1
|
Krzykawski K, Kubina R, Wendlocha D, Sarna R, Mielczarek-Palacz A. Multifaceted Evaluation of Inhibitors of Anti-Apoptotic Proteins in Head and Neck Cancer: Insights from In Vitro, In Vivo, and Clinical Studies (Review). Pharmaceuticals (Basel) 2024; 17:1308. [PMID: 39458950 PMCID: PMC11510346 DOI: 10.3390/ph17101308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
This paper presents a multifaceted assessment of inhibitors of anti-apoptotic proteins (IAPs) in the context of head and neck squamous cell carcinoma (HNSCC). The article discusses the results of in vitro, in vivo, and clinical studies, highlighting the significance of IAPs in the resistance of cancer cells to apoptosis, which is a key factor hindering effective treatment. The main apoptosis pathways, including the intrinsic and extrinsic pathways, and the role of IAPs in their regulation, are presented. The study's findings suggest that targeting IAPs with novel therapies may offer clinical benefits in the treatment of advanced HNSCC, especially in cases resistant to conventional treatment methods. These conclusions underscore the need for further research to develop more effective and safer therapeutic strategies.
Collapse
Affiliation(s)
- Kamil Krzykawski
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (D.W.); (A.M.-P.)
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 41-752 Katowice, Poland; (R.K.); (R.S.)
| | - Robert Kubina
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 41-752 Katowice, Poland; (R.K.); (R.S.)
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Dominika Wendlocha
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (D.W.); (A.M.-P.)
| | - Robert Sarna
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 41-752 Katowice, Poland; (R.K.); (R.S.)
| | - Aleksandra Mielczarek-Palacz
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (D.W.); (A.M.-P.)
| |
Collapse
|
2
|
O'Leary B, Skinner H, Schoenfeld JD, Licitra L, Le Tourneau C, Esdar C, Schroeder A, Salmio S, Psyrri A. Evasion of apoptosis and treatment resistance in squamous cell carcinoma of the head and neck. Cancer Treat Rev 2024; 129:102773. [PMID: 38878677 DOI: 10.1016/j.ctrv.2024.102773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 08/18/2024]
Abstract
Combinations of surgery, radiotherapy and chemotherapy can eradicate tumors in patients with locally advanced squamous cell carcinoma of the head and neck (LA SCCHN), but a significant proportion of tumors progress, recur, or do not respond to therapy due to treatment resistance. The prognosis for these patients is poor, thus new approaches are needed to improve outcomes. Key resistance mechanisms to chemoradiotherapy (CRT) in patients with LA SCCHN are alterations to the pathways that mediate apoptosis, a form of programmed cell death. Targeting dysregulation of apoptotic pathways represents a rational therapeutic strategy in many types of cancer, with a number of proteins, including the pro-survival B-cell lymphoma 2 family and inhibitors of apoptosis proteins (IAPs), having been identified as druggable targets. This review discusses the mechanisms by which apoptosis occurs under physiological conditions, and how this process is abnormally restrained in LA SCCHN tumor cells, with treatment strategies aimed at re-enabling apoptosis in LA SCCHN also considered. In particular, the development of, and future opportunities for, IAP inhibitors in LA SCCHN are discussed, in light of recent encouraging proof-of-concept clinical trial data.
Collapse
Affiliation(s)
| | | | | | - Lisa Licitra
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan and University of Milan, Italy
| | | | | | | | | | - Amanda Psyrri
- Attikon University Hospital, National Kapodistrian University of Athens, Greece
| |
Collapse
|
3
|
Toni T, Viswanathan R, Robbins Y, Gunti S, Yang X, Huynh A, Cheng H, Sowers AL, Mitchell JB, Allen CT, Morgan EL, Van Waes C. Combined Inhibition of IAPs and WEE1 Enhances TNFα- and Radiation-Induced Cell Death in Head and Neck Squamous Carcinoma. Cancers (Basel) 2023; 15:1029. [PMID: 36831373 PMCID: PMC9954698 DOI: 10.3390/cancers15041029] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) remains a prevalent diagnosis with current treatment options that include radiotherapy and immune-mediated therapies, in which tumor necrosis factor-α (TNFα) is a key mediator of cytotoxicity. However, HNSCC and other cancers often display TNFα resistance due to activation of the canonical IKK-NFκB/RELA pathway, which is activated by, and induces expression of, cellular inhibitors of apoptosis proteins (cIAPs). Our previous studies have demonstrated that the IAP inhibitor birinapant sensitized HNSCC to TNFα-dependent cell death in vitro and radiotherapy in vivo. Furthermore, we recently demonstrated that the inhibition of the G2/M checkpoint kinase WEE1 also sensitized HNSCC cells to TNFα-dependent cell death, due to the inhibition of the pro-survival IKK-NFκB/RELA complex. Given these observations, we hypothesized that dual-antagonist therapy targeting both IAP and WEE1 proteins may have the potential to synergistically sensitize HNSCC to TNFα-dependent cell death. Using the IAP inhibitor birinapant and the WEE1 inhibitor AZD1775, we show that combination treatment reduced cell viability, proliferation and survival when compared with individual treatment. Furthermore, combination treatment enhanced the sensitivity of HNSCC cells to TNFα-induced cytotoxicity via the induction of apoptosis and DNA damage. Additionally, birinapant and AZD1775 combination treatment decreased cell proliferation and survival in combination with radiotherapy, a critical source of TNFα. These results support further investigation of IAP and WEE1 inhibitor combinations in preclinical and clinical studies in HNSCC.
Collapse
Affiliation(s)
- Tiffany Toni
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
- Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Ramya Viswanathan
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yvette Robbins
- Section on Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Building 10, Room 7N240C, Bethesda, MD 20892, USA
| | - Sreenivasulu Gunti
- Sinonasal and Skull Base Tumor Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xinping Yang
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Angel Huynh
- Section on Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Building 10, Room 7N240C, Bethesda, MD 20892, USA
| | - Hui Cheng
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anastasia L. Sowers
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James B. Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Clint T. Allen
- Section on Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Building 10, Room 7N240C, Bethesda, MD 20892, USA
| | - Ethan L. Morgan
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Carter Van Waes
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Cetraro P, Plaza-Diaz J, MacKenzie A, Abadía-Molina F. A Review of the Current Impact of Inhibitors of Apoptosis Proteins and Their Repression in Cancer. Cancers (Basel) 2022; 14:1671. [PMID: 35406442 PMCID: PMC8996962 DOI: 10.3390/cancers14071671] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
The Inhibitor of Apoptosis (IAP) family possesses the ability to inhibit programmed cell death through different mechanisms; additionally, some of its members have emerged as important regulators of the immune response. Both direct and indirect activity on caspases or the modulation of survival pathways, such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), have been implicated in mediating its effects. As a result, abnormal expression of inhibitor apoptosis proteins (IAPs) can lead to dysregulated apoptosis promoting the development of different pathologies. In several cancer types IAPs are overexpressed, while their natural antagonist, the second mitochondrial-derived activator of caspases (Smac), appears to be downregulated, potentially contributing to the acquisition of resistance to traditional therapy. Recently developed Smac mimetics counteract IAP activity and show promise in the re-sensitization to apoptosis in cancer cells. Given the modest impact of Smac mimetics when used as a monotherapy, pairing of these compounds with other treatment modalities is increasingly being explored. Modulation of molecules such as tumor necrosis factor-α (TNF-α) present in the tumor microenvironment have been suggested to contribute to putative therapeutic efficacy of IAP inhibition, although published results do not show this consistently underlining the complex interaction between IAPs and cancer.
