1
|
Ahmadian D, Young K, Gallego C, Miller M. Cochlear Implantation in Post-Meningitis Deafness: Audiological, Imaging, and Postoperative Outcomes: A Systematic Review With Qualitative Synthesis. Otol Neurotol 2024; 45:840-848. [PMID: 39142304 DOI: 10.1097/mao.0000000000004270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
INTRODUCTION Post-meningitis deafness (PMD) is a potentially devastating cause of hearing loss among pediatric and adult patients, for which hearing rehabilitation with cochlear implants (CIs) remains the standard of care. To date, there have been limited systematic studies on the impact of cochlear ossification (CO) and time-to-implantation (TTI) on audiological outcomes. METHODS An online database search was performed on the PubMed, Embase, and Scopus databases for articles within the past 20 years pertaining to audiological outcomes among pediatric and adult patients with PMD. Information on study characteristics, patient demographics, clinical outcomes, and postoperative complications was collected and analyzed. RESULTS From 8,325 articles generated in the original search, 11 were included in the final analysis, representing 376 patients in total. Of the articles discussing TTI, the majority (3 of 4) found that a shorter TTI of 6 months on average led to improved audiological outcomes compared with control groups with a longer TTI. Of the articles that discussed the impact of preoperative CO, the majority (4 of 6) found that the presence of CO had a detrimental effect on postoperative audiological outcomes after CI. Finally, of the articles that discussed long-term audiological outcomes for PMD compared with the non-PMD control group after CI, the majority (4 of 7) found that PMD patients had inferior long-term outcomes. CONCLUSION CI is a safe and effective treatment modality for PMD, with the majority of literature demonstrating improved long-term outcomes for patients without CO and a reduced TTI.
Collapse
Affiliation(s)
- David Ahmadian
- University of Arizona, College of Medicine-Tucson, Tucson, Arizona
| | - Kurtis Young
- Department of Otolaryngology-Head and Neck Surgery, University of Nevada, Las Vegas, Las Vegas, Nevada
| | - Charles Gallego
- University of Arizona, College of Medicine-Tucson, Tucson, Arizona
| | - Mia Miller
- Cedars-Sinai-Department of Otolaryngology, Los Angeles, California
| |
Collapse
|
2
|
Fellner A, Wenger C, Heshmat A, Rattay F. Auditory nerve fiber excitability for alternative electrode placement in the obstructed human cochlea: electrode insertion in scala vestibuli versus scala tympani. J Neural Eng 2024; 21:046034. [PMID: 39029505 DOI: 10.1088/1741-2552/ad6597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 07/19/2024] [Indexed: 07/21/2024]
Abstract
Objective. The cochlear implant (CI) belongs to the most successful neuro-prostheses. Traditionally, the stimulating electrode arrays are inserted into the scala tympani (ST), the lower cochlear cavity, which enables simple surgical access. However, often deep insertion is blocked, e.g. by ossification, and the auditory nerve fibers (ANFs) of lower frequency regions cannot be stimulated causing severe restrictions in speech understanding. As an alternative, the CI can be inserted into the scala vestibuli (SV), the other upper cochlear cavity.Approach. In this computational study, the excitability of 25 ANFs are compared for stimulation with ST and SV implants. We employed a 3-dimensional realistic human cochlear model with lateral wall electrodes based on aμ-CT dataset and manually traced fibers. A finite element approach in combination with a compartment model of a spiral ganglion cell was used to simulate monophasic stimulation with anodic (ANO) and cathodic (CAT) pulses of 50μs.Main results. ANO thresholds are lower in ST (mean/std =μ/σ= 189/55μA) stimulation compared to SV (μ/σ= 323/119μA) stimulation. Contrary, CAT thresholds are higher for the ST array (μ/σ= 165/42μA) compared to the SV array (μ/σ= 122/46μA). The threshold amplitude depends on the specific fiber-electrode spatial relationship, such as lateral distance from the cochlear axis, the angle between electrode and target ANF, and the curvature of the peripheral process. For CAT stimulation the SV electrodes show a higher selectivity leading to less cross-stimulation of additional fibers from different cochlear areas.Significance. We present a first simulation study with a human cochlear model that investigates an additional CI placement into the SV and its impact on the excitation behavior. Results predict comparable outcomes to ST electrodes which confirms that SV implantation might be an alternative for patients with a highly obstructed ST.
Collapse
Affiliation(s)
- Andreas Fellner
- Institute for Analysis and Scientific Computing, Vienna University of Technology, Vienna, Austria
| | - Cornelia Wenger
- Institute for Analysis and Scientific Computing, Vienna University of Technology, Vienna, Austria
| | - Amirreza Heshmat
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Frank Rattay
- Institute for Analysis and Scientific Computing, Vienna University of Technology, Vienna, Austria
| |
Collapse
|
3
|
Berger E, Brandes G, Kaiser O, Reifenrath J, Lenarz T, Wissel K, Durisin M. Induction of cell death by sodium hexachloroplatinate (IV) in the HEI-OC1 cell line, primary rat spiral ganglion cells and rat organ of Corti explants. PLoS One 2024; 19:e0307973. [PMID: 39058727 PMCID: PMC11280268 DOI: 10.1371/journal.pone.0307973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Although cochlear implants have become a well-established method for patients with sensory neural hearing loss, clinical results indicate that in some cases, corrosion of electrode contacts leads to high impedance that interferes with successful stimulation of the auditory nerve. As it is unclear whether corrosion products induce cell damage, we focused on cell culture models of the organ of Corti cell line (HEI-OC1), rat spiral ganglion cells (SGC) and rat organ of Corti explant (OCex) cultivated from neonatal rat cochleae to characterize the cytotoxicity of sodium hexachloroplatinate (IV) (Na2(PtCl6)). The oxidative activity in HEI-OC1 cells decreased with increasing Na2(PtCl6) concentrations between 8 and 16 ng/μl, and live cell staining with Calcein acetoxymethyl/Ethidium homodimer III revealed an increasing number of cells with disrupted membranes. Ultrastructural evidence of mitophagy followed by necroptosis was detected. Additionally, exposure of the SGC to 15-35 ng/μl Na2(PtCl6) dose-dependently reduced neuronal survival and neuritogenesis, as determined by neurofilament antigen staining. In parallel, staining glial cells and fibroblasts with specific antibodies confirmed the dose-dependent induction of cell death by Na2(PtCl6). Exposure of the OCex to 25-45 ng/μl Na2(PtCl6) resulted in severe concentration-dependent hair cell loss. Our data show for the first time that Na2(PtCl6) induces cell death in a concentration-dependent manner in inner ear cell types and tissues.
Collapse
Affiliation(s)
- Elisabeth Berger
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
| | - Gudrun Brandes
- Hannover Medical School, Institute of Neuroanatomy and Cell Biology, Hannover, Germany
| | - Odett Kaiser
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
| | - Janin Reifenrath
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
- Clinic for Orthopaedic Surgery, Hannover Medical School, Hannover, Germany
| | - Thomas Lenarz
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
| | - Kirsten Wissel
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
| | - Martin Durisin
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
- University Clinic of Otolaryngology, Head and Neck Surgery, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| |
Collapse
|
4
|
Meuser M, Schwitzer S, Thiele M, Boyle P, Ernst A, Basta D. Intra-Cochlear Electrode Position Impacts the Preservation of Residual Hearing in an Animal Model of Cochlear Implant Surgery. Audiol Neurootol 2024:1-11. [PMID: 38981457 DOI: 10.1159/000540266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/07/2024] [Indexed: 07/11/2024] Open
Abstract
INTRODUCTION Preservation of residual hearing after cochlear implantation remains challenging. There are several approaches to preserve residual hearing, but the configuration of the implant electrode array seems to play a major role. Lateral wall electrode arrays are seemingly more favorable in this context. To date, there are no experimental data available which correlate the spatial electrode position in the scala tympani with the extent of hearing preservation. METHODS Based on micro-computed tomography (µCT) imaging data, this study analyses the exact position of a pure silicone electrode array inserted into the cochlea of four guinea pigs. Array position data were correlated with the extent of hearing loss after implantation, measured using auditory brainstem measurements in the frequency range of the area occupied by the electrode array area as well as apical to the array. RESULTS The use of pure silicone arrays without electrodes resulted in artifact-free, high-resolution µCT images that allowed precise determination of the arrays' positions within the scala tympani. The electrode arrays' locations ranged from peri-modiolar to an anti-modiolar. These revealed a correlation of a lower postoperative hearing loss with a higher spatial proximity to the lateral wall. This correlation was found in the low-frequency range only. A significant correlation between the inter-individual differences in the diameter of the scala tympani and the postoperative hearing loss could not be observed. CONCLUSION This study demonstrates the importance of the intra-cochlear electrode array's position for the preservation of residual hearing. The advantage of such an electrode array's position approximated to the lateral wall suggests, at least for this type of electrode array applied in the guinea pig, it would be advantageous in the preservation of residual hearing for the apical part of the cochlea, beyond the area occupied by the electrode array.
