1
|
Kılınç S, Ölçüoğlu R, Arzu Yiğit A, Güneşer Ö, Eylül Aydemir B. Effects of Apelin-13 on auditory system in STZ-induced diabetic rats. Neurosci Lett 2024; 842:137996. [PMID: 39362462 DOI: 10.1016/j.neulet.2024.137996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/09/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024]
Abstract
AIM Damage to the auditory pathways is one of the complications of diabetes. The aim of this study was to investigate the potential therapeutic effects of apelin-13 in the auditory pathways of rats with experimentally induced diabetes by examining its effect on auditory brainstem responses, cochlear oxidative stress and inflammatory cytokines. METHODS Thirty-two male Wistar albino rats were divided into four groups: sham control, diabetes, apelin and diabetes + apelin. A single dose of 45 mg/kg streptozotocin (STZ) was administered to induce diabetes. The apelin group received 50 µg/kg apelin-13 for seven days intraperitoneally (ip). At the end of the apelin and STZ applications auditory brainstem responses (ABR) was recorded. At the end of the experiment, cochlea was removed and biochemical analyzes were performed. RESULTS In ABR recordings, the latencies of wave V in diabetic group were observed to be longer than those of the control, with the apelin treatment exhibiting a partial reversal of this situation, particularly at specific frequencies and intensity levels. Apelin treatment leads to a significant increase in total antioxidant status (TAS) and a reduction in total oxidant status (TOS) and oxidative stress index (OSI) in cochlea compared to diabetic groups. The levels of tumor necrosis factor-alpha (TNF-alpha) and interleukin 1-beta (IL-1 beta) in cochlear tissue were found to be significantly reduced in the apelin-treated group compared to the diabetic group. CONCLUSION Apelin-13 may have a protective effect on the auditory system and may be proposed as a potential new therapeutic strategy for the management diabetic auditory impairment.
Collapse
Affiliation(s)
- Sevtap Kılınç
- Baskent University, Faculty of Medicine, Department of Physiology, Ankara, Turkey.
| | - Rukiye Ölçüoğlu
- Baskent University, Faculty of Medicine, Department of Physiology, Ankara, Turkey
| | - Ayşe Arzu Yiğit
- Baskent University, Faculty of Medicine, Department of Physiology, Ankara, Turkey
| | - Özgecan Güneşer
- Baskent University, Faculty of Medicine, Department of Physiology, Ankara, Turkey
| | - Berfin Eylül Aydemir
- Baskent University, Faculty of Health Sciences, Department of Audiology, Ankara, Turkey
| |
Collapse
|
2
|
Gill NB, Dowker-Key PD, Hedrick M, Bettaieb A. Unveiling the Role of Oxidative Stress in Cochlear Hair Cell Death: Prospective Phytochemical Therapeutics against Sensorineural Hearing Loss. Int J Mol Sci 2024; 25:4272. [PMID: 38673858 PMCID: PMC11050722 DOI: 10.3390/ijms25084272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/31/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Hearing loss represents a multifaceted and pervasive challenge that deeply impacts various aspects of an individual's life, spanning psychological, emotional, social, and economic realms. Understanding the molecular underpinnings that orchestrate hearing loss remains paramount in the quest for effective therapeutic strategies. This review aims to expound upon the physiological, biochemical, and molecular aspects of hearing loss, with a specific focus on its correlation with diabetes. Within this context, phytochemicals have surfaced as prospective contenders in the pursuit of potential adjuvant therapies. These compounds exhibit noteworthy antioxidant and anti-inflammatory properties, which hold the potential to counteract the detrimental effects induced by oxidative stress and inflammation-prominent contributors to hearing impairment. Furthermore, this review offers an up-to-date exploration of the diverse molecular pathways modulated by these compounds. However, the dynamic landscape of their efficacy warrants recognition as an ongoing investigative topic, inherently contingent upon specific experimental models. Ultimately, to ascertain the genuine potential of phytochemicals as agents in hearing loss treatment, a comprehensive grasp of the molecular mechanisms at play, coupled with rigorous clinical investigations, stands as an imperative quest.
