1
|
Gartling G, Sayce L, Zimmerman Z, Slater A, Hary L, Yang W, Santacatterina M, Rousseau B, Branski RC. Acute Effects of Steroids on Vocal Fold Epithelium Post-injury in a Preclinical Model. Laryngoscope 2025; 135:206-212. [PMID: 39276031 DOI: 10.1002/lary.31729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/18/2024] [Accepted: 08/13/2024] [Indexed: 09/16/2024]
Abstract
INTRODUCTION Glucocorticoids (GCs) are commonly prescribed for laryngeal indications due to their potent anti-inflammatory properties. However, GCs effect on vocal fold (VF) epithelial morphology and barrier function following injury is overlooked and may be key to efficacy. In this study, the effects of GCs on epithelial morphology and barrier function were quantified in injured VFs. We seek to increase our understanding of biochemical processes underlying GC mechanisms to refine therapeutic strategies. METHODS Microflap injury was induced in 65 rabbits. Seven days after injury, animals received bilateral 20 μL intracordal injections of saline, dexamethasone, methylprednisolone, or triamcinolone (n = 15 per condition). Five rabbits in each condition were euthanized 1, 7, or 60 days following treatment. An additional five animals served as non-injured/untreated controls. To quantify transepithelial electrical resistance (TEER), 1 mm epithelial biopsies were placed in an Ussing chamber. The contralateral VF was processed for transmission electron microscopy and epithelial depth analysis. RESULTS At 60 days, GC treatment maintained TEER levels similar to non-injured/untreated controls. However, triamcinolone reduced TEER compared with saline-treated conditions. Acutely, epithelial hyperplasia typically persisted in all injured VFs. At 60 days, only dexamethasone and triamcinolone increased epithelial depth in injured VFs; all GCs increased epithelial depth compared with non-injured/untreated controls. CONCLUSION Acutely, GCs did not alter TEER. Additionally, GCs did not alter epithelial depth compared with saline treatment, indicating alignment with natural healing responses. At 60 days, GCs exhibited varying degrees of TEER restoration and epithelial hyperplasia, possibly due to distinct pharmacodynamic profiles. LEVEL OF EVIDENCE NA Laryngoscope, 135:206-212, 2025.
Collapse
Affiliation(s)
- Gary Gartling
- Department of Otolaryngology-Head and Neck Surgery, NYU Grossman School of Medicine, New York, New York, U.S.A
| | - Lea Sayce
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A
| | - Zachary Zimmerman
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A
| | - Alysha Slater
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A
| | - Lizzie Hary
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A
| | - Wenqing Yang
- Division of Biostatistics, Department of Population Health, NYU Grossman School of Medicine, New York, New York, U.S.A
| | - Michele Santacatterina
- Division of Biostatistics, Department of Population Health, NYU Grossman School of Medicine, New York, New York, U.S.A
| | - Bernard Rousseau
- Doisy College of Health Sciences, Saint Louis University, St. Louis, Missouri, U.S.A
| | - Ryan C Branski
- Department of Otolaryngology-Head and Neck Surgery, NYU Grossman School of Medicine, New York, New York, U.S.A
| |
Collapse
|
2
|
Cruz DRD, Zheng A, Debele T, Larson P, Dion GR, Park YC. Drug delivery systems for wound healing treatment of upper airway injury. Expert Opin Drug Deliv 2024; 21:573-591. [PMID: 38588553 PMCID: PMC11208077 DOI: 10.1080/17425247.2024.2340653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/04/2024] [Indexed: 04/10/2024]
Abstract
INTRODUCTION Endotracheal intubation is a common procedure to maintain an open airway with risks for traumatic injury. Pathological changes resulting from intubation can cause upper airway complications, including vocal fold scarring, laryngotracheal stenosis, and granulomas and present with symptoms such as dysphonia, dysphagia, and dyspnea. Current intubation-related laryngotracheal injury treatment approaches lack standardized guidelines, relying on individual clinician experience, and surgical and medical interventions have limitations and carry risks. AREAS COVERED The clinical and preclinical therapeutics for wound healing in the upper airway are described. This review discusses the current developments on local drug delivery systems in the upper airway utilizing particle-based delivery systems, including nanoparticles and microparticles, and bulk-based delivery systems, encompassing hydrogels and polymer-based approaches. EXPERT OPINION Complex laryngotracheal diseases pose challenges for effective treatment, struggling due to the intricate anatomy, limited access, and recurrence. Symptomatic management often requires invasive surgical procedures or medications that are unable to achieve lasting effects. Recent advances in nanotechnology and biocompatible materials provide potential solutions, enabling precise drug delivery, personalization, and extended treatment efficacy. Combining these technologies could lead to groundbreaking treatments for upper airways diseases, significantly improving patients' quality of life. Research and innovation in this field are crucial for further advancements.