Collapse
Affiliation(s)
- Max Meuser
- Department of Otolaryngology at ukb, Charité Medical School, University of Berlin, Berlin, Germany
| | - Susanne Schwitzer
- Department of Otolaryngology at ukb, Charité Medical School, University of Berlin, Berlin, Germany
| | - Mario Thiele
- Julius Wolff Institute, Center for Musculoskeletal Biomechanics and Regeneration, Charité Medical School, University of Berlin, Berlin, Germany
| | - Patrick Boyle
- Advanced Bionics GmbH, European Research Centre, Hanover, Germany
| | - Arne Ernst
- Department of Otolaryngology at ukb, Charité Medical School, University of Berlin, Berlin, Germany
| | - Dietmar Basta
- Department of Otolaryngology at ukb, Charité Medical School, University of Berlin, Berlin, Germany
| |
Collapse
|
5
|
Cooper J, Stidham KR, Morgan S, Schmelzer M, Albinus R. Utilization of SmartNav technology in cochlear implantation: optimizing efficiency in assessment of electrode placement. Cochlear Implants Int 2024:1-8. [PMID: 38958389 DOI: 10.1080/14670100.2024.2370679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
OBJECTIVES Proper electrode placement is essential for favorable hearing outcomes following cochlear implantation. Though often used, traditional intraoperative X-ray imaging is time consuming, exposes patients and staff to radiation, and poses interpretational challenges. The Nucleus® SmartNav System, utilizes electrode voltage telemetry (EVT) to analyze the positioning of the electrode array intraoperatively. This study investigates the efficacy of SmartNav in optimizing the efficiency and accuracy of assessing electrode placement. METHODS This prospective clinical study analyzed placement of 50 consecutive Cochlear Corporation cochlear implants conducted at a single institution between March of 2022 and June of 2023. Placement check of electrode array using SmartNav and X-ray was completed and individually assessed. A comparative analysis of SmartNav and X-ray completion times for electrode placement assessment was conducted. RESULTS Subjects included nine ears with abnormal anatomy and three reimplants. SmartNav placement check required a total time of 2.12 min compared to X-ray imaging at 14.23 min (p = 1.6E-16, CI 95%). Both SmartNav and X-ray had excellent sensitivity of 100% in identifying appropriate electrode position (p = 1.0). Tip fold-over was identified using both modalities in 3 cases with noted easier interpretation using SmartNav. CONCLUSION The Nucleus® SmartNav System significantly outperformed traditional X-ray imaging, offering a faster and more straightforward approach to assessing electrode positioning during cochlear implant surgery, thereby enhancing surgical efficiency and patient safety.
Collapse
Affiliation(s)
- Jaimee Cooper
- Department of Otolaryngology, New York Medical College, Valhalla, NY, USA
| | - Katrina R Stidham
- Department of Otolaryngology, New York Medical College, Valhalla, NY, USA
- Department of Otolaryngology, Westchester Medical Center, Valhalla, NY, USA
| | - Samantha Morgan
- Department of Otolaryngology, Westchester Medical Center, Valhalla, NY, USA
| | - Mindy Schmelzer
- Department of Otolaryngology, Westchester Medical Center, Valhalla, NY, USA
| | - Regina Albinus
- Department of Otolaryngology, Westchester Medical Center, Valhalla, NY, USA
| |
Collapse
|
6
|
Chai B, Holland ML, Camposeo EL, King K, Schvartz-Leyzac KC. Patient and Device Factors Contributing to Electrically Evoked Stapedial Reflex Thresholds in Cochlear Implanted Adults. Audiol Neurootol 2024; 29:263-270. [PMID: 38342083 PMCID: PMC11305975 DOI: 10.1159/000535058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/22/2023] [Indexed: 02/13/2024] Open
Abstract
INTRODUCTION Optimal cochlear implant (CI) outcomes are due to, at least in part, appropriate device programming. Objective measures, such as electrically evoked stapedial reflex thresholds (ESRTs), can be used to more accurately set programming levels. However, underlying factors that contribute to ESRT levels are not well understood. The objective of the current study was to analyze how demographic variables of patient sex and age, along with CI electrode location, influence ESRTs in adult CI recipients. METHODS A single institution retrospective review was performed. Electronic medical records, CI programming records, and clinic database of postoperative computerized tomography were reviewed to gather information regarding patient demographics, ESRTs, and electrode array metrics including medial-lateral distance and scalar location. Linear mixed models were constructed to determine how demographic variables and electrode position influence ESRTs recorded in 138 adult CI recipients. RESULTS ESRTs were significantly affected by recipient age, with older listeners demonstrating higher ESRT levels. On average, males had higher ESRT levels when compared to females. In a subset of the study sample, ESRT levels increased with increasing medial-lateral distance; however, there was not a statistically significant effect of electrode type (lateral/straight arrays compared to perimodiolar arrays). ESRTs were not affected by scalar location. DISCUSSION/CONCLUSIONS The results suggest that key demographic and electrode position characteristics influence the level of ESRTs in adult CI recipients. While ESRTs are widely used to assist with CI programming, underlying factors are not well understood. The significant factors of aging and sex could be due to middle ear mechanics or neural health differences. However, further data are needed to better understand these associations.
Collapse
Affiliation(s)
- Brianna Chai
- Department of Otolaryngology- Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Mary Laing Holland
- Department of Otolaryngology- Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Elizabeth L Camposeo
- Department of Otolaryngology- Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kaylene King
- Department of Otolaryngology- Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kara C Schvartz-Leyzac
- Department of Otolaryngology- Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
7
|
Moreno A, Castillo-Bustamante M, Prieto JA. Balancing Act: A Comprehensive Review of Vestibular Evaluation in Cochlear Implants. Cureus 2024; 16:e55261. [PMID: 38425330 PMCID: PMC10903968 DOI: 10.7759/cureus.55261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2024] [Indexed: 03/02/2024] Open
Abstract
Cochlear implantation, a transformative intervention for individuals with profound hearing loss, has evolved significantly over the years. However, its impact on the vestibular system, responsible for balance and spatial orientation, remains a subject of ongoing research and clinical consideration. This narrative review highlights key aspects of vestibular evaluation in patients undergoing cochlear implantation. Preoperative vestibular assessment is crucial to establish baseline vestibular function and identify any pre-existing balance issues. Various tests, including caloric, rotational chair, vestibular-evoked myogenic potential, and video head impulse tests, play a vital role in evaluating vestibular function. The goal is to assess the risk of vestibular disturbances arising from the surgery, guide surgical planning, and detect pre-existing alterations that could be totally or partially compensated. While some patients experience minimal vestibular disruptions, others may encounter transient or persistent balance issues following cochlear implant surgery. Postoperative vestibular testing allows for the early detection of such disturbances, enabling timely interventions like vestibular rehabilitation and evaluating changes produced due to surgical complications or changes in the patient's prior conditions. Challenges in vestibular evaluation include individual variability in patient responses, the proximity of the cochlea to the vestibular system, and the need to tailor testing protocols to individual needs. Further research is essential to refine testing protocols, minimize vestibular disturbances, and improve outcomes for cochlear implant candidates. A multidisciplinary approach involving otolaryngologists, audiologists, and physical therapists is integral to comprehensive patient care in this context. In conclusion, vestibular evaluation in patients undergoing cochlear implantation is critical for optimizing surgical planning, managing postoperative issues, and enhancing the overall quality of life for individuals embarking on the journey of restored hearing.
Collapse
Affiliation(s)
- Andrea Moreno
- Otology, Hospital Militar Nueva Granada, Bogotá, COL
| | - Melissa Castillo-Bustamante
- Otoneurology, Centro de Vértigo y Mareo, Mexico City, MEX
- School of Medicine, Universidad Pontificia Bolivariana, Medellín, COL
| | - Jose A Prieto
- Otology, Hospital Militar Nueva Granada, Bogotá, COL
| |
Collapse
|
8
|
Vohra V, Andresen NS, Carver C, Dunham R, Marsiglia D, Yeagle J, Della Santina CC, Creighton FX, Bowditch SP, Sun DQ. Cochlear Implant Electrode Array Design and Speech Understanding. Otol Neurotol 2024; 45:136-142. [PMID: 38152035 DOI: 10.1097/mao.0000000000004083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
OBJECTIVE Cochlear implant electrode arrays are categorized based on their design as lateral wall (LW) and perimodiolar (PM) electrode arrays. The objective of this study was to investigate the effect of LW versus PM designs on postoperative speech perception across multiple manufacturers and over long follow-up durations. DESIGN Retrospective cohort study. SETTING Single academic medical center. PARTICIPANTS A total of 478 adult cochlear implant recipients, implanted between the years 1992 and 2017. INTERVENTIONSS PM versus LW cochlear implants. MAIN OUTCOMES AND MEASURES Postoperative Consonant-Nucleus-Consonant Word (CNC-w) and Hearing in Noise Test (HINT) scores between 6 months and 5 years. RESULTS Across 478 patients, approximately one-third received LW (n = 176, 36.8%), whereas 302 patients received a PM array (63.2%). The PM group had higher CNC-w scores from 6 months to 2 years (52 [interquartile range, 38-68] versus 48 [31-62], p = 0.036) and from 2 to 5 years (58 [43-72] versus 48 [33-66], p < 0.001). Multivariable analysis of patient-averaged scores indicated that the PM group had greater improvement from preoperative scores at all time points after the initial 6 months for both CNC-w ( β = 4.4 [95% confidence interval, 0.6-8.3], p = 0.023) and HINT testing ( β = 4.5 [95% confidence interval, 0.3-8.7], p = 0.038). CONCLUSIONS This study indicates that PM electrode arrays are associated with small increases in postoperative speech perception scores, relative to LW arrays, when assessed across manufacturers, over long time durations, and using multiple outcome instruments. These findings may help guide surgeon selection and patient counseling of cochlear implant arrays.
