of Bern, Bern, Switzerland
| | - Marco Caversaccio
- Department of Head and Neck Surgery, Inselspital, University of Bern, Bern, Switzerland
| | - Stefan Weber
- ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| |
Collapse
|
46
|
Caversaccio M, Wimmer W, Anso J, Mantokoudis G, Gerber N, Rathgeb C, Schneider D, Hermann J, Wagner F, Scheidegger O, Huth M, Anschuetz L, Kompis M, Williamson T, Bell B, Gavaghan K, Weber S. Robotic middle ear access for cochlear implantation: First in man. PLoS One 2019; 14:e0220543. [PMID: 31374092 PMCID: PMC6677292 DOI: 10.1371/journal.pone.0220543] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 07/18/2019] [Indexed: 11/18/2022] Open
Abstract
To demonstrate the feasibility of robotic middle ear access in a clinical setting, nine adult patients with severe-to-profound hearing loss indicated for cochlear implantation were included in this clinical trial. A keyhole access tunnel to the tympanic cavity and targeting the round window was planned based on preoperatively acquired computed tomography image data and robotically drilled to the level of the facial recess. Intraoperative imaging was performed to confirm sufficient distance of the drilling trajectory to relevant anatomy. Robotic drilling continued toward the round window. The cochlear access was manually created by the surgeon. Electrode arrays were inserted through the keyhole tunnel under microscopic supervision via a tympanomeatal flap. All patients were successfully implanted with a cochlear implant. In 9 of 9 patients the robotic drilling was planned and performed to the level of the facial recess. In 3 patients, the procedure was reverted to a conventional approach for safety reasons. No change in facial nerve function compared to baseline measurements was observed. Robotic keyhole access for cochlear implantation is feasible. Further improvements to workflow complexity, duration of surgery, and usability including safety assessments are required to enable wider adoption of the procedure.
Collapse
Affiliation(s)
- Marco Caversaccio
- Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Hearing Research Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Wilhelm Wimmer
- Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Hearing Research Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Juan Anso
- Image-Guided Therapy, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Georgios Mantokoudis
- Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Nicolas Gerber
- Image-Guided Therapy, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Christoph Rathgeb
- Hearing Research Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Daniel Schneider
- Image-Guided Therapy, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Jan Hermann
- Image-Guided Therapy, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Franca Wagner
- Department of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Olivier Scheidegger
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Markus Huth
- Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Lukas Anschuetz
- Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Martin Kompis
- Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Tom Williamson
- Image-Guided Therapy, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Brett Bell
- Image-Guided Therapy, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Kate Gavaghan
- Image-Guided Therapy, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Stefan Weber
- Image-Guided Therapy, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| |
Collapse
|
47
|
Razavi CR, Wilkening PR, Yin R, Barber SR, Taylor RH, Carey JP, Creighton FX. Image-Guided Mastoidectomy with a Cooperatively Controlled ENT Microsurgery Robot. Otolaryngol Head Neck Surg 2019; 161:852-855. [PMID: 31331246 DOI: 10.1177/0194599819861526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mastoidectomy is a common surgical procedure within otology. Despite being inherently well suited for implementation of robotic assistance, there are no commercially available robotic systems that have demonstrated utility in aiding with this procedure. This article describes a robotic technique for image-guided mastoidectomy with an experimental cooperatively controlled robotic system developed for use within otolaryngology-head and neck surgery. It has the ability to facilitate enhanced operative precision with dampening of tremor in simulated surgical tasks. Its kinematic design is such that the location of the attached surgical instrument is known with a high degree of fidelity at all times. This facilitates image registration and subsequent definition of virtual fixtures, which demarcate surgical workspace boundaries and prevent motion into undesired areas. In this preliminary feasibility study, we demonstrate the clinical utility of this system to facilitate performance of a cortical mastoidectomy by a novice surgeon in 5 identical temporal bone models with a mean time of 221 ± 35 seconds.
Collapse
Affiliation(s)
- Christopher R Razavi
- Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Paul R Wilkening
- Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Rui Yin
- Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Samuel R Barber
- Department of Otolaryngology-Head and Neck Surgery, University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Russell H Taylor
- Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, Maryland, USA
| | - John P Carey
- Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Francis X Creighton
- Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
48
|
Yasin R, Dedmon M, Dillon N, Simaan N. Investigating variability in cochlear implant electrode array alignment and the potential of visualization guidance. Int J Med Robot 2019; 15:e2009. [PMID: 31099146 DOI: 10.1002/rcs.2009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 11/10/2022]
Abstract
Background Internal cochlear anatomy is difficult to discern from external inspection, hindering cochlear implant electrode insertion. Methods A user study characterized the repeatability of standard surgical technique and examined the role of visual inspection and guidance cues in reducing electrode array insertion misalignment. Results Without guidance, a large spread in angles of insertion, up to 30°, was observed, highlighting the need for intraoperative guidance. Visual inspection did not significantly improve overall orientation, suggesting the need for alternate intracochlear visualization methods and/or increased training to effectively improve surgeon understanding of the visualized images. Visual cues and guidance software increased repeatability of surgeon performance, reducing one metric of repeatability to ±2°. Conclusions This study establishes a baseline for surgeon variability in cochlear implant insertion and supports the need and lays the groundwork for future intraoperative guidance techniques.
Collapse
Affiliation(s)
- Rashid Yasin
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Matthew Dedmon
- Department of Otolaryngology, 1211 Medical Center Drive, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Neal Dillon
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Nabil Simaan
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
49
|
Toward an automatic preoperative pipeline for image-guided temporal bone surgery. Int J Comput Assist Radiol Surg 2019; 14:967-976. [DOI: 10.1007/s11548-019-01937-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/05/2019] [Indexed: 11/26/2022]
|
50
|
Abstract
The advances in technology leading to rapid developments in implantable auditory devices are constantly evolving. Devices are becoming smaller, less visible, and more efficient. The ability to preserve hearing outcomes with cochlear implantation will continue to evolve as surgical techniques improve with the use of continuous feedback during the procedure as well as with intraoperative delivery of drugs and robot assistance. As engineering methods improve, there may one day be a totally implantable aid that is self-sustaining in hearing-impaired patients making them indistinguishable from patients without hearing loss.
Collapse
Affiliation(s)
- Robert M Rhodes
- The Department of Otolaryngology Head and Neck Surgery, The University of Oklahoma Health Sciences Center, 800 Stanton L Young Boulevard, Suite 1400, Oklahoma City, OK 73104, USA
| | - Betty S Tsai Do
- The Department of Otolaryngology Head and Neck Surgery, The University of Oklahoma Health Sciences Center, 800 Stanton L Young Boulevard, Suite 1400, Oklahoma City, OK 73104, USA.
| |
Collapse
|