Collapse
Affiliation(s)
- Denzel Ryan D. Cruz
- Medical Scientist Training Program, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Avery Zheng
- Chemical Engineering Program, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Tilahun Debele
- Chemical Engineering Program, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Peter Larson
- Department of Otolaryngology – Head and Neck Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Gregory R. Dion
- Department of Otolaryngology – Head and Neck Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Yoonjee C. Park
- Chemical Engineering Program, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
3
|
Karnwal A, Kumar G, Pant G, Hossain K, Ahmad A, Alshammari MB. Perspectives on Usage of Functional Nanomaterials in Antimicrobial Therapy for Antibiotic-Resistant Bacterial Infections. ACS OMEGA 2023; 8:13492-13508. [PMID: 37091369 PMCID: PMC10116640 DOI: 10.1021/acsomega.3c00110] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Abstract
The clinical applications of nanotechnology are emerging as widely popular, particularly as a potential treatment approach for infectious diseases. Diseases associated with multiple drug-resistant organisms (MDROs) are a global concern of morbidity and mortality. The prevalence of infections caused by antibiotic-resistant bacterial strains has increased the urgency associated with researching and developing novel bactericidal medicines or unorthodox methods capable of combating antimicrobial resistance. Nanomaterial-based treatments are promising for treating severe bacterial infections because they bypass antibiotic resistance mechanisms. Nanomaterial-based approaches, especially those that do not rely on small-molecule antimicrobials, display potential since they can bypass drug-resistant bacteria systems. Nanoparticles (NPs) are small enough to pass through the cell membranes of pathogenic bacteria and interfere with essential molecular pathways. They can also target biofilms and eliminate infections that have proven difficult to treat. In this review, we described the antibacterial mechanisms of NPs against bacteria and the parameters involved in targeting established antibiotic resistance and biofilms. Finally, yet importantly, we talked about NPs and the various ways they can be utilized, including as delivery methods, intrinsic antimicrobials, or a mixture.
Collapse
Affiliation(s)
- Arun Karnwal
- Department
of Microbiology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Gaurav Kumar
- Department
of Microbiology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Gaurav Pant
- Department
of Microbiology, Graphic Era (Deemed to
be University), Dehradun, Uttarakhand 248002, India
| | - Kaizar Hossain
- Department
of Environmental Science, Asutosh College, University of Calcutta, 92, Shyama Prasad Mukherjee Road, Bhowanipore, Kolkata 700026, West
Bengal, India
| | - Akil Ahmad
- Department
of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammed B. Alshammari
- Department
of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
4
|
Kolanthai E, Fu Y, Kumar U, Babu B, Venkatesan AK, Liechty KW, Seal S. Nanoparticle mediated RNA delivery for wound healing. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1741. [PMID: 34369096 DOI: 10.1002/wnan.1741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/19/2022]
Abstract
Wound healing is a complicated physiological process that comprises various steps, including hemostasis, inflammation, proliferation, and remodeling. The wound healing process is significantly affected by coexisting disease states such as diabetes, immunosuppression, or vascular disease. It can also be impacted by age, repeated injury, or hypertrophic scarring. These comorbidities can affect the rate of wound closure, the quality of wound closure, and tissues' function at the affected sites. There are limited options to improve the rate or quality of wound healing, creating a significant unmet need. Advances in nucleic acid research and the human genome project have developed potential novel approaches to address these outstanding requirements. In particular, the use of microRNA, short hairpin RNA, and silencing RNA is unique in their abilities as key regulators within the physiologic machinery of the cell. Although this innovative therapeutic approach using ribonucleic acid (RNA) is an attractive approach, the application as a therapeutic remains a challenge due to site-specific delivery, off-target effects, and RNA degradation obstacles. An ideal delivery system is essential for successful gene delivery. An ideal delivery system should result in high bioactivity, inhibit rapid dilution, controlled release, allow specific activation timings facilitating physiological stability, and minimize multiple dosages. Currently, these goals can be achieved by inorganic nanoparticle (NP) (e.g., cerium oxide, gold, silica, etc.) based delivery systems. This review focuses on providing insight into the preeminent research carried out on various RNAs and their delivery through NPs for effective wound healing. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures.