Collapse
Affiliation(s)
- Pierina Cetraro
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Armilla, 18016 Granada, Spain;
| | - Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada;
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| | - Alex MacKenzie
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada;
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Francisco Abadía-Molina
- Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center, University of Granada, Armilla, 18016 Granada, Spain
- Department of Cell Biology, School of Sciences, University of Granada, 18071 Granada, Spain
| |
Collapse
|
5
|
Singh T, Neal A, Dibernardo G, Raheseparian N, Moatamed NA, Memarzadeh S. Efficacy of birinapant in combination with carboplatin in targeting platinum‑resistant epithelial ovarian cancers. Int J Oncol 2022; 60:35. [PMID: 35191515 PMCID: PMC8878637 DOI: 10.3892/ijo.2022.5325] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/25/2021] [Indexed: 01/19/2023] Open
Abstract
Patients diagnosed with epithelial ovarian cancers (EOCs) often suffer from disease relapse associated with the emergence of resistance to standard platinum‑based chemotherapy. Treatment of patients with chemo‑resistant disease remains a clinical challenge. One mechanism of chemoresistance includes overexpression of pro‑survival proteins called inhibitors of apoptosis (IAP) which enable cancer cells to evade apoptosis. Due to their anti‑apoptotic activity, association with poor prognosis, and correlation with therapy resistance in multiple malignancies, IAP proteins have become an attractive target for development of anticancer therapeutics. Second mitochondrial activator of caspase (SMAC) mimetics are the most widely used IAP antagonists currently being tested in clinical trials as a monotherapy and in combination with different chemotherapeutic drugs to target different types of cancer. In the present study, the antitumor efficacy of combination therapy with birinapant, a bivalent SMAC mimetic compound, and carboplatin to target platinum‑resistant EOC cells was investigated. A 3D organoid bioassay was utilized to test the efficacy of the combination therapy in a panel of 7 EOC cell lines and 10 platinum‑resistant primary patient tumor samples. Findings from the in vitro studies demonstrated that the birinapant and carboplatin combination was effective in targeting a subset of ovarian cancer cell lines and platinum‑resistant primary patient tumor samples. This combination therapy was also effective in vitro and in vivo in targeting a platinum‑resistant patient‑derived xenograft (PDX) model established from one of the patient tumors tested. Overall, our study demonstrated that birinapant and carboplatin combination could target a subset of platinum‑resistant ovarian cancers and also highlights the potential of the 3D organoid bioassay as a preclinical tool to assess the response to chemotherapy or targeted therapies in ovarian cancer.
Collapse
Affiliation(s)
- Tanya Singh
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA,UCLA Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA,Correspondence to: Dr Sanaz Memarzadeh or Dr Tanya Singh, Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, 610 Charles E. Young Drive East, 3018 Terasaki Life Sciences Building, Los Angeles, CA 90095, USA, E-mail: , E-mail:
| | - Adam Neal
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA,UCLA Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Gabriella Dibernardo
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA,UCLA Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Neela Raheseparian
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA,UCLA Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Neda A. Moatamed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Sanaz Memarzadeh
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA,UCLA Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA,Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA,UCLA Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, USA,The VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA,Correspondence to: Dr Sanaz Memarzadeh or Dr Tanya Singh, Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, 610 Charles E. Young Drive East, 3018 Terasaki Life Sciences Building, Los Angeles, CA 90095, USA, E-mail: , E-mail:
| |
Collapse
|
6
|
Knoll G, Ehrenschwender M. The non-peptidomimetic IAP antagonist ASTX660 sensitizes colorectal cancer cells for extrinsic apoptosis. FEBS Open Bio 2021; 11:714-723. [PMID: 33484626 PMCID: PMC7931242 DOI: 10.1002/2211-5463.13096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/13/2021] [Accepted: 01/21/2021] [Indexed: 01/16/2023] Open
Abstract
Apoptosis resistance worsens treatment response in cancer and is associated with poor prognosis. Inhibition of anti-apoptotic proteins can restore cell death and improve treatment efficacy. cIAP1, cIAP2, and XIAP belong to the inhibitor of apoptosis protein (IAP) family and block apoptosis. Targeting IAPs with peptides or peptidomimetics mimicking the IAP-antagonizing activity of the cell's endogenous IAP antagonist SMAC (SMAC mimetics) showed promising results and fueled development of novel compounds. ASTX660 belongs to the recently introduced class of non-peptidomimetic IAP antagonists and successfully completed phase I clinical trials. However, ASTX660 has thus far only been evaluated in few cancer entities. Here, we demonstrate that ASTX660 has cell death-promoting activity in colorectal cancer and provide a head-to-head comparison with birinapant, the clinically most advanced peptidomimetic IAP antagonist. ASTX660 facilitates activation of the extrinsic apoptosis pathway upon stimulation with the death ligands TNF and TRAIL and boosts effector caspase activation and subsequent apoptosis. Mechanistically, ASTX660 enhances amplification of death receptor-generated apoptotic signals in a mitochondria-dependent manner. Failure to activate the mitochondria-associated (intrinsic) apoptosis pathway attenuated the apoptosis-promoting effect of ASTX660. Further clinical studies are warranted to highlight the therapeutic potential of ASTX660 in colorectal cancer.
Collapse
Affiliation(s)
- Gertrud Knoll
- Institute of Clinical Microbiology and HygieneUniversity Hospital RegensburgGermany
| | | |
Collapse
|
7
|
An Updated Review of Smac Mimetics, LCL161, Birinapant, and GDC-0152 in Cancer Treatment. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app11010335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inhibitor of apoptosis proteins (IAPs) are suggested as therapeutic targets for cancer treatment. Smac/DIABLO is a natural IAP antagonist in cells; therefore, Smac mimetics have been developed for cancer treatment in the past decade. In this article, we review the anti-cancer potency and novel molecular targets of LCL161, birinapant, and GDC-0152. Preclinical studies demonstrated that Smac mimetics not only induce apoptosis but also arrest cell cycle, induce necroptosis, and induce immune storm in vitro and in vivo. The safety and tolerance of Smac mimetics are evaluated in phase 1 and phase 2 clinical trials. In addition, the combination of Smac mimetics and chemotherapeutic compounds was reported to improve anti-cancer effects. Interestingly, the novel anti-cancer molecular mechanism of action of Smac mimetics was reported in recent studies, suggesting that many unknown functions of Smac mimetics still need to be revealed. Exploring these currently unknown signaling pathways is important to provide hints for the modification and combination therapy of further compounds.