Collapse
Affiliation(s)
- Nicholas B. Gill
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Presley D. Dowker-Key
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Mark Hedrick
- Department of Audiology & Speech Pathology, The University of Tennessee Health Science Center, Knoxville, TN 37996-0240, USA
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
- Graduate School of Genome Science and Technology, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| |
Collapse
|
3
|
Hazarosova R, Momchilova A, Vitkova V, Yordanova V, Kostadinova A, Angelova MI, Tessier C, Nuss P, Staneva G. Structural Changes Induced by Resveratrol in Monounsaturated and Polyunsaturated Phosphatidylcholine-Enriched Model Membranes. MEMBRANES 2023; 13:909. [PMID: 38132913 PMCID: PMC10744944 DOI: 10.3390/membranes13120909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
Resveratrol (Resv) is considered to exert a beneficial impact due to its radical scavenger, anti-microbial and anti-inflammatory properties through several mechanisms that could include its interaction with the cell plasma membrane. To address this issue, we investigated the influence of Resv on membrane lipid order and organization in large unilamellar vesicles composed of different lipids and ratios. The studied lipid membrane models were composed of phosphatidylcholine (PC) species (either palmitoyl-docosahexaenoyl phosphatidylcholine (PDPC) or palmitoyl-oleoyl phosphatidylcholine (POPC)), sphingomyelin (SM) and cholesterol (Chol). This study found that the addition of Resv resulted in complex membrane reorganization depending on the degree of fatty acid unsaturation at the sn-2 position, and the Lipid/Resv and SM/Chol ratios. Resv rigidified POPC-containing membranes and increased liquid-ordered (Lo) domain formation in 40/40/20 POPC/SM/Chol mixtures as this increase was lower at a 33/33/34 ratio. In contrast, Resv interacted with PDPC/SM/Chol mixtures in a bimodal manner by fluidizing/rigidifying the membranes in a dose-dependent way. Lo domain formation upon Resv addition occurred via the following bimodal mode of action: Lo domain size increased at low Resv concentrations; then, Lo domain size decreased at higher ones. To account for the variable effect of Resv, we suggest that it may act as a "spacer" at low doses, with a transition to a more "filler" position in the lipid bulk. We hypothesize that one of the roles of Resv is to tune the lipid order and organization of cell plasma membranes, which is closely linked to important cell functions such as membrane sorting and trafficking.
Collapse
Affiliation(s)
- Rusina Hazarosova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (R.H.); (A.M.); (V.Y.); (A.K.)
| | - Albena Momchilova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (R.H.); (A.M.); (V.Y.); (A.K.)
| | - Victoria Vitkova
- Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., 1784 Sofia, Bulgaria;
| | - Vesela Yordanova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (R.H.); (A.M.); (V.Y.); (A.K.)
| | - Aneliya Kostadinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (R.H.); (A.M.); (V.Y.); (A.K.)
| | - Miglena I. Angelova
- Department of Physics, Faculty of Sciences and Engineering, Sorbonne University, 75005 Paris, France;
- Matière et Systèmes Complexes (MSC), CNRS UMR 7057, University Paris Cite, 75013 Paris, France
| | - Cedric Tessier
- Department of Psychiatry, Saint-Antoine Hospital, DMU Neuroscience, Sorbonne University, Assistance Publique-Hôpitaux de Paris (AP-HP), 75012 Paris, France; (C.T.); (P.N.)
| | - Philippe Nuss
- Department of Psychiatry, Saint-Antoine Hospital, DMU Neuroscience, Sorbonne University, Assistance Publique-Hôpitaux de Paris (AP-HP), 75012 Paris, France; (C.T.); (P.N.)