Collapse
Affiliation(s)
- Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
| | - Yifei Fu
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
| | - Udit Kumar
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
| | - Balaashwin Babu
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | | | - Kenneth W Liechty
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA.,College of Medicine, Nanoscience Technology Center, Biionix Cluster, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
5
|
Li Z, Cai B, Yang W, Chen CL. Hierarchical Nanomaterials Assembled from Peptoids and Other Sequence-Defined Synthetic Polymers. Chem Rev 2021; 121:14031-14087. [PMID: 34342989 DOI: 10.1021/acs.chemrev.1c00024] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In nature, the self-assembly of sequence-specific biopolymers into hierarchical structures plays an essential role in the construction of functional biomaterials. To develop synthetic materials that can mimic and surpass the function of these natural counterparts, various sequence-defined bio- and biomimetic polymers have been developed and exploited as building blocks for hierarchical self-assembly. This review summarizes the recent advances in the molecular self-assembly of hierarchical nanomaterials based on peptoids (or poly-N-substituted glycines) and other sequence-defined synthetic polymers. Modern techniques to monitor the assembly mechanisms and characterize the physicochemical properties of these self-assembly systems are highlighted. In addition, discussions about their potential applications in biomedical sciences and renewable energy are also included. This review aims to highlight essential features of sequence-defined synthetic polymers (e.g., high stability and protein-like high-information content) and how these unique features enable the construction of robust biomimetic functional materials with high programmability and predictability, with an emphasis on peptoids and their self-assembled nanomaterials.
Collapse
Affiliation(s)
- Zhiliang Li
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China
| | - Bin Cai
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,School of Chemistry and Chemical Engineering, Shandong University, Shandong 250100, China
| | - Wenchao Yang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Chun-Long Chen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
6
|
Dion GR, Guda T, Mukudai S, Bing R, Lavoie JF, Branski RC. Quantifying vocal fold wound-healing biomechanical property changes. Laryngoscope 2020; 130:454-459. [PMID: 31059589 PMCID: PMC7721866 DOI: 10.1002/lary.27999] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/04/2019] [Accepted: 03/25/2019] [Indexed: 01/02/2023]
Abstract
OBJECTIVES Development of novel vocal fold (VF) therapeutics is limited by a lack of standardized, meaningful outcomes. We hypothesize that automated microindentation-based VF biomechanical property mapping matched to histology permits quantitative assessment. STUDY DESIGN Ex vivo. METHODS Twelve anesthetized New Zealand white rabbits underwent endoscopic right VF injury. Larynges were harvested/bisected day 7, 30, or 60 (n = 4/group), with four uninjured controls. Biomechanical measurements (normal force, structural stiffness, and displacement at 1.96 mN) were calculated using automated microindentation mapping (0.3 mm depth, 1.2 mm/s, 2 mm spherical indenter) with a grid overlay (>50 locations weighted toward VF edge, separated into 14 zones). Specimens were marked/fixed/sectioned, and slides matched to measurement points. RESULTS In the injury zone, normal force/structural stiffness (mean, standard deviation [SD]/mean, SD) increased from uninjured (2.2 mN, 0.64/7.4 mN/mm, 2.14) and day 7 (2.7 mN, 0.75/9.0 mN/mm, 2.49) to day 30 (4.3 mN, 2.11/14.2 mN/mm, 7.05) and decreased at 60 days (2.7 mN, 0.77/9.1 mN/mm, 2.58). VF displacement decreased from control (0.28 mm, 0.05) and day 7 (0.26 mm, 0.05) to day 30 (0.20 mm, 0.05), increasing at day 60 (0.25 mm, 0.06). A one-way ANOVA was significant; Tukey's post hoc test confirmed day-30 samples differed from other groups (P < 0.05), consistent across adjacent zones. Zones far from injury remained similar across groups (P = 0.143 to 0.551). These measurements matched qualitative histologic variations. CONCLUSION Quantifiable VF biomechanical properties can be linked to histology. This technological approach is the first to simultaneously correlate functional biomechanics with histology and is ideal for future preclinical studies. LEVEL OF EVIDENCE NA Laryngoscope, 130:454-459, 2020.