Collapse
|
8
|
Matrix Drug Screen Identifies Synergistic Drug Combinations to Augment SMAC Mimetic Activity in Ovarian Cancer. Cancers (Basel) 2020; 12:cancers12123784. [PMID: 33334024 PMCID: PMC7765376 DOI: 10.3390/cancers12123784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Recurrent ovarian cancer is difficult to treat due to the development of chemotherapy resistance. This resistance develops through multiple mechanisms to include the avoidance of cell death by cancer cells. Prior studies have shown birinapant, a second mitochondrial activator of caspases (SMAC) mimetic drug, to be promising in overcoming this acquired resistance. Despite good tolerability, however, therapy with single-agent birinapant exhibited minimal anti-cancer activity in women with recurrent ovarian cancer. By using a high-throughput drug screen we were able to identify potential therapeutic agents that augment birinapant activity, with docetaxel emerging favorably due to its marked synergy and known utility in the recurrent ovarian cancer setting. We showed that this synergy is the result of several complementary molecular pathways and hope to highlight the promising potential of this therapeutic drug combination for clinical testing where treatment options are often limited. Abstract Inhibitor of apoptosis (IAP) proteins are frequently upregulated in ovarian cancer, resulting in the evasion of apoptosis and enhanced cellular survival. Birinapant, a synthetic second mitochondrial activator of caspases (SMAC) mimetic, suppresses the functions of IAP proteins in order to enhance apoptotic pathways and facilitate tumor death. Despite on-target activity, however, pre-clinical trials of single-agent birinapant have exhibited minimal activity in the recurrent ovarian cancer setting. To augment the therapeutic potential of birinapant, we utilized a high-throughput screening matrix to identify synergistic drug combinations. Of those combinations identified, birinapant plus docetaxel was selected for further evaluation, given its remarkable synergy both in vitro and in vivo. We showed that this synergy results from multiple convergent pathways to include increased caspase activation, docetaxel-mediated TNF-α upregulation, alternative NF-kB signaling, and birinapant-induced microtubule stabilization. These findings provide a rationale for the integration of birinapant and docetaxel in a phase 2 clinical trial for recurrent ovarian cancer where treatment options are often limited and minimally effective.
Collapse
|
9
|
Xie X, Lee J, Liu H, Pearson T, Lu AY, Tripathy D, Devi GR, Bartholomeusz C, Ueno NT. Birinapant Enhances Gemcitabine's Antitumor Efficacy in Triple-Negative Breast Cancer by Inducing Intrinsic Pathway-Dependent Apoptosis. Mol Cancer Ther 2020; 20:296-306. [PMID: 33323457 DOI: 10.1158/1535-7163.mct-19-1160] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 09/01/2020] [Accepted: 11/30/2020] [Indexed: 11/16/2022]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subgroup of breast cancer, and patients with TNBC have few therapeutic options. Apoptosis resistance is a hallmark of human cancer, and apoptosis regulators have been targeted for drug development for cancer treatment. One class of apoptosis regulators is the inhibitors of apoptosis proteins (IAPs). Dysregulated IAP expression has been reported in many cancers, including breast cancer, and has been shown to be responsible for resistance to chemotherapy. Therefore, IAPs have become attractive molecular targets for cancer treatment. Here, we first investigated the antitumor efficacy of birinapant (TL32711), a biindole-based bivalent mimetic of second mitochondria-derived activator of caspases (SMACs), in TNBC. We found that birinapant as a single agent has differential antiproliferation effects in TNBC cells. We next assessed whether birinapant has a synergistic effect with commonly used anticancer drugs, including entinostat (class I histone deacetylase inhibitor), cisplatin, paclitaxel, voxtalisib (PI3K inhibitor), dasatinib (Src inhibitor), erlotinib (EGFR inhibitor), and gemcitabine, in TNBC. Among these tested drugs, gemcitabine showed a strong synergistic effect with birinapant. Birinapant significantly enhanced the antitumor activity of gemcitabine in TNBC both in vitro and in xenograft mouse models through activation of the intrinsic apoptosis pathway via degradation of cIAP2 and XIAP, leading to apoptotic cell death. Our findings demonstrate the therapeutic potential of birinapant to enhance the antitumor efficacy of gemcitabine in TNBC by targeting the IAP family of proteins.
Collapse
Affiliation(s)
- Xuemei Xie
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Jangsoon Lee
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Huey Liu
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Troy Pearson
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alexander Y Lu
- Department of Bioengineering, Rice University, Houston, Texas
| | - Debu Tripathy
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gayathri R Devi
- Department of Surgery, Division of Surgical Sciences, Duke Cancer Institute, Duke University School of Medicine, North Carolin
- Women's Cancer Program, Duke Cancer Institute, Duke University School of Medicine, North Carolina
| | - Chandra Bartholomeusz
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Naoto T Ueno
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
10
|
Park EJ, Kim HD, Choi EK, Hoe KL, Kim DU. Co-treatment of birinapant with TRAIL synergistically induces apoptosis by downregulating cFLIP(L) in MDA-MB-453 cell lines. Biochem Biophys Res Commun 2020; 533:289-295. [PMID: 32958259 DOI: 10.1016/j.bbrc.2020.09.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 12/24/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has received much attention owing to its ability to specifically induce cell death in cancer. However, several types of cancer, including some forms of breast cancer, are resistant to TRAIL. Various chemotherapeutic agents, phytochemicals, and TRAIL combination therapies have been proposed to resolve TRAIL resistance. Here, we explored the sensitization effect of birinapant on TRAIL-induced apoptosis in the MDA-MB-453 cell line. Although neither birinapant nor TRAIL showed any cytotoxic effect when used alone, apoptosis was induced when birinapant and TRAIL were used together. Our data suggest that the combination of birinapant and TRAIL induces downregulation of FLICE-like inhibitory protein (cFLIP) (L) protein expression. Interestingly, cFLIP(L) overexpression reversed apoptosis caused by co-treatment with TRAIL. Taken together, our results indicate that a combination of birinapant and TRAIL may be a promising treatment for TRAIL-resistant breast cancer.