- Centre de Recherche Saint-Antoine, INSERM UMRS 938, Sorbonne Université, 75012 Paris, France
| | - Galya Staneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (R.H.); (A.M.); (V.Y.); (A.K.)
| |
Collapse
|
4
|
Astaxanthin protects against hearing impairment in diabetic rats. Braz J Otorhinolaryngol 2022; 88 Suppl 3:S73-S80. [PMID: 35331657 DOI: 10.1016/j.bjorl.2022.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/25/2021] [Accepted: 02/14/2022] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Diabetes Mellitus (DM) causes an increase in oxidative stress that leads to deterioration in auditory functions. Astaxanthine (AST) is known to have strong antioxidant effects. In this study, the aim is to investigate the effect of AST against hearing loss that is due to DM. METHODS This study is an experimental animal study. The study was designed in four groups with 8 animals (n = 8) in each group. The groups were as follows; Control Group (CNT), Diabetic Group (DM), AST applied diabetic group (DM+AST), and AST applied non-diabetic group (AST). Streptozotocin was applied in rats to induce DM. AST was administered by oral gavage. Auditory Brainstem Responses (ABR) and Distortion Product Otoacoustic Emissions (DPOAE) tests were performed on several days of the study. At the end of the study, pro-inflammatory cytokine levels were analyzed in cochlear tissue samples, and Glutathione Peroxidase (GPx), Superoxide Dismutase (SOD), Catalase (CAT) and Malondialdehyde (MDA) levels were measured. RESULTS When the findings obtained in the ABR and DPOAE tests in the DM group, it was observed that there was a significant deterioration in the hearing sense. This deterioration was not observed in the DM+AST group. In the DM group, GPx, SOD and CAT levels decreased and MDA levels increased in blood and cochlear tissue. Compared to the DM group, it was noted that antioxidant enzyme levels increased and MDA levels decreased in the DM+AST group. Cochlear tissue pro-inflammatory cytokine levels, which increased with DM, were significantly decreased in the DM+AST group. CONCLUSION Even though the effects of AST were investigated in a diabetic experimental animal model, if this molecule is proven to be effective in diabetic humans, it can be considered an adjunct therapeutic option with its antioxidant effects. LEVEL OF EVIDENCE The level of evidence of this article is 5. This article is an experimental animal and laboratory study.
Collapse
|
5
|
Hajiabolhassan F, Tavanai E. Diabetes-induced auditory complications: are they preventable? a comprehensive review of interventions. Eur Arch Otorhinolaryngol 2021; 278:3653-3665. [PMID: 33555440 DOI: 10.1007/s00405-021-06630-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/18/2021] [Indexed: 10/22/2022]
Abstract
Diabetes mellitus is a chronic metabolic disorder characterized by elevated blood glucose levels, which, over time, lead to major chronic complications in various organs of the body. A growing body of research suggests that diabetes could also result in degenerative changes in the auditory system. To date, several attempts have been made to prevent and reduce diabetes-induced auditory complications. Such attempts have generally focused on disease modifying as well as other pharmacological treatments involving several herbal and non-herbal agents such as vitamins C and E, rutin, resveratrol, coffee, trigonelline, Dioscorea nipponica, red ginseng, Pterostilbene Bofutsushosan, Daisaikoto, tolrestat, ACE inhibitors (enalapril), Ca antagonists (nimodipine), Lipo-prostaglandin E1, methylprednisolone, dexamethasone, and chlorogenic acid and also other strategies like acupuncture. However, there is no consensus about which are the most effective strategies for preventing and reducing auditory complications in diabetic patients with few side effects and maximum efficacy. This paper provides a comprehensive review of interventions for preventing and treating diabetes-induced auditory complications to help therapists.
Collapse
Affiliation(s)
- Fahimeh Hajiabolhassan
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Pich-e-Shemiran, Enghelab Avenue, 0098, Tehran, Iran.,Department of Audiology, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Elham Tavanai
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Pich-e-Shemiran, Enghelab Avenue, 0098, Tehran, Iran.