Collapse
Affiliation(s)
- Gregory R Dion
- Dental and Craniofacial Trauma Research Department, U.S. Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, Texas
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas
- NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, New York, U.S.A
| | - Teja Guda
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas
| | - Shigeyuki Mukudai
- NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, New York, U.S.A
| | - Renjie Bing
- NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, New York, U.S.A
| | | | - Ryan C Branski
- NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, New York, U.S.A
| |
Collapse
|
7
|
Mukudai S, Kraja I, Bing R, Nalband DM, Tatikola M, Hiwatashi N, Kirshenbaum K, Branski RC. Implementing Efficient Peptoid-Mediated Delivery of RNA-Based Therapeutics to the Vocal Folds. Laryngoscope Investig Otolaryngol 2019; 4:640-644. [PMID: 31890882 PMCID: PMC6929602 DOI: 10.1002/lio2.310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/23/2019] [Accepted: 09/01/2019] [Indexed: 01/01/2023] Open
Abstract
Objective We hypothesize that Smad3 is a master regulator of fibrosis in the vocal folds (VFs) and RNA-based therapeutics targeting Smad3 hold therapeutic promise. Delivery remains challenging. We previously described a novel synthetic peptoid oligomer, lipitoid L0, complexed with siRNA to improve stability and cellular uptake. An advantage of these peptoids, however, is tremendous structural and chemical malleability to optimize transfection efficiency. Modifications of L0 were assayed to optimize siRNA-mediated alteration of gene expression. Methods In vitro, Smad3 knockdown by various lipitoid variants was evaluated via quantitative real-time polymerase chain reaction in human VF fibroblasts. Cytotoxicity was quantified via colorimetric assays. In vivo, a rabbit model of VF injury was employed to evaluate the temporal dynamics of Smad3 knockdown following injection of the L0-siRNA complex. Results In vitro, similar reductions in Smad3 expression were established by all lipitoid variants, with one exception. Sequence variants also exhibited similar nontoxic characteristics; no statistically significant differences in cell proliferation were observed. In vivo, Smad3 expression was significantly reduced in injured VFs following injection of L0-complexed Smad3 siRNA at 1 day postinjection. Qualitative suppression of Smad3 expression persisted to 3 days following injury, but did not achieve statistical significance. Conclusions In spite of the chemical diversity of these peptoid transfection reagents, the sequence variants generally provided consistently efficient reductions in Smad3 expression. L0 yielded effective, yet temporally limited knockdown of Smad3 in vivo. Peptoids may provide a versatile platform for the discovery of siRNA delivery vehicles optimized for clinical application. Level of Evidence NA.