Collapse
Affiliation(s)
- Eun Jung Park
- Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Hae Dong Kim
- Department of New Drug Discovery and Development, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Eun Kyoung Choi
- Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
| | - Kwang-Lae Hoe
- Department of New Drug Discovery and Development, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Dong-Uk Kim
- Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
11
|
Future Therapeutic Directions for Smac-Mimetics. Cells 2020; 9:cells9020406. [PMID: 32053868 PMCID: PMC7072318 DOI: 10.3390/cells9020406] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/15/2022] Open
Abstract
It is well accepted that the ability of cancer cells to circumvent the cell death program that untransformed cells are subject to helps promote tumor growth. Strategies designed to reinstate the cell death program in cancer cells have therefore been investigated for decades. Overexpression of members of the Inhibitor of APoptosis (IAP) protein family is one possible mechanism hindering the death of cancer cells. To promote cell death, drugs that mimic natural IAP antagonists, such as second mitochondria-derived activator of caspases (Smac/DIABLO) were developed. Smac-Mimetics (SMs) have entered clinical trials for hematological and solid cancers, unfortunately with variable and limited results so far. This review explores the use of SMs for the treatment of cancer, their potential to synergize with up-coming treatments and, finally, discusses the challenges and optimism facing this strategy.
Collapse
|
12
|
Xiao R, An Y, Ye W, Derakhshan A, Cheng H, Yang X, Allen C, Chen Z, Schmitt NC, Van Waes C. Dual Antagonist of cIAP/XIAP ASTX660 Sensitizes HPV - and HPV + Head and Neck Cancers to TNFα, TRAIL, and Radiation Therapy. Clin Cancer Res 2019; 25:6463-6474. [PMID: 31266830 DOI: 10.1158/1078-0432.ccr-18-3802] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/24/2019] [Accepted: 06/28/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE Human papillomavirus-negative (HPV-) head and neck squamous cell carcinomas (HNSCC) harbor frequent genomic amplification of Fas-associated death domain, with or without concurrent amplification of Baculovirus inhibitor of apoptosis repeat containing (BIRC2/3) genes encoding cellular inhibitor of apoptosis proteins 1/2 (cIAP1/2). Antagonists targeting cIAP1 have been reported to enhance sensitivity of HPV-, but not HPV+ tumors, to TNF family death ligands (TNF and TRAIL) and radiation.Experimental Design: We tested a novel dual cIAP/XIAP antagonist ASTX660 in HPV+ and HPV- cell lines in combination with death ligands TNFα and TRAIL, and in preclinical xenograft models with radiation, an inducer of death ligands. The dependence of activity on TNF was examined by antibody depletion. RESULTS ASTX660 sensitized subsets of HPV- and HPV+ HNSCC cell lines to TNFα and TRAIL. These antitumor effects of ASTX660 are the result of both apoptosis and/or necroptosis among HPV- cells, and primarily by apoptosis (caspase 3 and caspase 8 cleavage) in HPV+ cells. ASTX660 enhanced restoration of protein expression and inhibitory activity of proapoptotic tumor suppressor TP53 in HPV+ HNSCC. Furthermore, ASTX660 combined with radiotherapy, an inducer of death ligands, significantly delayed growth of both HPV- and HPV+ human tumor xenografts, an effect attenuated by anti-TNFα pretreatment blockade. CONCLUSIONS IAP1/XIAP antagonist, ASTX660, sensitizes HPV+ HNSCC to TNFα via a mechanism involving restoration of TP53. These findings serve to motivate further studies of dual cIAP/XIAP antagonists and future clinical trials combining these antagonists with radiotherapy to treat both HPV+ and HPV- HNSCC.
Collapse
Affiliation(s)
- Roy Xiao
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, Ohio.,Medical Research Scholars Program, NIH, Bethesda, Maryland.,Tumor Biology Section, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland
| | - Yi An
- Tumor Biology Section, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland
| | - Wenda Ye
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, Ohio.,Medical Research Scholars Program, NIH, Bethesda, Maryland.,Tumor Biology Section, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland
| | - Adeeb Derakhshan
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, Ohio.,Medical Research Scholars Program, NIH, Bethesda, Maryland.,Tumor Biology Section, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland
| | - Hui Cheng
- Tumor Biology Section, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland
| | - Xinping Yang
- Tumor Biology Section, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland
| | - Clint Allen
- Office of the Clinical Director, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland.,Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University, Baltimore, Maryland
| | - Zhong Chen
- Tumor Biology Section, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland
| | - Nicole C Schmitt
- Office of the Clinical Director, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland.,Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University, Baltimore, Maryland
| | - Carter Van Waes
- Tumor Biology Section, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland.
| |
Collapse
|
13
|
Zhang J, Chen T, Yang X, Cheng H, Späth SS, Clavijo PE, Chen J, Silvin C, Issaeva N, Su X, Yarbrough WG, Annunziata CM, Chen Z, Van Waes C. Attenuated TRAF3 Fosters Activation of Alternative NF-κB and Reduced Expression of Antiviral Interferon, TP53, and RB to Promote HPV-Positive Head and Neck Cancers. Cancer Res 2018; 78:4613-4626. [PMID: 29921694 PMCID: PMC7983169 DOI: 10.1158/0008-5472.can-17-0642] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 01/11/2018] [Accepted: 06/07/2018] [Indexed: 11/16/2022]
Abstract
Human papilloma viruses (HPV) are linked to an epidemic increase in oropharyngeal head and neck squamous cell carcinomas (HNSCC), which display viral inactivation of tumor suppressors TP53 and RB1 and rapid regional spread. However, the role of genomic alterations in enabling the modulation of pathways that promote the aggressive phenotype of these cancers is unclear. Recently, a subset of HPV+ HNSCC has been shown to harbor novel genetic defects or decreased expression of TNF receptor-associated factor 3 (TRAF3). TRAF3 has been implicated as a negative regulator of alternative NF-κB pathway activation and activator of antiviral type I IFN response to other DNA viruses. How TRAF3 alterations affect pathogenesis of HPV+ HNSCC has not been extensively investigated. Here, we report that TRAF3-deficient HPV+ tumors and cell lines exhibit increased expression of alternative NF-κB pathway components and transcription factors NF-κB2/RELB. Overexpression of TRAF3 in HPV+ cell lines with decreased endogenous TRAF3 inhibited NF-κB2/RELB expression, nuclear localization, and NF-κB reporter activity, while increasing the expression of IFNA1 mRNA and protein and sensitizing cells to its growth inhibition. Overexpression of TRAF3 also enhanced TP53 and RB tumor suppressor proteins and decreased HPV E6 oncoprotein in HPV+ cells. Correspondingly, TRAF3 inhibited cell growth, colony formation, migration, and resistance to TNFα and cisplatin-induced cell death. Conversely, TRAF3 knockout enhanced colony formation and proliferation of an HPV+ HNSCC line expressing higher TRAF3 levels. Together, these findings support a functional role of TRAF3 as a tumor suppressor modulating established cancer hallmarks in HPV+ HNSCC.Significance: These findings report the functional role of TRAF3 as a tumor suppressor that modulates the malignant phenotype of HPV+ head and neck cancers. Cancer Res; 78(16); 4613-26. ©2018 AACR.