| |
Collapse
|
6
|
Intagliata S, Spadaro A, Lorenti M, Panico A, Siciliano EA, Barbagallo S, Macaluso B, Kamble SH, Modica MN, Montenegro L. In Vitro Antioxidant and Anti-Glycation Activity of Resveratrol and Its Novel Triester with Trolox. Antioxidants (Basel) 2020; 10:antiox10010012. [PMID: 33374280 PMCID: PMC7823449 DOI: 10.3390/antiox10010012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022] Open
Abstract
Resveratrol (RSV) is well known for its many beneficial activities, but its unfavorable physicochemical properties impair its effectiveness after systemic and topical administration; thus, several strategies have been investigated to improve RSV efficacy. With this aim, in this work, we synthesized a novel RSV triester with trolox, an analogue of vitamin E with strong antioxidant activity. The new RSV derivative (RSVTR) was assayed in vitro to evaluate its antioxidant and anti-glycation activity compared to RSV. RSVTR chemical stability was assessed at pH 2.0, 6.8, and 7.2 and different storage temperatures (5 °C, 22 °C, and 37 °C). An influence of pH stronger than that of temperature on RSVTR half-life values was pointed out, and RSVTR greatest stability was observed at pH 7.2 and 5 °C. RSVTR showed a lower antioxidant ability compared to RSV (determined by the oxygen radical absorbance capacity assay) while its anti-glycation activity (evaluated using the Maillard reaction) was significantly greater than that of RSV. The improved ability to inhibit the glycation process was attributed to a better interaction of RSVTR with albumin owing to its increased topological polar surface area value and H-bond acceptor number compared to RSV. Therefore, RSVTR could be regarded as a promising anti-glycation agent worthy of further investigations.
Collapse
Affiliation(s)
- Sebastiano Intagliata
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (S.I.); (A.S.); (M.L.); (A.P.); (E.A.S.); (S.B.); (B.M.)
| | - Angelo Spadaro
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (S.I.); (A.S.); (M.L.); (A.P.); (E.A.S.); (S.B.); (B.M.)
| | - Miriam Lorenti
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (S.I.); (A.S.); (M.L.); (A.P.); (E.A.S.); (S.B.); (B.M.)
| | - Annamaria Panico
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (S.I.); (A.S.); (M.L.); (A.P.); (E.A.S.); (S.B.); (B.M.)
| | - Edy A. Siciliano
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (S.I.); (A.S.); (M.L.); (A.P.); (E.A.S.); (S.B.); (B.M.)
| | - Sabrina Barbagallo
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (S.I.); (A.S.); (M.L.); (A.P.); (E.A.S.); (S.B.); (B.M.)
| | - Benito Macaluso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (S.I.); (A.S.); (M.L.); (A.P.); (E.A.S.); (S.B.); (B.M.)
| | - Shyam H. Kamble
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA;
| | - Maria N. Modica
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (S.I.); (A.S.); (M.L.); (A.P.); (E.A.S.); (S.B.); (B.M.)
- Correspondence: (M.N.M.); (L.M.); Tel.: +39-095-738-6061 (M.N.M.); +39-095-738-4010 (L.M.)
| | - Lucia Montenegro
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (S.I.); (A.S.); (M.L.); (A.P.); (E.A.S.); (S.B.); (B.M.)
- Correspondence: (M.N.M.); (L.M.); Tel.: +39-095-738-6061 (M.N.M.); +39-095-738-4010 (L.M.)
| |
Collapse
|
7
|
Pterostilbene protects cochlea from ototoxicity in streptozotocin-induced diabetic rats by inhibiting apoptosis. PLoS One 2020; 15:e0228429. [PMID: 32722679 PMCID: PMC7386625 DOI: 10.1371/journal.pone.0228429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/19/2020] [Indexed: 12/05/2022] Open
Abstract
Diabetes mellitus (DM) causes ototoxicity by inducing oxidative stress, microangiopathy, and apoptosis in the cochlear sensory hair cells. The natural anti-oxidant pterostilbene (PTS) (trans-3,5-dimethoxy-4-hydroxystylbene) has been reported to relieve oxidative stress and apoptosis in DM, but its role in diabetic-induced ototoxicity is unclear. This study aimed to investigate the effects of dose-dependent PTS on the cochlear cells of streptozotocin (STZ)-induced diabetic rats. The study included 30 albino male Wistar rats that were randomized into five groups: non-diabetic control (Control), diabetic control (DM), and diabetic rats treated with intraperitoneal PTS at 10, 20, or 40 mg/kg/day during the four-week experimental period (DM + PTS10, DM + PTS20, and DM + PTS40). Distortion product otoacoustic emission (DPOAE) tests were performed at the beginning and end of the study. At