Collapse
Affiliation(s)
- Shigeyuki Mukudai
- NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery New York University School of Medicine, New York New York U.S.A
| | - Iv Kraja
- NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery New York University School of Medicine, New York New York U.S.A
| | - Renjie Bing
- NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery New York University School of Medicine, New York New York U.S.A
| | | | - Mallika Tatikola
- Department of Chemistry New York University, New York New York U.S.A
| | - Nao Hiwatashi
- NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery New York University School of Medicine, New York New York U.S.A
| | - Kent Kirshenbaum
- Department of Chemistry New York University, New York New York U.S.A
| | - Ryan C Branski
- NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery New York University School of Medicine, New York New York U.S.A
| |
Collapse
|
8
|
Pathophysiology of Fibrosis in the Vocal Fold: Current Research, Future Treatment Strategies, and Obstacles to Restoring Vocal Fold Pliability. Int J Mol Sci 2019; 20:ijms20102551. [PMID: 31137626 PMCID: PMC6567075 DOI: 10.3390/ijms20102551] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 05/21/2019] [Indexed: 12/22/2022] Open
Abstract
Communication by voice depends on symmetrical vibrations within the vocal folds (VFs) and is indispensable for various occupations. VF scarring is one of the main reasons for permanent dysphonia and results from injury to the unique layered structure of the VFs. The increased collagen and decreased hyaluronic acid within VF scars lead to a loss of pliability of the VFs and significantly decreases their capacity to vibrate. As there is currently no definitive treatment for VF scarring, regenerative medicine and tissue engineering have become increasingly important research areas within otolaryngology. Several recent reviews have described the problem of VF scarring and various possible solutions, including tissue engineered cells and tissues, biomaterial implants, stem cells, growth factors, anti-inflammatory cytokines antifibrotic agents. Despite considerable research progress, these technical advances have not been established as routine clinical procedures. This review focuses on emerging techniques for restoring VF pliability using various approaches. We discuss our studies on interactions among adipose-derived stem/stromal cells, antifibrotic agents, and VF fibroblasts using an in vitro model. We also identify some obstacles to advances in research.
Collapse
|
9
|
Kishimoto Y, Yamashita M, Wei A, Toya Y, Ye S, Kendziorski C, Welham NV. Reversal of Vocal Fold Mucosal Fibrosis Using siRNA against the Collagen-Specific Chaperone Serpinh1. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 16:616-625. [PMID: 31100613 PMCID: PMC6520554 DOI: 10.1016/j.omtn.2019.04.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/12/2019] [Accepted: 04/13/2019] [Indexed: 12/11/2022]
Abstract
Vocal fold (VF) mucosal fibrosis results in substantial voice impairment and is recalcitrant to current treatments. To reverse this chronic disorder, anti-fibrotic therapies should target the molecular pathology of aberrant collagen accumulation in the extracellular matrix. We investigated the therapeutic potential of siRNA against Serpinh1, a collagen-specific chaperone that enables cotranslational folding and assembly of procollagens in the endoplasmic reticulum. We implemented a previously validated siRNA construct, conducted transfection experiments using in vitro and in vivo rat models, and measured knockdown efficiency, dose responses, delivery strategies, and therapeutic outcomes. Liposome-mediated delivery of Serpinh1-siRNA downregulated collagen production in naive and scar VF fibroblasts as well as naive VF mucosa; moreover, sustained Serpinh1 knockdown in fibrotic VF mucosa reversed scar-associated collagen accumulation within 4 weeks. Analysis of therapeutic effects at the transcriptome level showed evidence of cell cycle upregulation, catabolism, matrix disassembly, and morphogenesis. These findings indicate that Serpinh1-siRNA holds potential as a molecular therapy for chronic VF mucosal fibrosis.
Collapse
Affiliation(s)
- Yo Kishimoto
- Division of Otolaryngology, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Masaru Yamashita
- Division of Otolaryngology, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Alice Wei
- Division of Otolaryngology, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Yutaka Toya
- Division of Otolaryngology, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Shuyun Ye
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Christina Kendziorski
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Nathan V Welham
- Division of Otolaryngology, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA.