Collapse
Affiliation(s)
| | - Nicholas S Andresen
- Department of Otolaryngology-Head and Neck Surgery and Cochlear Implant Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Courtney Carver
- Department of Otolaryngology-Head and Neck Surgery and Cochlear Implant Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rachel Dunham
- Department of Otolaryngology-Head and Neck Surgery and Cochlear Implant Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Dawn Marsiglia
- Department of Otolaryngology-Head and Neck Surgery and Cochlear Implant Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jenifer Yeagle
- Department of Otolaryngology-Head and Neck Surgery and Cochlear Implant Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Charles C Della Santina
- Department of Otolaryngology-Head and Neck Surgery and Cochlear Implant Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Francis X Creighton
- Department of Otolaryngology-Head and Neck Surgery and Cochlear Implant Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Stephen P Bowditch
- Department of Otolaryngology-Head and Neck Surgery and Cochlear Implant Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Daniel Q Sun
- Department of Otolaryngology-Head and Neck Surgery and Cochlear Implant Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
9
|
Tan F, Li X, Li X, Xu M, Shahzad KA, Hou L. GelMA/PEDOT:PSS Composite Conductive Hydrogel-Based Generation and Protection of Cochlear Hair Cells through Multiple Signaling Pathways. Biomolecules 2024; 14:95. [PMID: 38254695 PMCID: PMC10812993 DOI: 10.3390/biom14010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/18/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Recent advances in cochlear implantology are exemplified by novel functional strategies such as bimodal electroacoustic stimulation, in which the patient has intact low-frequency hearing and profound high-frequency hearing pre-operatively. Therefore, the synergistic restoration of dysfunctional cochlear hair cells and the protection of hair cells from ototoxic insults have become a persistent target pursued for this hybrid system. In this study, we developed a composite GelMA/PEDOT:PSS conductive hydrogel that is suitable as a coating for the cochlear implant electrode for the potential local delivery of otoregenerative and otoprotective drugs. Various material characterization methods (e.g., 1H NMR spectroscopy, FT-IR, EIS, and SEM), experimental models (e.g., murine cochlear organoid and aminoglycoside-induced ototoxic HEI-OC1 cellular model), and biological analyses (e.g., confocal laser scanning microscopy, real time qPCR, flow cytometry, and bioinformatic sequencing) were used. The results demonstrated decent material properties of the hydrogel, such as mechanical (e.g., high tensile stress and Young's modulus), electrochemical (e.g., low impedance and high conductivity), biocompatibility (e.g., satisfactory cochlear cell interaction and free of systemic toxicity), and biosafety (e.g., minimal hemolysis and cell death) features. In addition, the CDR medicinal cocktail sustainably released by the hydrogel not only promoted the expansion of the cochlear stem cells but also boosted the trans-differentiation from cochlear supporting cells into hair cells. Furthermore, hydrogel-based drug delivery protected the hair cells from oxidative stress and various forms of programmed cell death (e.g., apoptosis and ferroptosis). Finally, using large-scale sequencing, we enriched a complex network of signaling pathways that are potentially downstream to various metabolic processes and abundant metabolites. In conclusion, we present a conductive hydrogel-based local delivery of bifunctional drug cocktails, thereby serving as a potential solution to intracochlear therapy of bimodal auditory rehabilitation and diseases beyond.
Collapse
Affiliation(s)
- Fei Tan
- Department of ORL-HNS, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200070, China; (X.L.); (M.X.); (K.A.S.)
- Plasma Medicine and Surgical Implants Center, School of Medicine, Tongji University, Shanghai 200070, China
- Department of ORL-HNS, The Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
- Department of ORL-HNS, The Royal College of Surgeons of England, London WC2A 3PE, UK
| | - Xuran Li
- Department of ORL-HNS, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200070, China; (X.L.); (M.X.); (K.A.S.)
- Plasma Medicine and Surgical Implants Center, School of Medicine, Tongji University, Shanghai 200070, China
| | - Xiao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology & Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 200051, China; (X.L.); (L.H.)
| | - Maoxiang Xu
- Department of ORL-HNS, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200070, China; (X.L.); (M.X.); (K.A.S.)
- Plasma Medicine and Surgical Implants Center, School of Medicine, Tongji University, Shanghai 200070, China
| | - Khawar Ali Shahzad
- Department of ORL-HNS, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200070, China; (X.L.); (M.X.); (K.A.S.)
- Plasma Medicine and Surgical Implants Center, School of Medicine, Tongji University, Shanghai 200070, China
| | - Lei Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology & Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 200051, China; (X.L.); (L.H.)
| |
Collapse
|
10
|
Pai I, Connor S, Komninos C, Ourselin S, Bergeles C. The impact of the size and angle of the cochlear basal turn on translocation of a pre-curved mid-scala cochlear implant electrode. Sci Rep 2024; 14:1024. [PMID: 38200135 PMCID: PMC10781700 DOI: 10.1038/s41598-023-47133-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/09/2023] [Indexed: 01/12/2024] Open
Abstract
Scalar translocation is a severe form of intra-cochlear trauma during cochlear implant (CI) electrode insertion. This study explored the hypothesis that the dimensions of the cochlear basal turn and orientation of its inferior segment relative to surgically relevant anatomical structures influence the scalar translocation rates of a pre-curved CI electrode. In a cohort of 40 patients implanted with the Advanced Bionics Mid-Scala electrode array, the scalar translocation group (40%) had a significantly smaller mean distance A of the cochlear basal turn (p < 0.001) and wider horizontal angle between the inferior segment of the cochlear basal turn and the mastoid facial nerve (p = 0.040). A logistic regression model incorporating distance A (p = 0.003) and horizontal facial nerve angle (p = 0.017) explained 44.0-59.9% of the variance in scalar translocation and correctly classified 82.5% of cases. Every 1mm decrease in distance A was associated with a 99.2% increase in odds of translocation [95% confidence interval 80.3%, 100%], whilst every 1-degree increase in the horizontal facial nerve angle was associated with an 18.1% increase in odds of translocation [95% CI 3.0%, 35.5%]. The study findings provide an evidence-based argument for the development of a navigation system for optimal angulation of electrode insertion during CI surgery to reduce intra-cochlear trauma.
Collapse
Affiliation(s)
- Irumee Pai
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
- St. Thomas' Hearing Implant Centre, St. Thomas' Hospital, Guy's and St. Thomas' NHS Foundation Trust, 2nd Floor Lambeth Wing, London, SE1 7EH, UK.
| | - Steve Connor
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Department of Radiology, Guy's and St. Thomas' NHS Foundation Trust, London, UK
- Department of Neuroradiology, King's College Hospital NHS Foundation Trust, London, UK
| | - Charalampos Komninos
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Sebastien Ourselin
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Christos Bergeles
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| |
Collapse
|
11
|
Sipari S, Iso-Mustajärvi M, Linder P, Dietz A. Insertion Results and Hearing Outcomes of a Slim Lateral Wall Electrode. J Int Adv Otol 2024; 20:1-7. [PMID: 38454281 PMCID: PMC10895868 DOI: 10.5152/iao.2024.22962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 05/14/2023] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND The clinical outcomes of cochlear implantation vary for several reasons. It is necessary to study the different electrodes and variables for further development. The aim of this study is to report the clinical outcomes of a new slim lateral wall electrode (SlimJ). METHODS Data of 25 cochlear implantations in 23 patients with the SlimJ electrode were retrospectively collected. The insertion results were assessed by image fusion of the preoperative computed tomography (CT), magnetic resonance imaging (MRI), and postoperative cone-beam CT. The hearing outcomes were evaluated by the improvement of speech recognition in noise, measured preoperatively and at follow-up. Postoperative pure-tone thresholds were obtained in cases with preoperative functional low frequency hearing [PTA (0.125-0.5 kHz) ≤ 80 dB HL]. RESULTS The preoperative mean speech reception threshold (SRT) was +0.6 dB signal-to-noise ratio (SNR) (SD ± 4.2 dB) and the postoperative -3.5 dB SNR (SD ± 2.3 dB). The improvements between the preoperative and postoperative SRT levels ranged from 0.0 to 15.1 dB, with a mean improvement of 4.2 dB (SD ± 3.6 dB). Residual hearing in low frequencies (mean PTA(125-500 Hz)) was preserved within 30 dB HL in 70% and within 15 dB HL in 40% of patients who had preoperatively functional low frequency hearing. Mean insertion depth angle (IDA) was 401° (SD ± 41°). We observed scalar translocations from scala tympani to scala vestibuli in 2 ears (9%). CONCLUSION The relatively atraumatic insertion characteristics make the SlimJ array feasible for hearing preservation cochlear implantation. The hearing outcomes are comparable to those reported for other electrodes and devices.