Collapse
Affiliation(s)
- Jialing Zhang
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland
- Clinical Medicine Research Center, The Affiliated Hospital, Inner Mongolia Medical University, Hohhot, China
| | - Tony Chen
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland
| | - Xinping Yang
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland
| | - Hui Cheng
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland
| | - Stephan S Späth
- Pediatric Endocrinology Unit, Department of Women's and Children's Health, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Paul E Clavijo
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland
| | - Jianhong Chen
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland
| | - Christopher Silvin
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland
| | - Natalia Issaeva
- Department of Surgery, Otolaryngology, Yale Cancer Center, New Haven, Connecticut
| | - Xiulan Su
- Clinical Medicine Research Center, The Affiliated Hospital, Inner Mongolia Medical University, Hohhot, China
| | - Wendell G Yarbrough
- Department of Surgery, Otolaryngology, Yale Cancer Center, New Haven, Connecticut
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | | | - Zhong Chen
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland.
| | - Carter Van Waes
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland.
| |
Collapse
|
14
|
Zhang J, Chen T, Yang X, Cheng H, Späth SS, Clavijo PE, Chen J, Silvin C, Issaeva N, Su X, Yarbrough WG, Annunziata CM, Chen Z, Van Waes C. Attenuated TRAF3 Fosters Activation of Alternative NF-κB and Reduced Expression of Antiviral Interferon, TP53, and RB to Promote HPV-Positive Head and Neck Cancers. Cancer Res 2018. [PMID: 29921694 DOI: 10.1158/0008-5472.can-17-0642/652787/am/attenuated-traf3-fosters-alternative-activation-of] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Human papilloma viruses (HPV) are linked to an epidemic increase in oropharyngeal head and neck squamous cell carcinomas (HNSCC), which display viral inactivation of tumor suppressors TP53 and RB1 and rapid regional spread. However, the role of genomic alterations in enabling the modulation of pathways that promote the aggressive phenotype of these cancers is unclear. Recently, a subset of HPV+ HNSCC has been shown to harbor novel genetic defects or decreased expression of TNF receptor-associated factor 3 (TRAF3). TRAF3 has been implicated as a negative regulator of alternative NF-κB pathway activation and activator of antiviral type I IFN response to other DNA viruses. How TRAF3 alterations affect pathogenesis of HPV+ HNSCC has not been extensively investigated. Here, we report that TRAF3-deficient HPV+ tumors and cell lines exhibit increased expression of alternative NF-κB pathway components and transcription factors NF-κB2/RELB. Overexpression of TRAF3 in HPV+ cell lines with decreased endogenous TRAF3 inhibited NF-κB2/RELB expression, nuclear localization, and NF-κB reporter activity, while increasing the expression of IFNA1 mRNA and protein and sensitizing cells to its growth inhibition. Overexpression of TRAF3 also enhanced TP53 and RB tumor suppressor proteins and decreased HPV E6 oncoprotein in HPV+ cells. Correspondingly, TRAF3 inhibited cell growth, colony formation, migration, and resistance to TNFα and cisplatin-induced cell death. Conversely, TRAF3 knockout enhanced colony formation and proliferation of an HPV+ HNSCC line expressing higher TRAF3 levels. Together, these findings support a functional role of TRAF3 as a tumor suppressor modulating established cancer hallmarks in HPV+ HNSCC.Significance: These findings report the functional role of TRAF3 as a tumor suppressor that modulates the malignant phenotype of HPV+ head and neck cancers. Cancer Res; 78(16); 4613-26. ©2018 AACR.
Collapse
Affiliation(s)
- Jialing Zhang
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland
- Clinical Medicine Research Center, The Affiliated Hospital, Inner Mongolia Medical University, Hohhot, China
| | - Tony Chen
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland
| | - Xinping Yang
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland
| | - Hui Cheng
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland
| | - Stephan S Späth
- Pediatric Endocrinology Unit, Department of Women's and Children's Health, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Paul E Clavijo
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland
| | - Jianhong Chen
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland
| | - Christopher Silvin
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland
| | - Natalia Issaeva
- Department of Surgery, Otolaryngology, Yale Cancer Center, New Haven, Connecticut
| | - Xiulan Su
- Clinical Medicine Research Center, The Affiliated Hospital, Inner Mongolia Medical University, Hohhot, China
| | - Wendell G Yarbrough
- Department of Surgery, Otolaryngology, Yale Cancer Center, New Haven, Connecticut
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | | | - Zhong Chen
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland.
| | - Carter Van Waes
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland.
| |
Collapse
|
15
|
Xiao R, Allen CT, Tran L, Patel P, Park SJ, Chen Z, Van Waes C, Schmitt NC. Antagonist of cIAP1/2 and XIAP enhances anti-tumor immunity when combined with radiation and PD-1 blockade in a syngeneic model of head and neck cancer. Oncoimmunology 2018; 7:e1471440. [PMID: 30393585 DOI: 10.1080/2162402x.2018.1471440] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/24/2018] [Accepted: 04/27/2018] [Indexed: 01/02/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) frequently harbor genomic mutations in cell death pathways. Nearly 30% of HNSCCs overexpress Fas-Associated Death Domain (FADD), with or without BIRC2/3 genes encoding cellular Inhibitor of Apoptosis Proteins 1/2 (cIAP1/2), critical components of the Tumor Necrosis Factor (TNF) Receptor signaling pathways. ASTX660 is a novel non-peptidomimetic antagonist of cIAP1/2 and XIAP under evaluation in a clinical trial for advanced solid tumors and lymphomas. Herein, we show that ASTX660, at nanomolar concentrations, sensitized Murine Oral Cancer (MOC1) cells to TNFα. Using syngeneic mouse models, ASTX660 showed additive anti-tumor activity with radiation therapy (XRT), cisplatin chemotherapy, and PD-1 blockade to significantly delay or eradicate MOC1 tumors. These combinations significantly increased CD8 + T cells and dendritic cells, as well as T cell activity. ASTX660 stimulated cytotoxic T lymphocyte (CTL) killing of MOC1 cells expressing ovalbumin. Early stages of CTL killing were predominantly mediated by perforin/granzyme B, whereas later stages were mediated by death ligands TNFα, TRAIL, and FasL. Correspondingly, depletion of CD8 + T cells and NK cells in vivo revealed both types of immune cells to be important components of the complete anti-tumor response enhanced by ASTX660+XRT. These findings serve to inform future studies of IAP inhibitors and support the potential for future clinical trials investigating ASTX660 with XRT and immunotherapies like PD-1/PD-L1 blockade in HNSCC.