| |
Collapse
|
10
|
Hiwatashi N, Mukudai S, Bing R, Branski RC. The effects of cytosporone-B, a novel antifibrotic agent, on vocal fold fibroblasts. Laryngoscope 2018; 128:E425-E428. [PMID: 30325029 DOI: 10.1002/lary.27361] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/17/2018] [Accepted: 05/23/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVES/HYPOTHESIS Our laboratory recently described NR4A1 as an endogenous inhibitor of TGF-β-induced vocal fold (VF) fibrosis. Our prior report described the temporal expression of NR4A1 during VF healing in vivo and the effects of NR4A1 knockdown on fibroplastic cell activities in vitro. Based on these findings, we hypothesized that cytosporone-B (Csn-B), an NR4A1 agonist, may hold significant therapeutic potential. STUDY DESIGN In vitro. METHODS Human VF fibroblasts were exposed to TGF-β1+/-Csn-B. Expression of genes related to fibrosis were quantified. In addition, contraction was assayed as a surrogate for the fibrotic phenotype in our cell line. RESULTS TGF-B1 stimulated COL1A1 and ACTA2, as expected. Csn-B significantly downregulated TGF-β1-mediated upregulation of these genes (P = .009, P = .03, respectively). Csn-B had no effect on genes related to TGF-β/Smad signaling. Csn-B also decreased the TGF-β1-mediated contractile phenotype in our cells (P = .004). CONCLUSIONS NR4A1 is an endogenous inhibitor of fibrosis in the vocal folds and Csn-B, as an NR4A1 agonist, may evolve as an ideal, therapeutic candidate for this challenging condition. LEVEL OF EVIDENCE NA Laryngoscope, 128:E425-E428, 2018.
Collapse
Affiliation(s)
- Nao Hiwatashi
- Department of Otolaryngology-Head and Neck Surgery, New York University Voice Center, New York University School of Medicine, New York, New York, U.S.A
| | - Shigeyuki Mukudai
- Department of Otolaryngology-Head and Neck Surgery, New York University Voice Center, New York University School of Medicine, New York, New York, U.S.A
| | - Renjie Bing
- Department of Otolaryngology-Head and Neck Surgery, New York University Voice Center, New York University School of Medicine, New York, New York, U.S.A
| | - Ryan C Branski
- Department of Otolaryngology-Head and Neck Surgery, New York University Voice Center, New York University School of Medicine, New York, New York, U.S.A
| |
Collapse
|
11
|
Hiwatashi N, Benedict PA, Dion GR, Bing R, Kraja I, Amin MR, Branski RC. SMAD3 expression and regulation of fibroplasia in vocal fold injury. Laryngoscope 2017; 127:E308-E316. [PMID: 28543554 DOI: 10.1002/lary.26648] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 03/21/2017] [Accepted: 03/27/2017] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Recent reports highlight the efficacy of small interfering RNA (siRNA) targeting SMAD3 to regulate transforming growth factor β (TGF-β)-mediated fibroplasia in vocal fold fibroblasts. The current study sought to investigate SMAD3 expression during wound healing in vivo and quantify the downstream transcriptional events associated with SMAD3 knockdown in vitro. STUDY DESIGN In vivo and in vitro. METHODS Unilateral vocal fold injury was created in a rabbit model. SMAD3 and SMAD7 mRNA expression was quantified at 1 hour and 1, 3, 7, 14, 30, 60, and 90 days following injury. In vitro, multi-gene analysis technology was employed in our immortalized human vocal-fold fibroblast cell line following TGF-β1 stimulation ± SMAD3 knockdown across time points. RESULTS SMAD3 mRNA expression increased following injury; upregulation was significant at 3 and 7 days compared to control (both P < 0.001). SMAD7 mRNA was also upregulated at 3, 7, and 14 days (P = 0.02, P < 0.001, and P < 0.001, respectively). In vitro, SMAD3 knockdown reduced the expression of multiple profibrotic, TGF-β signaling, and extracellular matrix metabolism genes at 6 and 24 hours following TGF-β1 stimulation. CONCLUSION Cumulatively, these data support SMAD3 as a potential master regulator of TGF-β-mediated fibrosis. SMAD3 transcription peaked 7 days following injury. Multi-gene analysis indicated that the therapeutic effectiveness of SMAD3 knockdown may be related to regulation of downstream mediators of fibroplasia and altered TGF-β signaling. LEVEL OF EVIDENCE NA. Laryngoscope, 127:E308-E316, 2017.
Collapse
Affiliation(s)
- Nao Hiwatashi
- NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, New York, U.S.A
| | - Peter A Benedict
- NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, New York, U.S.A
| | - Gregory R Dion
- NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, New York, U.S.A
| | - Renjie Bing
- NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, New York, U.S.A
| | - Iv Kraja
- NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, New York, U.S.A
| | - Milan R Amin
- NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, New York, U.S.A
| | - Ryan C Branski
- NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, New York, U.S.A
| |
Collapse
|