Collapse
Affiliation(s)
- Sini Sipari
- Department of Otorhinolaryngology, Kuopio University Hospital, Kuopio, Finland
- Department of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Matti Iso-Mustajärvi
- Department of Otorhinolaryngology, Kuopio University Hospital, Kuopio, Finland
- Department of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Pia Linder
- Department of Otorhinolaryngology, Kuopio University Hospital, Kuopio, Finland
- Department of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Aarno Dietz
- Department of Otorhinolaryngology, Kuopio University Hospital, Kuopio, Finland
- Department of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
12
|
Ding L, Zhang L, Li J, Lin T. Electrode-Modiolus Distance Affects Speech Perception for Lateral Wall Electrodes. Otol Neurotol 2023; 44:e702-e709. [PMID: 37939358 DOI: 10.1097/mao.0000000000004019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
OBJECTIVES The goal of this study was to use cone-beam computed tomography to locate the electrode-modiolus distance (EMD) and correlate this with speech perception in cochlear implant (CI) recipients of the 31.5-mm lateral wall (LW) electrode arrays. STUDY DESIGN Retrospective review. PATIENTS Forty-five child CI recipients with prelingual profound sensorineural hearing loss of inserted 31.5-mm LW arrays listening with a CI-alone device. INTERVENTIONS Stepwise forward multiple linear regression was performed to control and reduce the variability in implant performance to determine whether EMD affects speech perception. MAIN OUTCOME MEASURES Electrode location (angular insertion depth [AID], EMD), together with the electrode impedance (EI), surgical approach, sex, CI age, and preimplant hearing aid usage were estimated as independent variables. The dependent variables were the Meaningful Use of Speech Scale (MUSS) and parents' evaluation of children's aural/oral performance (PEACH) assessed with the CI alone at 12 months postactivation. RESULTS EMD and CI age were predictive variables for PEACH/MUSS. A negative correlation was found between AID and EMD (r = -0.56, p < 0.01), whereas EMD had a moderately positive correlation with EI (r = 0.32, p < 0.01). CONCLUSIONS The best "location-related" predictor of postoperative speech perception was EMD with a 31.5-mm array among CI-alone users.
Collapse
Affiliation(s)
- Ling Ding
- Department of Otorhinolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Luguang Zhang
- Department of Medical Imaging, The Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jing Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tao Lin
- Department of Neurosurgery, Shandong Second Provincial General Hospital, Jinan, Shandong, 250022, China
| |
Collapse
|
13
|
Wong D, Copson B, Gerard JM, Hill F, Leigh J, Dowell R. Cochlear implantation in advanced otosclerosis: utility of pre-operative radiological assessment in predicting intra-operative difficulty and final electrode position. J Laryngol Otol 2023; 137:1248-1255. [PMID: 37016895 DOI: 10.1017/s0022215123000609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
OBJECTIVE This study aimed to determine if pre-operative radiological scoring can reliably predict intra-operative difficulty and final cochlear electrode position in patients with advanced otosclerosis. METHOD A retrospective cohort study of advanced otosclerosis patients who underwent cochlear implantation (n = 48, 52 ears) was compared with a larger cohort of post-lingually deaf adult patients (n = 1414) with bilateral hearing loss and normal cochlear anatomy. Pre-operative imaging for advanced otosclerosis patients and final electrode position were scored and correlated with intra-operative difficulty and speech outcomes. RESULTS Advanced otosclerosis patients benefit significantly from cochlear implantation. Mean duration of deafness was longer in the advanced otosclerosis group (19.5 vs 14.3 years; p < 0.05). CONCLUSION Anatomical changes in advanced otosclerosis can result in increased difficulty of surgery. Evidence of pre-operative cochlear luminal changes was associated with intra-operative difficult insertion and final non-scala tympani position. Nearly all electrodes implanted in the advanced otosclerosis cohort were peri-modiolar. No reports of facial nerve stimulation were observed.
Collapse
Affiliation(s)
- D Wong
- Department of Otolaryngology, Cochlear Implant Clinic, The Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - B Copson
- Department of Radiology, St Vincent's Hospital, Melbourne, Australia
- Department of Surgery (Otolaryngology), University of Melbourne, Parkville, Australia
| | - J-M Gerard
- Department of Otolaryngology, Cochlear Implant Clinic, The Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - F Hill
- Department of Otolaryngology, Cochlear Implant Clinic, The Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - J Leigh
- Department of Otolaryngology, Cochlear Implant Clinic, The Royal Victorian Eye and Ear Hospital, Melbourne, Australia
- Department of Audiology, University of Melbourne, The Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - R Dowell
- Department of Otolaryngology, Cochlear Implant Clinic, The Royal Victorian Eye and Ear Hospital, Melbourne, Australia
- Department of Audiology, University of Melbourne, The Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| |
Collapse
|
14
|
Smetak MR, Fernando SJ, O'Malley MR, Bennett ML, Haynes DS, Wootten CT, Virgin FW, Dwyer RT, Dawant BM, Noble JH, Labadie RF. Electrode array positioning after cochlear reimplantation from single manufacturer. Cochlear Implants Int 2023; 24:273-281. [PMID: 37489512 PMCID: PMC10372339 DOI: 10.1080/14670100.2023.2179756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
OBJECTIVE To investigate whether revision surgery with the same device results in a change in three key indicators of electrode positioning: scalar location, mean modiolar distance (M ¯ ), and angular insertion depth (AID). METHODS Retrospective analysis of a cochlear implant database at a university-based tertiary medical center. Intra-operative CT scans were obtained after initial and revision implantation. Electrode array (EA) position was calculated using auto-segmentation techniques. Initial and revision scalar location, M ¯ , and AID were compared. RESULTS Mean change in M ¯ for all ears was -0.07 mm (SD 0.24 mm; P = 0.16). The mean change in AID for all ears was -5° (SD 67°; P = 0.72). Three initial implantations with pre-curved EAs resulted in a translocation from Scala Tympani (ST) to Scala Vestibuli (SV). Two remained translocated after revision, while one was corrected when revised with a straight EA. An additional five translocations occurred after revision. CONCLUSIONS In this study examining revision cochlear implantation from a single manufacturer, we demonstrated no significant change in key indicators of EA positioning, even when revising with a different style of electrode. However, the revision EA is not necessarily confined by the initial trajectory and there may be an increased risk of translocation.
Collapse
Affiliation(s)
- Miriam R Smetak
- Department of Otolaryngology - Head and Neck Surgery, Vanderbilt University Medical Center, 1215 21st Avenue South, Nashville, TN 37232, USA
| | - Shanik J Fernando
- Department of Otolaryngology - Head and Neck Surgery, Vanderbilt University Medical Center, 1215 21st Avenue South, Nashville, TN 37232, USA
| | - Matthew R O'Malley
- Department of Otolaryngology - Head and Neck Surgery, Vanderbilt University Medical Center, 1215 21st Avenue South, Nashville, TN 37232, USA
| | - Marc L Bennett
- Department of Otolaryngology - Head and Neck Surgery, Vanderbilt University Medical Center, 1215 21st Avenue South, Nashville, TN 37232, USA
| | - David S Haynes
- Department of Otolaryngology - Head and Neck Surgery, Vanderbilt University Medical Center, 1215 21st Avenue South, Nashville, TN 37232, USA
| | - Christopher T Wootten
- Department of Otolaryngology - Head and Neck Surgery, Vanderbilt University Medical Center, 1215 21st Avenue South, Nashville, TN 37232, USA
| | - Frank W Virgin
- Department of Otolaryngology - Head and Neck Surgery, Vanderbilt University Medical Center, 1215 21st Avenue South, Nashville, TN 37232, USA
| | - Robert T Dwyer
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, 1215 21st Avenue South, Nashville, TN 37232, USA
| | - Benoit M Dawant
- Department of Electrical Engineering & Computer Science, Vanderbilt University, 2201 West End Avenue, Nashville, TN 37235, USA
| | - Jack H Noble
- Department of Electrical Engineering & Computer Science, Vanderbilt University, 2201 West End Avenue, Nashville, TN 37235, USA
| | - Robert F Labadie
- Department of Otolaryngology - Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge 135 Rutledge Avenue, MSC 550, Charleston, SC 29425, USA
| |
Collapse
|
15
|
Lindquist NR, Dietrich MS, Patro A, Henry MR, DeFreese AJ, Freeman MH, Perkins EL, Gifford RH, Haynes DS, Holder JT. Early Datalogging Predicts Cochlear Implant Performance: Building a Recommendation for Daily Device Usage. Otol Neurotol 2023; 44:e479-e485. [PMID: 37442607 PMCID: PMC10361622 DOI: 10.1097/mao.0000000000003917] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
OBJECTIVE To quantify the effect of datalogging on speech recognition scores and time to achievement for a "benchmark" level of performance within the first year, and to provide a data-driven recommendation for minimum daily cochlear implant (CI) device usage to better guide patient counseling and future outcomes. STUDY DESIGN Retrospective cohort. SETTING Tertiary referral center. PATIENTS Three hundred thirty-seven adult CI patients with data logging and speech recognition outcome data who were implanted between August 2015 and August 2020. MAIN OUTCOME MEASURES Processor datalogging, speech recognition scores, achievement of "benchmark speech recognition performance" defined as 80% of the median score for speech recognition outcomes at our institution. RESULTS The 1-month datalogging measure correlated positively with word and sentences scores at 1, 3, 6, and 12 months postactivation. Compared with age, sex, and preoperative performance, datalogging was the largest predictive factor of benchmark achievement on multivariate analysis. Each hour/day increase of device usage at 1 month resulted in a higher likelihood of achieving benchmark consonant-nucleus-consonant and AzBio scores within the first year (odds ratio = 1.21, p < 0.001) as well as earlier benchmark achievement. Receiver operating characteristic curve analysis identified the optimal data logging threshold at an average of 12 hours/day. CONCLUSIONS Early CI device usage, as measured by 1-month datalogging, predicts benchmark speech recognition achievement in adults. Datalogging is an important predictor of CI performance within the first year postimplantation. These data support the recommended daily CI processor utilization of at least 12 hours/day to achieve optimal speech recognition performance for most patients.