Collapse
Affiliation(s)
- Roy Xiao
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, OH, USA.,Medical Research Scholars Program, National Institutes of Health, Bethesda, MD, USA.,Tumor Biology Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Clint T Allen
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA.,Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - Linda Tran
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Priya Patel
- Medical Research Scholars Program, National Institutes of Health, Bethesda, MD, USA.,Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - So-Jin Park
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Zhong Chen
- Tumor Biology Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Carter Van Waes
- Tumor Biology Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Nicole C Schmitt
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA.,Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
16
|
Dobson CC, Naing T, Beug ST, Faye MD, Chabot J, St-Jean M, Walker DE, LaCasse EC, Stojdl DF, Korneluk RG, Holcik M. Oncolytic virus synergizes with Smac mimetic compounds to induce rhabdomyosarcoma cell death in a syngeneic murine model. Oncotarget 2018; 8:3495-3508. [PMID: 27966453 PMCID: PMC5356898 DOI: 10.18632/oncotarget.13849] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/23/2016] [Indexed: 12/28/2022] Open
Abstract
Rhabdomyosarcoma (RMS), a neoplasm characterized by undifferentiated myoblasts, is the most common soft tissue tumour in children. Therapeutic resistance is common in RMS and is often caused by acquired defects in the cellular apoptotic program. Smac mimetic compounds (SMCs) are a novel class of inhibitor of apoptosis (IAP) antagonists that are currently under clinical development as cancer therapeutics. We previously reported that cIAP1 is overexpressed in human primary RMS tumours and in patient-derived RMS cell lines where it drives resistance to apoptosis. In this study, we investigated whether inflammatory cytokine production triggered by activators of innate immunity synergizes with LCL161 to induce bystander killing of RMS cells in vitro and in vivo. Indeed, we show that innate immune stimuli (oncolytic virus (VSVΔ51-GFP), interferon γ (IFNγ), and tumour necrosis factor-like weak inducer of apoptosis (TWEAK)) combine with SMCs in vitro to reduce cell viability in the Kym-1 RMS cancer cell line. Other human RMS cell lines (RH36, RH41, RD, RH18, RH28, and RH30) and the murine RMS cell line 76-9 are resistant to treatment with LCL161 alone or in combination with immune stimulants in in vitro cell viability assays. In contrast, we report that the combination of LCL161 and VSVΔ51-GFP reduces tumour volume and prolongs survival in a 76-9 syngeneic murine model. Our results support further exploration of the combined use of IAP antagonists and innate immune stimuli as a therapeutic approach for RMS cancers.
Collapse
Affiliation(s)
- Christine C Dobson
- Molecular Biomedicine Program, Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Thet Naing
- Molecular Biomedicine Program, Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Shawn T Beug
- Molecular Biomedicine Program, Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Mame D Faye
- Molecular Biomedicine Program, Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Janelle Chabot
- Molecular Biomedicine Program, Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Martin St-Jean
- Molecular Biomedicine Program, Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Danielle E Walker
- Molecular Biomedicine Program, Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Eric C LaCasse
- Molecular Biomedicine Program, Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - David F Stojdl
- Molecular Biomedicine Program, Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Robert G Korneluk
- Molecular Biomedicine Program, Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Martin Holcik
- Molecular Biomedicine Program, Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.,Department of Pediatrics, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
17
|
Brands RC, Scheurer MJJ, Hartmann S, Seher A, Kübler AC, Müller-Richter UDA. Apoptosis-sensitizing activity of birinapant in head and neck squamous cell carcinoma cell lines. Oncol Lett 2018; 15:4010-4016. [PMID: 29467909 DOI: 10.3892/ol.2018.7783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/20/2017] [Indexed: 02/07/2023] Open
Abstract
Inhibitor of apoptosis proteins, which are overexpressed in head and neck squamous cell carcinoma (HNSCC), may cause therapeutic resistance. Using SMAC mimetic compounds, including birinapant, to degrade and/or inhibit these proteins and sensitize apoptosis may enhance therapies in HNSCC. Fas expression was analyzed in nine HNSCC cell lines and one keratinocyte cell line via flow cytometry. These cell lines were treated with Fas ligand-Fc (FasL) and birinapant, a bivalent SMAC mimetic, in mono and combination therapies. Cytotoxicity was measured using a crystal violet assay. Annexin V assay was performed for detection of apoptosis. The treatment efficacy of mono and combination therapies was statistically analyzed. Nonlinear regression analysis was performed to determine the inhibitory concentration (IC10) of birinapant. Fas expression was detected in each cell line tested. Mono treatment with FasL revealed minor to no apoptotic effects in the majority of the cell lines. Crystal violet and Annexin V staining revealed increased apoptosis rates for all cell lines following incubation with birinapant in mono treatment. Combination treatment with FasL and birinapant (IC10) revealed additional and synergistic effects in eight out of the ten cell lines. To the best of our knowledge, the present study provided the first evidence of the apoptosis-sensitizing activity of combination treatment with FasL and birinapant in HNSCC cell lines.
Collapse
Affiliation(s)
- Roman C Brands
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, D-97080 Würzburg, Germany
| | - Mario J J Scheurer
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany
| | - Stefan Hartmann
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany.,Interdisciplinary Center for Clinical Research, University Hospital Würzburg, D-97070 Würzburg, Germany
| | - Axel Seher
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany
| | - Alexander C Kübler
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany
| | - Urs D A Müller-Richter
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany
| |
Collapse
|
18
|
Cooney J, Allison C, Preston S, Pellegrini M. Therapeutic manipulation of host cell death pathways to facilitate clearance of persistent viral infections. J Leukoc Biol 2018; 103:287-293. [PMID: 29345371 DOI: 10.1189/jlb.3mr0717-289r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/04/2017] [Accepted: 09/20/2017] [Indexed: 11/24/2022] Open
Abstract
Most persistent viral infections can be controlled, but not cured, by current therapies. Abrogated antiviral immunity and stable latently infected cells represent major barriers to cure. This necessitates life-long suppressive antiviral therapy. Achieving a cure for HIV, hepatitis B virus, Epstein Barr-virus, and others, requires novel approaches to facilitate the clearance of infected cells from the host. One such approach is to target host cell death pathways, rather than the virus itself. Here, we summarize recent findings from studies that have utilized therapeutics to manipulate host cell death pathways as a means to treat and cure persistent viral infections.