the end of the experimental period, apoptosis in the rat cochlea was investigated using caspase-8, cytochrome-c, and terminal deoxyribonucleotidyl transferase-mediated dUTP-biotin end labeling (TUNEL). Quantitative real-time polymerase chain reaction was used to assess the mRNA expression levels of the following genes: CASP-3, BCL-associated X protein (BAX), and BCL-2. Body weight, blood glucose, serum insulin, and malondialdehyde (MDA) levels in the rat groups were evaluated. The mean DPOAE amplitude in the DM group was significantly lower than the means of the other groups (0.9–8 kHz; P < 0.001 for all). A dose-dependent increase of the mean DPOAE amplitudes was observed with PTS treatment (P < 0.05 for all). The Caspase-8 and Cytochrome-c protein expressions and the number of TUNEL-positive cells in the hair cells of the Corti organs of the DM rat group were significantly higher than those of the PTS treatment and control groups (DM > DM + PTS10 > DM + PTS20 > DM + PTS40 > Control; P < 0.05 for all). PTS treatment also reduced cell apoptosis in a dose-dependent manner by increasing the mRNA expression of the anti-apoptosis BCL2 gene and by decreasing the mRNA expressions of both the pro-apoptosis BAX gene and its effector CASP-3 and the ratio of BAX/BCL-2 in a dose-dependent manner (P < 0.05 compared to DM for all). PTS treatment significantly improved the metabolic parameters of the diabetic rats, such as body weight, blood glucose, serum insulin, and MDA levels, consistent with our other findings (P < 0.05 compared to DM for all). PTS decreased the cochlear damage caused by diabetes, as confirmed by DPOAE, biochemical, histopathological, immunohistochemical, and molecular findings. This study reports the first in vivo findings to suggest that PTS may be a protective therapeutic agent against diabetes-induced ototoxicity.
Collapse
|
8
|
Simsek G, Taş BM, Muluk NB, Azman M, Kılıç R. Comparison of the protective efficacy between intratympanic dexamethasone and resveratrol treatments against cisplatin-induced ototoxicity: an experimental study. Eur Arch Otorhinolaryngol 2019; 276:3287-3293. [DOI: 10.1007/s00405-019-05635-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 09/04/2019] [Indexed: 12/27/2022]
|
9
|
Li J, Xin Z, Cai M. The role of resveratrol in bone marrow-derived mesenchymal stem cells from patients with osteoporosis. J Cell Biochem 2019; 120:16634-16642. [PMID: 31106448 PMCID: PMC6767769 DOI: 10.1002/jcb.28922] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/01/2019] [Accepted: 03/15/2019] [Indexed: 02/06/2023]
Abstract
The aim of the present study was to investigate the effects of resveratrol on BMSCs from patients with osteoporosis. The cell viability and proliferation of BMSCs after treatment with different concentrations of resveratrol was respectively observed by MTT assay and EdU staining. The apoptosis was assessed using by TUNEL staining and the pluripotency was analyzed by quantitative reverse transcription‐PCR (qRT‐PCR). The osteogenic differentiation and adipogenic differentiation were determined by alkaline phosphatase (ALP) staining, alizarin red S (ARS) staining, oil red O (ORO) staining and qRT‐PCR analysis. MTT assay showed that Res at 40, 80, 100 μM markedly improved the cell proliferation of BMSCs from patients with osteoporosis. EdU staining indicated that Res treatment significantly accelerated the proliferation of BMSCs. In addition, the results of TUNEL staining revealed that Res at 40, 80, 100 μM inhibited the osteoporosis‐related apoptosis of BMSCs. qRT‐PCR analysis explored that Res treatment played a positive role in the pluripotency in BMSCs. ALP, ARS staining and qRT‐PCR demonstrated that Res promoted the differentiation of BMSCs into osteoblasts, especially at 80 μM. ORO staining and qRT‐PCR analysis proved that treatment of Res inhibited the adipogenesis of BMSCs isolated from patients with osteoporosis. Our findings suggested that Res can play a vital role in the cell viability, proliferation, apoptosis, pluripotency, osteogenesis and adipogenesis of BMSCs. And Res might be an efficient therapeutic approach for treating patients with osteoporosis.
Collapse
Affiliation(s)
- Jing Li
- Drug Clinical Trial Institution Office, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Zhaoxu Xin
- Department of Orthopedics, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Mingjun Cai
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
| |
Collapse
|