Collapse
Affiliation(s)
- Nathan R Lindquist
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mary S Dietrich
- Vanderbilt University Schools of Medicine (Biostatistics, VICC, Psychiatry) and Nursing, Nashville, Tennessee
| | - Ankita Patro
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Melissa R Henry
- Division of Audiology, Henry Ford Health, Dearborn, Michigan
| | - Andrea J DeFreese
- Department of Hearing and Speech Sciences, Vanderbilt Bill Wilkerson Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Michael H Freeman
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Elizabeth L Perkins
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - René H Gifford
- Department of Hearing and Speech Sciences, Vanderbilt Bill Wilkerson Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - David S Haynes
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jourdan T Holder
- Department of Hearing and Speech Sciences, Vanderbilt Bill Wilkerson Center, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
16
|
Hashemi SB, Janipour M, Jahangiri R, Babaei A. The effect of cochlear implant insertion technique on post-operative neural response telemetry and impedance in paediatric patients. J Laryngol Otol 2023; 137:363-367. [PMID: 35445650 DOI: 10.1017/s0022215122000901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE This study aimed to compare neural response telemetry and impedance between the round window and cochleostomy approaches for cochlear implantation. METHODS In this case-control study, 64 patients aged less than 3.5 years underwent cochlear implantation via the round window or cochleostomy approach. Post-operative neural response telemetry and impedance were measured. RESULTS The impedance measurements at electrodes 1, 11 and 22 showed no significant differences between the two groups three months after implantation (p = 0.90, p = 0.08 and p = 0.37, respectively). Similar results were observed six months after implantation (p = 0.71, p = 0.65 and p = 0.70, respectively). There was no significant difference in neural response telemetry between the two groups after three months. The neural response telemetry of electrode 1 in the cochleostomy group (171.26 ± 19.81 μV) was significantly higher in comparison with that of electrode 1 in the round window group (161.97 ± 12.71 μV) after six months (p = 0.03). The neural response telemetry values for electrodes 11 and 22 did not show any significant difference after six months (p = 0.14 and p = 0.48, respectively). CONCLUSION Both approaches provide equal stimulation of the cochlear nerve and impedance.
Collapse
Affiliation(s)
- S B Hashemi
- Otolaryngology Research Centre, Department of Otolaryngology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M Janipour
- Otolaryngology Research Centre, Department of Otolaryngology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - R Jahangiri
- Otolaryngology Research Centre, Department of Otolaryngology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - A Babaei
- Otolaryngology Research Centre, Department of Otolaryngology, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
17
|
Farnsworth PJ, Benson JC, Nassiri AM, Carlson ML, Larson NB, Lane JI. Improved cochlear implant electrode localization using coregistration of pre- and postoperative CT. J Neuroimaging 2023; 33:387-392. [PMID: 36811338 DOI: 10.1111/jon.13094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND AND PURPOSE Artifact from cochlear implant electrodes degrades image resolution on CT. Here, we describe the use of coregistered pre- and postoperative CT images to reduce metallic artifact from the electrodes to assess its position more accurately within the cochlear lumen. METHODS Pre- and postoperative CTs were reviewed after coregistration/overlay of both exams. Images were evaluated by two neuroradiologists for scalar location of electrodes tip (± scalar translocation), tip fold over, and angular depth of insertion. RESULTS Thirty-four patients were included in the final cohort. Transscalar migration was present in three (8.8%) cases (one case demonstrated tip fold over), with initial disagreement regarding transscalar migration in 1 out of 34 patients (2.9%). Agreement regarding depth of insertion was present in 31 (91.1%) cases. Five-point Likert scales were used to compare the ability to resolve the proximity of electrodes to the lateral/outer cochlear wall without and with overlay, which is a qualitative measure of artifact from the array. Likert scores showed definitive benefit of metal artifact reduction using overlayed images with an average score of 4.34. CONCLUSION This study demonstrates a novel technique of using fused coregistration of pre- and postoperative CTs for the purpose of artifact reduction/electrode localization. It is anticipated that this technique will permit more accurate localization of the electrodes for improvement in surgical technique and electrode array design.
Collapse
Affiliation(s)
| | - John C Benson
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ashley M Nassiri
- Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew L Carlson
- Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Nicholas B Larson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - John I Lane
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
18
|
Lambriks L, van Hoof M, Debruyne J, Janssen M, Hof J, Hellingman K, Devocht E, George E. Toward neural health measurements for cochlear implantation: The relationship among electrode positioning, the electrically evoked action potential, impedances and behavioral stimulation levels. Front Neurol 2023; 14:1093265. [PMID: 36846130 PMCID: PMC9948626 DOI: 10.3389/fneur.2023.1093265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/10/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction Estimating differences in neural health across different sites within the individual cochlea potentially enables clinical applications for subjects with a cochlear implant. The electrically evoked compound action potential (ECAP) is a measure of neural excitability that possibly provides an indication of a neural condition. There are many factors, however, that affect this measure and increase the uncertainty of its interpretation. To better characterize the ECAP response, its relationship with electrode positioning, impedances, and behavioral stimulation levels was explored. Methods A total of 14 adult subjects implanted with an Advanced Bionics cochlear electrode array were prospectively followed up from surgery to 6 months postoperative. Insertion depth, distance to the modiolus, and distance to the medial wall were assessed for each electrode by postoperative CT analysis. ECAPs were measured intraoperatively and at three visits postoperatively on all 16 electrodes using the NRI feature of clinical programming software and characterized using multiple parameters. Impedances and behavioral stimulation levels were measured at every fitting session. Results Patterns in ECAPs and impedances were consistent over time, but high variability existed among subjects and between different positions in the cochlea. Electrodes located closer to the apex of the cochlea and closer to the modiolus generally showed higher neural excitation and higher impedances. Maximum loudness comfort levels were correlated strongly with the level of current needed to elicit a response of 100 μV ECAP. Conclusion Multiple factors contribute to the ECAP response in subjects with a cochlear implant. Further research might address whether the ECAP parameters used in this study will benefit clinical electrode fitting or the assessment of auditory neuron integrity.
Collapse
Affiliation(s)
- Lars Lambriks
- Department of ENT/Audiology, School for Mental Health and NeuroScience, Maastricht University Medical Centre, Maastricht, Netherlands,*Correspondence: Lars Lambriks ✉
| | - Marc van Hoof
- Department of ENT/Audiology, School for Mental Health and NeuroScience, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Joke Debruyne
- Department of ENT/Audiology, School for Mental Health and NeuroScience, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Miranda Janssen
- Department of ENT/Audiology, School for Mental Health and NeuroScience, Maastricht University Medical Centre, Maastricht, Netherlands,Department of Methodology and Statistics, Care and Public Health Research Institute, Maastricht University, Maastricht, Netherlands
| | - Janny Hof
- Department of ENT/Audiology, School for Mental Health and NeuroScience, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Katja Hellingman
- Department of ENT/Audiology, School for Mental Health and NeuroScience, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Elke Devocht
- Department of ENT/Audiology, School for Mental Health and NeuroScience, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Erwin George
- Department of ENT/Audiology, School for Mental Health and NeuroScience, Maastricht University Medical Centre, Maastricht, Netherlands
| |
Collapse
|
19
|
Schvartz-Leyzac KC, Colesa DJ, Swiderski DL, Raphael Y, Pfingst BE. Cochlear Health and Cochlear-implant Function. J Assoc Res Otolaryngol 2023; 24:5-29. [PMID: 36600147 PMCID: PMC9971430 DOI: 10.1007/s10162-022-00882-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/24/2022] [Indexed: 01/06/2023] Open
Abstract
The cochlear implant (CI) is widely considered to be one of the most innovative and successful neuroprosthetic treatments developed to date. Although outcomes vary, CIs are able to effectively improve hearing in nearly all recipients and can substantially improve speech understanding and quality of life for patients with significant hearing loss. A wealth of research has focused on underlying factors that contribute to success with a CI, and recent evidence suggests that the overall health of the cochlea could potentially play a larger role than previously recognized. This article defines and reviews attributes of cochlear health and describes procedures to evaluate cochlear health in humans and animal models in order to examine the effects of cochlear health on performance with a CI. Lastly, we describe how future biologic approaches can be used to preserve and/or enhance cochlear health in order to maximize performance for individual CI recipients.