Collapse
Affiliation(s)
- James Cooney
- Division of Infection and Immunity, Walter and Eliza Hall Institute, Melbourne, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Parkville, Australia
| | - Cody Allison
- Division of Infection and Immunity, Walter and Eliza Hall Institute, Melbourne, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Parkville, Australia
| | - Simon Preston
- Division of Infection and Immunity, Walter and Eliza Hall Institute, Melbourne, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Parkville, Australia
| | - Marc Pellegrini
- Division of Infection and Immunity, Walter and Eliza Hall Institute, Melbourne, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Parkville, Australia
| |
Collapse
|
19
|
Derakhshan A, Chen Z, Van Waes C. Therapeutic Small Molecules Target Inhibitor of Apoptosis Proteins in Cancers with Deregulation of Extrinsic and Intrinsic Cell Death Pathways. Clin Cancer Res 2017; 23:1379-1387. [PMID: 28039268 PMCID: PMC5354945 DOI: 10.1158/1078-0432.ccr-16-2172] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 02/07/2023]
Abstract
The Cancer Genome Atlas (TCGA) has unveiled genomic deregulation of various components of the extrinsic and intrinsic apoptotic pathways in different types of cancers. Such alterations are particularly common in head and neck squamous cell carcinomas (HNSCC), which frequently display amplification and overexpression of the Fas-associated via death domain (FADD) and inhibitor of apoptosis proteins (IAP) that complex with members of the TNF receptor family. Second mitochondria-derived activator of caspases (SMAC) mimetics, modeled after the endogenous IAP antagonist SMAC, and IAP inhibitors represent important classes of novel small molecules currently in phase I/II clinical trials. Here we review the physiologic roles of IAPs, FADD, and other components involved in cell death, cell survival, and NF-κB signaling pathways in cancers, including HNSCC. We summarize the results of targeting IAPs in preclinical models of HNSCC using SMAC mimetics. Synergistic activity of SMAC mimetics together with death agonists TNFα or TRAIL occurred in vitro, whereas their antitumor effects were augmented when combined with radiation and chemotherapeutic agents that induce TNFα in vivo In addition, clinical trials testing SMAC mimetics as single agents or together with chemo- or radiation therapies in patients with HNSCC and solid tumors are summarized. As we achieve a deeper understanding of the genomic alterations and molecular mechanisms underlying deregulated death and survival pathways in different cancers, the role of SMAC mimetics and IAP inhibitors in cancer treatment will be elucidated. Such developments could enhance precision therapeutics and improve outcomes for cancer patients. Clin Cancer Res; 23(6); 1379-87. ©2016 AACR.
Collapse
Affiliation(s)
- Adeeb Derakhshan
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Zhong Chen
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland.
| | - Carter Van Waes
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
20
|
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide and is frequently impervious to curative treatment efforts. Similar to other cancers associated with prolonged exposure to carcinogens, HNSCCs often have a high burden of mutations, contributing to substantial inter- and intra-tumor heterogeneity. The heterogeneity of this malignancy is further increased by the rising rate of human papillomavirus (HPV)-associated (HPV+) HNSCC, which defines an etiological subtype significantly different from the more common tobacco and alcohol associated HPV-negative (HPV-) HNSCC. Since 2011, application of large scale genome sequencing projects by The Cancer Genome Atlas (TCGA) network and other groups have established extensive datasets to characterize HPV- and HPV+ HNSCC, providing a foundation for advanced molecular diagnoses, identification of potential biomarkers, and therapeutic insights. Some genomic lesions are now appreciated as widely dispersed. For example, HPV- HNSCC characteristically inactivates the cell cycle suppressors TP53 (p53) and CDKN2A (p16), and often amplifies CCND1 (cyclin D), which phosphorylates RB1 to promote cell cycle progression from G1 to S. By contrast, HPV+ HNSCC expresses viral oncogenes E6 and E7, which inhibit TP53 and RB1, and activates the cell cycle regulator E2F1. Frequent activating mutations in PIK3CA and inactivating mutations in NOTCH1 are seen in both subtypes of HNSCC, emphasizing the importance of these pathways. Studies of large patient cohorts have also begun to identify less common genetic alterations, predominantly found in HPV- tumors, which suggest new mechanisms relevant to disease pathogenesis. Targets of these alterations including AJUBA and FAT1, both involved in the regulation of NOTCH/CTNNB1 signaling. Genes involved in oxidative stress, particularly CUL3, KEAP1 and NFE2L2, strongly associated with smoking, have also been identified, and are less well understood mechanistically. Application of sophisticated data-mining approaches, integrating genomic information with profiles of tumor methylation and gene expression, have helped to further yield insights, and in some cases suggest additional approaches to stratify patients for clinical treatment. We here discuss some recent insights built on TCGA and other genomic foundations.
Collapse
Affiliation(s)
- Tim N Beck
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA.,Program in Molecular and Cell Biology and Genetics, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Erica A Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA.,Program in Molecular and Cell Biology and Genetics, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| |
Collapse
|
21
|
Zakaria Z, Tivnan A, Flanagan L, Murray DW, Salvucci M, Stringer BW, Day BW, Boyd AW, Kögel D, Rehm M, O'Brien DF, Byrne AT, Prehn JHM. Patient-derived glioblastoma cells show significant heterogeneity in treatment responses to the inhibitor-of-apoptosis-protein antagonist birinapant. Br J Cancer 2015; 114:188-98. [PMID: 26657652 PMCID: PMC4815807 DOI: 10.1038/bjc.2015.420] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/10/2015] [Indexed: 11/22/2022] Open
Abstract
Background: Resistance to temozolomide (TMZ) greatly limits chemotherapeutic effectiveness in glioblastoma (GBM). Here we analysed the ability of the Inhibitor-of-apoptosis-protein (IAP) antagonist birinapant to enhance treatment responses to TMZ in both commercially available and patient-derived GBM cells. Methods: Responses to TMZ and birinapant were analysed in a panel of commercial and patient-derived GBM cell lines using colorimetric viability assays, flow cytometry, morphological analysis and protein expression profiling of pro- and antiapoptotic proteins. Responses in vivo were analysed in an orthotopic xenograft GBM model. Results: Single-agent treatment experiments categorised GBM cells into TMZ-sensitive cells, birinapant-sensitive cells, and cells that were insensitive to either treatment. Combination treatment allowed sensitisation to therapy in only a subset of resistant GBM cells. Cell death analysis identified three principal response patterns: Type A cells that readily activated caspase-8 and cell death in response to TMZ while addition of birinapant further sensitised the cells to TMZ-induced cell death; Type B cells that readily activated caspase-8 and cell death in response to birinapant but did not show further sensitisation with TMZ; and Type C cells that showed no significant cell death or moderately enhanced cell death in the combined treatment paradigm. Furthermore, in vivo, a Type C patient-derived cell line that was TMZ-insensitive in vitro and showed a strong sensitivity to TMZ and TMZ plus birinapant treatments. Conclusions: Our results demonstrate remarkable differences in responses of patient-derived GBM cells to birinapant single and combination treatments, and suggest that therapeutic responses in vivo may be greatly affected by the tumour microenvironment.