Collapse
Affiliation(s)
- Kara C Schvartz-Leyzac
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Kresge Hearing Research Institute, University of Michigan, 1150 Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Ave, Charleston, SC, 29425, USA
| | - Deborah J Colesa
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Kresge Hearing Research Institute, University of Michigan, 1150 Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
| | - Donald L Swiderski
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Kresge Hearing Research Institute, University of Michigan, 1150 Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
| | - Yehoash Raphael
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Kresge Hearing Research Institute, University of Michigan, 1150 Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
| | - Bryan E Pfingst
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Kresge Hearing Research Institute, University of Michigan, 1150 Medical Center Drive, Ann Arbor, MI, 48109-5616, USA.
| |
Collapse
|
20
|
Smetak MR, Riojas KE, Sharma RK, Labadie RF. Beyond the phantom: Unroofing the scala vestibuli in a fresh temporal bone as a model for cochlear implant insertion experiments. J Neurosci Methods 2022; 382:109710. [PMID: 36207005 DOI: 10.1016/j.jneumeth.2022.109710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Miriam R Smetak
- Department of Otolaryngology - Head and Neck Surgery, Vanderbilt University Medical Center, 1215 21st Ave S, Nashville, TN 37232, United States.
| | - Katherine E Riojas
- Department of Mechanical Engineering, Vanderbilt University, 2301 Vanderbilt Place PMB 401592, Nashville, TN 37240-1592, United States
| | - Rahul K Sharma
- Department of Otolaryngology - Head and Neck Surgery, Vanderbilt University Medical Center, 1215 21st Ave S, Nashville, TN 37232, United States
| | - Robert F Labadie
- Department of Otolaryngology - Head and Neck Surgery, Vanderbilt University Medical Center, 1215 21st Ave S, Nashville, TN 37232, United States; Department of Mechanical Engineering, Vanderbilt University, 2301 Vanderbilt Place PMB 401592, Nashville, TN 37240-1592, United States
| |
Collapse
|
21
|
Cleary M, Bernstein JGW, Stakhovskaya OA, Noble J, Kolberg E, Jensen KK, Hoa M, Kim HJ, Goupell MJ. The Relationship Between Interaural Insertion-Depth Differences, Scalar Location, and Interaural Time-Difference Processing in Adult Bilateral Cochlear-Implant Listeners. Trends Hear 2022; 26:23312165221129165. [PMID: 36379607 PMCID: PMC9669699 DOI: 10.1177/23312165221129165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Sensitivity to interaural time differences (ITDs) in acoustic hearing involves comparison of interaurally frequency-matched inputs. Bilateral cochlear-implant arrays are, however, only approximately aligned in angular insertion depth and scalar location across the cochleae. Interaural place-of-stimulation mismatch therefore has the potential to impact binaural perception. ITD left-right discrimination thresholds were examined in 23 postlingually-deafened adult bilateral cochlear-implant listeners, using low-rate constant-amplitude pulse trains presented via direct stimulation to single electrodes in each ear. Angular insertion depth and scalar location measured from computed-tomography (CT) scans were used to quantify interaural mismatch, and their association with binaural performance was assessed. Number-matched electrodes displayed a median interaural insertion-depth mismatch of 18° and generally yielded best or near-best ITD discrimination thresholds. Two listeners whose discrimination thresholds did not show this pattern were confirmed via CT to have atypical array placement. Listeners with more number-matched electrode pairs located in the scala tympani displayed better thresholds than listeners with fewer such pairs. ITD tuning curves as a function of interaural electrode separation were broad; bandwidths at twice the threshold minimum averaged 10.5 electrodes (equivalent to 5.9 mm for a Cochlear-brand pre-curved array). Larger angular insertion-depth differences were associated with wider bandwidths. Wide ITD tuning curve bandwidths appear to be a product of both monopolar stimulation and angular insertion-depth mismatch. Cases of good ITD sensitivity with very wide bandwidths suggest that precise matching of insertion depth is not critical for discrimination thresholds. Further prioritizing scala tympani location at implantation should, however, benefit ITD sensitivity.
Collapse
Affiliation(s)
- Miranda Cleary
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, USA
| | - Joshua G. W. Bernstein
- National Military Audiology and Speech Pathology Center, Walter Reed National Military Medical
Center, Bethesda, MD, USA
| | - Olga A. Stakhovskaya
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, USA
| | - Jack Noble
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA,Department of Hearing and Speech Sciences, Vanderbilt University
Medical Center, Nashville, TN, USA,Department of Otolaryngology, Vanderbilt University Medical Center,
Nashville, TN, USA
| | - Elizabeth Kolberg
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, USA
| | - Kenneth K. Jensen
- National Military Audiology and Speech Pathology Center, Walter Reed National Military Medical
Center, Bethesda, MD, USA
| | - Michael Hoa
- Department of Otolaryngology-Head and Neck Surgery, Georgetown University Medical
Center, Washington, DC, USA
| | - Hung Jeffrey Kim
- Department of Otolaryngology-Head and Neck Surgery, Georgetown University Medical
Center, Washington, DC, USA
| | - Matthew J. Goupell
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, USA,Matthew J. Goupell, Department of Hearing
and Speech Sciences, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
22
|
Munhall CC, Noble JH, Dawant B, Labadie RF. Cochlear Implant Translocation: Diagnosis, Prevention, and Clinical Implications. CURRENT OTORHINOLARYNGOLOGY REPORTS 2022. [DOI: 10.1007/s40136-022-00434-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Waldeck S, Schmidt S, von Falck C, Chapot R, Brockmann M, Overhoff D. New hybrid multiplanar cone beam computed tomography-laser-fluoroscopic-guided approach in cochlear implant surgery. Int J Comput Assist Radiol Surg 2022; 17:1837-1843. [PMID: 35816271 PMCID: PMC9467958 DOI: 10.1007/s11548-022-02703-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 06/10/2022] [Indexed: 11/05/2022]
Abstract
PURPOSE Cochlea implant surgery with proper positioning of the cochlear electrode can be challenging. Intraoperative real-time hybrid laser-fluoroscopic-guided navigation based on a multiplanar cone beam computed tomography (CBCT) dataset opens up the opportunity to immediate radiological control of primary electrode misalignments and offering new insights into the cochlea electrode insertion routes and favorable cochlear implant-insertion angle. METHODS In this retrospective study, 50 cases (29 males, 18 females) of conventional electrode implantation (without intraoperative image control; group A) and nine cases (7 males, 2 females) of CBCT-laser-fluoroscopic-guided surgery (group B) were included in the present study. CBCT-laser-guided surgery under real-time fluoroscopic control was conducted using an intraoperative C-arm CBCT. All patients received preoperative cross-sectional imaging (CT and MRI), in which cochlear malformation could be excluded. Postoperatively, we looked for electrode misplacements. RESULTS In group A, electrode misalignment was detected postoperatively in 14 of 50 cases (28.0%). In group B, primary electrode misalignment was detected intraoperatively in two patients (22.2%). In both patients, the misalignments were corrected in the same session. The comparison of cochlear insertion angles showed significant differences. Group A: 47.5 ± 2.6° (actual conventional surgery) vs 17.6 ± 2.8° (theoretical CBCT-laser-fluoroscopic-guided surgery) P < 0.001. Group A vs group B: 47.5 ± 2.6° (actual conventional surgery; Group A) vs 17.9 ± 2.5° (actual CBCT-laser-fluoroscopic-guided surgery; Group B) P < 0.001. CONCLUSION We consider that an intraoperative hybrid CBCT-laser-fluoroscopic-controlled approach in cochlear implant surgery using a C-arm CT can be beneficial, because electrode misalignments can be reduced and if it does occur, remedied in the same surgical session.