Collapse
Affiliation(s)
- Z Zakaria
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland.,National Centre for Neurosurgery, Beaumont Hospital, Dublin 9, Ireland
| | - A Tivnan
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - L Flanagan
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - D W Murray
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - M Salvucci
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - B W Stringer
- Brain Cancer Research Unit, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - B W Day
- Brain Cancer Research Unit, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - A W Boyd
- Brain Cancer Research Unit, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - D Kögel
- Experimental Neurosurgery, Neuroscience Center, Frankfurt University Hospital, Frankfurt am Main, Germany
| | - M Rehm
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - D F O'Brien
- National Centre for Neurosurgery, Beaumont Hospital, Dublin 9, Ireland
| | - A T Byrne
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - J H M Prehn
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| |
Collapse
|
22
|
Noonan AM, Bunch KP, Chen JQ, Herrmann MA, Lee JM, Kohn EC, O'Sullivan CC, Jordan E, Houston N, Takebe N, Kinders RJ, Cao L, Peer CJ, Figg WD, Annunziata CM. Pharmacodynamic markers and clinical results from the phase 2 study of the SMAC mimetic birinapant in women with relapsed platinum-resistant or -refractory epithelial ovarian cancer. Cancer 2015; 122:588-597. [PMID: 26566079 DOI: 10.1002/cncr.29783] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/18/2015] [Accepted: 10/13/2015] [Indexed: 01/03/2023]
Abstract
BACKGROUND Inhibitors of apoptosis proteins (IAPs) are key regulators of apoptosis and are frequently dysregulated in ovarian cancer. It was hypothesized that blocking IAPs with birinapant would increase tumor cell death and result in objective responses for women with platinum-refractory and -resistant ovarian cancer. METHODS In this phase 2, Cancer Therapy Evaluation Program-sponsored study, patients received birinapant at 47 mg/m(2) on days 1, 8, and 15 of 28-day cycles. Pharmacokinetics were obtained during cycle 1. Plasma, peripheral blood mononuclear cells (PBMCs), and percutaneous tumor biopsy samples were collected before cycle 1 and after 6 weeks. The primary endpoint was an objective response or progression-free survival lasting greater than 6 months in a mini-max design. RESULTS Eleven patients received birinapant; after this, accrual was terminated for lack of a clinical benefit. Birinapant was well tolerated, with predominantly grade 2 adverse events and 1 case of grade 3 lymphopenia. Pretreatment biopsy samples and PBMCs were collected; paired posttreatment biopsy samples and PBMCs were collected from 7 and 10 patients, respectively. There was consistent downregulation of cellular inhibitor of apoptosis protein 1 in tumors (P = .016) and PBMCs (P < .01). Procaspase 3 also decreased in tumors (P = .031) and PBMCs (P < .01); cleaved caspase 3 colocalized with H2A histone family member X (γ-H2AX) in tumors after birinapant exposure. Peripheral T and B cells decreased significantly after treatment, but natural killer cells did not (P = .04, P = .05, and P = .43, respectively). CONCLUSIONS Birinapant shows consistent target suppression in vivo without single-agent antitumor activity in this small population. Single-agent pharmacodynamics are necessary to understand the drug's mechanism of action and set the stage for rational combination therapy. Preclinical studies are ongoing to identify optimal synergistic combinations for future clinical trials.
Collapse
Affiliation(s)
| | - Kristen P Bunch
- Women's Malignancies Branch, NCI, Bethesda, MD.,Department of Gynecologic Oncology, Walter Reed National Military Medical Center, Bethesda, MD
| | - Jin-Qiu Chen
- Collaborative Protein Technology Resource, NCI, Bethesda, MD
| | | | | | | | | | | | | | - Naoko Takebe
- Cancer Therapy Evaluation Program, NCI, Shady Grove, MD
| | - Robert J Kinders
- Pharmacodynamic Assay Development and Implementation Section, Division of Cancer Treatment and Diagnosis, NCI, Frederick, MD
| | - Liang Cao
- Cancer Genetics Branch, NCI, Bethesda, MD
| | - Cody J Peer
- Clinical Pharmacology Program, Office of the Clinical Director, Center for Cancer Research, NCI, Bethesda, MD
| | - W Douglas Figg
- Clinical Pharmacology Program, Office of the Clinical Director, Center for Cancer Research, NCI, Bethesda, MD
| | | |
Collapse
|
23
|
Carosati E, van den Höfel N, Reif M, Randazzo GM, Stanitzki B, Stevens J, Gabbert HE, Cruciani G, Mannhold R, Mahotka C. Discovery of Novel, Potent, and Specific Cell-Death Inducers in the Jurkat Acute Lymphoblastic Leukemia Cell Line. ChemMedChem 2015; 10:1700-6. [PMID: 26267799 DOI: 10.1002/cmdc.201500245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Indexed: 11/06/2022]
Abstract
The limited clinical efficacy of many cancer therapeutics has initiated intense research efforts toward the discovery of novel chemical entities in this field. In this study, 31 hit candidates were selected from nearly 800,000 database compounds in a ligand-based virtual screening campaign. In turn, three of these hits were found to have (sub)micromolar potencies in proliferation assays with the Jurkat acute lymphatic leukemic cell line. In this assay, the three hits were found to exhibit higher potency than clinically tested cell-death inducers (GDC-0152, AT-406, and birinapant). Importantly, antiproliferative activity toward non-cancer peripheral blood mononuclear cells (PBMCs) was found to be marginal. Further biological characterization demonstrated the cell-death-inducing properties of these compounds. Biological testing of hit congeners excluded a nonspecific, toxic effect of the novel structures. Altogether, these findings may have profound relevance for the development of clinical candidates in tumor therapy.
Collapse
Affiliation(s)
- Emanuele Carosati
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Via Elce di Sotto 10, 06123 Perugia (Italy).
| | - Natascha van den Höfel
- Department of Pathology, Medical Faculty, Heinrich-Heine-Universität, Universitätsstr. 1, 40225 Düsseldorf (Germany)
| | - Manuela Reif
- Department of Pathology, Medical Faculty, Heinrich-Heine-Universität, Universitätsstr. 1, 40225 Düsseldorf (Germany)
| | - Giuseppe Marco Randazzo
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Via Elce di Sotto 10, 06123 Perugia (Italy)
| | - Bettina Stanitzki
- Department of Pathology, Medical Faculty, Heinrich-Heine-Universität, Universitätsstr. 1, 40225 Düsseldorf (Germany)
| | - Julia Stevens
- Department of Pathology, Medical Faculty, Heinrich-Heine-Universität, Universitätsstr. 1, 40225 Düsseldorf (Germany)
| | - Helmut E Gabbert
- Department of Pathology, Medical Faculty, Heinrich-Heine-Universität, Universitätsstr. 1, 40225 Düsseldorf (Germany)
| | - Gabriele Cruciani
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Via Elce di Sotto 10, 06123 Perugia (Italy)
| | - Raimund Mannhold
- Molecular Drug Research Group, Medical Faculty, Heinrich-Heine-Universität, Universitätsstr. 1, 40225 Düsseldorf (Germany)
| | - Csaba Mahotka
- Department of Pathology, Medical Faculty, Heinrich-Heine-Universität, Universitätsstr. 1, 40225 Düsseldorf (Germany).
| |
Collapse
|