Collapse
Affiliation(s)
- Stephan Waldeck
- Department of Diagnostic and Interventional Radiology and Neuroradiology, Bundeswehr Central Hospital Koblenz, Rübenacher Straße 170, 56072, Koblenz, Germany. .,Institute of Neuroradiology, University Medical Centre Johannes Gutenberg University Mainz, Mainz, Langenbeckstraße 1, 55131, Germany.
| | - Sandra Schmidt
- Department of ENT Surgery, Bundeswehr Central Hospital Koblenz, Rübenacher Straße 170, 56072, Koblenz, Germany
| | - Christian von Falck
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hanover, Germany
| | - René Chapot
- Department of Neuroradiology, Alfried Krupp Krankenhaus, Alfried-Krupp-Strasse 21, 45131, Essen, Germany
| | - Marc Brockmann
- Institute of Neuroradiology, University Medical Centre Johannes Gutenberg University Mainz, Mainz, Langenbeckstraße 1, 55131, Germany
| | - Daniel Overhoff
- Department of Diagnostic and Interventional Radiology and Neuroradiology, Bundeswehr Central Hospital Koblenz, Rübenacher Straße 170, 56072, Koblenz, Germany.,Department of Radiology and Nuclear Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
24
|
Berg KA, Noble JH, Dawant BM, Dwyer RT, Labadie RF, Gifford RH. Speech recognition as a function of the number of channels for Mid-Scala electrode array recipients. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:67. [PMID: 35931512 PMCID: PMC9984239 DOI: 10.1121/10.0012163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
This study investigated the number of channels needed for maximum speech understanding and sound quality in 15 adult cochlear implant (CI) recipients with Advanced Bionics (AB) Mid-Scala electrode arrays completely within scala tympani. In experiment I, CI programs used a continuous interleaved sampling (CIS)-based strategy and 4-16 active electrodes. In experiment II, CI programs used an n-of-m strategy featuring 16 active electrodes with either 8- or 12-maxima. Speech understanding and sound quality measures were assessed. For CIS programs, participants demonstrated performance gains using up to 4-10 electrodes on speech measures and sound quality ratings. For n-of-m programs, there was no significant effect of maxima, suggesting 8-maxima is sufficient for this sample's maximum performance and sound quality. These results are largely consistent with previous studies using straight electrode arrays [e.g., Fishman, Shannon, and Slattery (1997). J. Speech Lang. Hear. Res. 40, 1201-1215; Friesen, Shannon, Baskent, and Wang (2001). J. Acoust. Soc. Am. 110, 1150-1163; Shannon, Cruz, and Galvin (2011). Audiol. Neurotol. 16, 113-123; Berg, Noble, Dawant, Dwyer, Labadie, and Gifford (2020). J. Acoust. Soc. Am. 147, 3646-3656] and in contrast with recent studies looking at cochlear precurved electrode arrays [e.g., Croghan, Duran, and Smith (2017). J. Acoust. Soc. Am. 142, EL537-EL543; Berg, Noble, Dawant, Dwuer, Labadie, and Gifford (2019b). J. Acoust. Soc. Am. 145, 1556-1564], which found continuous improvements up to 16 independent channels. These findings suggest that Mid-Scala electrode array recipients demonstrate similar channel independence to straight electrode arrays rather than other manufacturer's precurved electrode arrays.
Collapse
Affiliation(s)
- Katelyn A Berg
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, 1215 21st Avenue South, Nashville, Tennessee 37232, USA
| | - Jack H Noble
- Department of Electrical Engineering and Computer Science, Vanderbilt University, 2201 West End Avenue, Nashville, Tennessee 37235, USA
| | - Benoit M Dawant
- Department of Electrical Engineering and Computer Science, Vanderbilt University, 2201 West End Avenue, Nashville, Tennessee 37235, USA
| | - Robert T Dwyer
- Advanced Bionics, 28515 Westinghouse Place, Valencia, California 91355, USA
| | - Robert F Labadie
- Department of Otolaryngology, Vanderbilt University Medical Center, 1215 21st Avenue South, Nashville, Tennessee 37232, USA
| | - René H Gifford
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, 1215 21st Avenue South, Nashville, Tennessee 37232, USA
| |
Collapse
|
25
|
Salkim E, Zamani M, Jiang D, Saeed SR, Demosthenous A. Insertion Guidance Based on Impedance Measurements of a Cochlear Electrode Array. Front Comput Neurosci 2022; 16:862126. [PMID: 35814346 PMCID: PMC9260075 DOI: 10.3389/fncom.2022.862126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/18/2022] [Indexed: 11/30/2022] Open
Abstract
The cochlear implantable neuromodulator provides substantial auditory perception to those with severe or profound impaired hearing. Correct electrode array positioning in the cochlea is one of the important factors for quality hearing, and misplacement may lead to additional injury to the cochlea. Visual inspection of the progress of electrode insertion is limited and mainly relies on the surgeon's tactile skills, and there is a need to detect in real-time the electrode array position in the cochlea during insertion. The available clinical measurement presently provides very limited information. Impedance measurement may be used to assist with the insertion of the electrode array. Using computational modeling of the cochlea, and its local tissue layers merging with the associated neuromodulator electrode array parameters, the impedance variations at different insertion depths and the proximities to the cochlea walls have been analyzed. In this study, an anatomical computational model of the temporal region of a patient is used to derive the relationship between impedance variations and the electrode proximity to the cochlea wall and electrode insertion depth. The aim was to examine whether the use of electrode impedance variations can be an effective marker of electrode proximity and electrode insertion depth. The proposed anatomical model simulates the quasi-static electrode impedance variations at different selected points but at considerable computation cost. A much less computationally intensive geometric model (~1/30) provided comparative impedance measurements with differences of <2%. Both use finite element analysis over the entire cross-section area of the scala tympani. It is shown that the magnitude of the impedance varies with both electrode insertion depth and electrode proximity to the adjacent anatomical layers (e.g., cochlea wall). In particular, there is a 1,400% increase when the electrode array is moved very close to the cochlea wall. This may help the surgeon to find the optimal electrode position within the scala tympani by observation of such impedance characteristics. The misplacement of the electrode array within the scala tympani may be eliminated by using the impedance variation metric during electrode array insertion if the results are validated with an experimental study.
Collapse
Affiliation(s)
- Enver Salkim
- Department of Electronic and Electrical Engineering, University College London (UCL), London, United Kingdom
- Department of Electronic and Electrical Engineering, Biomedical Device Technology Group, Muş Alparslan University, Muş, Turkey
- *Correspondence: Enver Salkim
| | - Majid Zamani
- Department of Electronic and Electrical Engineering, University College London (UCL), London, United Kingdom
| | - Dai Jiang
- Department of Electronic and Electrical Engineering, University College London (UCL), London, United Kingdom
| | | | - Andreas Demosthenous
- Department of Electronic and Electrical Engineering, University College London (UCL), London, United Kingdom
| |
Collapse
|
26
|
High-speed flat-detector computed tomography for temporal bone imaging and postoperative control of cochlear implants. Neuroradiology 2022; 64:1437-1445. [PMID: 35410396 PMCID: PMC9177478 DOI: 10.1007/s00234-022-02940-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/03/2022] [Indexed: 10/30/2022]
Abstract
PURPOSE Flat-detector computed tomography (FD-CT) is the standard for cochlear implant (CI) imaging. FD-CT systems differ in technical characteristics. Our aim was an evaluation of two different FD-CT generations with different protocols and hardware regarding image quality, radiation dose, and scan time. METHODS Two temporal bone specimens (- / + CI = TB0/TB1) were scanned using three different scanners: two FD-CT systems with different scanning protocols (standard FD-CT: 20 s 70 kV, 20 s 109 kV; high-speed FD-CT [HS-FD-CT]: 7 s 109 kV, 9 s 109 kV, 14 s 72 kV) and MS-CT (5 s 120 kV). Acquired datasets were evaluated in consensus reading regarding qualitative and quantitative parameters: addressing CI- and cochlea-specific parameters, cochlea delineation, lamina spiralis ossea visibility, distinction of single CI electrodes, determination of intracochlear implant position, stapes delineation, and mastoidal septation were assessed. Addressing protocol-specific parameters, radiation dose (dose-length-product/DLP), and scan time were assessed. RESULTS Two HS-FD-CT protocols (14 s/9 s) provide higher or equivalent diagnostic information regarding CI- and cochlea-specific parameters compared to both standard FD-CT protocols. The fastest HS-FD-CT protocol (7 s)-providing inferior diagnostic information compared to all other FD-CT protocols-still exceeds MS-CT. The highest DLP was recorded for the 14 s HS-FD-CT protocol (TB1 = 956 mGycm); the lowest DLPs were recorded for the 7 s HS-FD-CT protocol (TB0 = 188 mGycm) and for MS-CT (TB0 = 138 mGycm), respectively. HS-FD-CT allows a significant reduction of scan time compared to standard FD-CT. CONCLUSION High-speed FD-CT improves visualization of temporal bone anatomy and postoperative assessment of CIs by combining excellent image quality, fast scan time, and reasonable radiation exposure.
Collapse
|
27
|
Best Fit 3D Basilar Membrane Reconstruction to Routinely Assess the Scalar Position of the Electrode Array after Cochlear Implantation. J Clin Med 2022; 11:jcm11082075. [PMID: 35456169 PMCID: PMC9030636 DOI: 10.3390/jcm11082075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 12/04/2022] Open
Abstract
The scalar position of the electrode array is assumed to be associated with auditory performance after cochlear implantation. We propose a new method that can be routinely applied in clinical practice to assess the position of an electrode array. Ten basilar membrane templates were generated using micro-computed tomography (micro-CT), based on the dimensions of 100 cochleae. Five surgeons were blinded to determine the position of the electrode array in 30 cadaveric cochleae. The procedure consisted of selecting the appropriate template based on cochlear dimensions, merging the electrode array reconstruction with the template using four landmarks, determining the position of the array according to the template position, and comparing the results obtained to histology data. The time taken to analyze each implanted cochlea was approximately 12 min. We found that, according to histology, surgeons were in almost perfect agreement when determining an electrode translocated to the scala vestibuli with the perimodiolar MidScala array (Fleiss’ kappa (κ) = 0.82), and in moderate agreement when using the lateral wall EVO array (κ = 0.42). Our data indicate that an adapted basilar membrane template can be used as a rapid and reproducible method to assess the position of the electrode array after cochlear implantation.
Collapse
|
28
|
Van de Heyning P, Roland P, Lassaletta L, Agrawal S, Atlas M, Baumgartner WD, Brown K, Caversaccio M, Dazert S, Gstoettner W, Hagen R, Hagr A, Jablonski GE, Kameswaran M, Kuzovkov V, Leinung M, Li Y, Loth A, Magele A, Mlynski R, Mueller J, Parnes L, Radeloff A, Raine C, Rajan G, Schmutzhard J, Skarzynski H, Skarzynski PH, Sprinzl G, Staecker H, Stöver T, Tavora-Viera D, Topsakal V, Usami SI, Van Rompaey V, Weiss NM, Wimmer W, Zernotti M, Gavilan J. Suitable Electrode Choice for Robotic-Assisted Cochlear Implant Surgery: A Systematic Literature Review of Manual Electrode Insertion Adverse Events. Front Surg 2022; 9:823219. [PMID: 35402479 PMCID: PMC8987358 DOI: 10.3389/fsurg.2022.823219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/09/2022] [Indexed: 12/05/2022] Open
Abstract
Background and Objective The cochlear implant (CI) electrode insertion process is a key step in CI surgery. One of the aims of advances in robotic-assisted CI surgery (RACIS) is to realize better cochlear structure preservation and to precisely control insertion. The aim of this literature review is to gain insight into electrode selection for RACIS by acquiring a thorough knowledge of electrode insertion and related complications from classic CI surgery involving a manual electrode insertion process. Methods A systematic electronic search of the literature was carried out using PubMed, Scopus, Cochrane, and Web of Science to find relevant literature on electrode tip fold over (ETFO), electrode scalar deviation (ESD), and electrode migration (EM) from both pre-shaped and straight electrode types. Results A total of 82 studies that include 8,603 ears implanted with a CI, i.e., pre-shaped (4,869) and straight electrodes (3,734), were evaluated. The rate of ETFO (25 studies, 2,335 ears), ESD (39 studies, 3,073 ears), and EM (18 studies, 3,195 ears) was determined. An incidence rate (±95% CI) of 5.38% (4.4-6.6%) of ETFO, 28.6% (26.6-30.6%) of ESD, and 0.53% (0.2-1.1%) of EM is associated with pre-shaped electrodes, whereas with straight electrodes it was 0.51% (0.1-1.3%), 11% (9.2-13.0%), and 3.2% (2.5-3.95%), respectively. The differences between the pre-shaped and straight electrode types are highly significant (p < 0.001). Laboratory experiments show evidence that robotic insertions of electrodes are less traumatic than manual insertions. The influence of round window (RW) vs. cochleostomy (Coch) was not assessed. Conclusion Considering the current electrode designs available and the reported incidence of insertion complications, the use of straight electrodes in RACIS and conventional CI surgery (and manual insertion) appears to be less traumatic to intracochlear structures compared with pre-shaped electrodes. However, EM of straight electrodes should be anticipated. RACIS has the potential to reduce these complications.
Collapse
Affiliation(s)
- Paul Van de Heyning
- Department of Otorhinolaryngology Head and Neck Surgery, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
- Department of Translational Neurosciences, University of Antwerp, Antwerp, Belgium
| | - Peter Roland
- Department of Otolaryngology, Head & Neck Surgery, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Luis Lassaletta
- Hospital Universitario La Paz, Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Sumit Agrawal
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, ON, Canada
| | - Marcus Atlas
- Ear Sciences Institute Australia, Lions Hearing Clinic, Perth, WA, Australia
| | | | - Kevin Brown
- UNC Ear and Hearing Center at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Marco Caversaccio
- Department for ENT, Head and Neck Surgery, Bern University Hospital, Bern, Switzerland
| | - Stefan Dazert
- Department of Otorhinolaryngology-Head and Neck Surgery, Ruhr-University Bochum, St. Elisabeth University Hospital Bochum, Bochum, Germany
| | | | - Rudolf Hagen
- Würzburg ENT University Hospital, Würzburg, Germany
| | - Abdulrahman Hagr
- King Abdullah Ear Specialist Center, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Greg Eigner Jablonski
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Otorhinolaryngology & Head and Neck Surgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | | | - Vladislav Kuzovkov
- St. Petersburg ENT and Speech Research Institute, St. Petersburg, Russia
| | - Martin Leinung
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Yongxin Li
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing, China
| | - Andreas Loth
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Astrid Magele
- Ear, Nose and Throat Department, University Clinic St. Poelten, Karl Landsteiner Private University, St. Poelten, Austria
| | - Robert Mlynski
- Department of Otorhinolaryngology, Head and Neck Surgery, “Otto Körner” Rostock University Medical Center, Rostock, Germany
| | - Joachim Mueller
- Klinik und Poliklinik für Hals-, Nasen- und Ohrenheilkunde, Ludwig-Maximilians-Universitat Munchen, Munchen, Germany
| | - Lorne Parnes
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, ON, Canada
| | - Andreas Radeloff
- Division of Oto-Rhino-Laryngology, Evangelisches Krankenhaus Oldenburg, Research Center of Neurosensory Sciences, University Oldenburg, Oldenburg, Germany
| | - Chris Raine
- Bradford Royal Infirmary Yorkshire Auditory Implant Center, Bradford, United Kingdom
| | - Gunesh Rajan
- Department of Otolaryngology, Head and Neck Surgery, Luzerner Kantonsspital, Luzern, Medical Sciences Department of Health Sciences and Medicine. University of Lucerne, Luzern, Switzerland. Otolaryngology, Head & Neck Surgery, Medical School University of Western Australia, Perth, WA, Australia
| | - Joachim Schmutzhard
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Henryk Skarzynski
- Department of Teleaudiology and Screening, World Hearing Center of the Institute of Physiology and Pathology of Hearing, Kajetany, Poland
| | - Piotr H. Skarzynski
- Department of Teleaudiology and Screening, World Hearing Center of the Institute of Physiology and Pathology of Hearing, Kajetany, Poland
| | - Georg Sprinzl
- Ear, Nose and Throat Department, University Clinic St. Poelten, Karl Landsteiner Private University, St. Poelten, Austria
| | - Hinrich Staecker
- Kansas University Center for Hearing and Balance Disorders, Kansas City, KS, United States
| | - Timo Stöver
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Frankfurt, Frankfurt am Main, Germany
| | | | - Vedat Topsakal
- Department of ENT HNS, University Hospital Brussels, Brussels, Belgium
| | - Shin-Ichi Usami
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, Nagano, Japan
| | - Vincent Van Rompaey
- Department of Otorhinolaryngology Head and Neck Surgery, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
- Department of Translational Neurosciences, University of Antwerp, Antwerp, Belgium
| | - Nora M. Weiss
- Department of Otorhinolaryngology-Head and Neck Surgery, Ruhr-University Bochum, St. Elisabeth University Hospital Bochum, Bochum, Germany
| | - Wilhelm Wimmer
- Department for ENT, Head and Neck Surgery, Bern University Hospital, Bern, Switzerland
| | - Mario Zernotti
- Catholic University of Córdoba and National University of Córdoba, Córdoba, Argentina
| | - Javier Gavilan
- Hospital Universitario La Paz, Institute for Health Research (IdiPAZ), Madrid, Spain
| |
Collapse
|
29
|
Visualization of Different Types of Cochlear Implants in Postoperative Cone-Beam CT Imaging. Acad Radiol 2022; 29 Suppl 3:S88-S97. [PMID: 33840600 DOI: 10.1016/j.acra.2021.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 02/11/2021] [Accepted: 02/23/2021] [Indexed: 11/20/2022]
Abstract
RATIONALE AND OBJECTIVES To evaluate cone-beam computed-tomography (CBCT) images of the temporal bone for radiological delineation, metal artifacts, and accuracy for localization of six different electrode arrays after cochlear device implantation. MATERIALS AND METHODS This retrospective study included 116 patients who underwent CBCT (120kV, 7.1mA) within 24 hours after cochlear device implantation. Exclusion criteria were anatomical abnormalities, and electrode misinsertion. Six different CI electrodes were implanted: Advanced Bionics HiFocus Mid-Scala, Cochlear Contour Advance, Cochlear Slim-Straight, Cochlear Slim-Modiolar, MED-EL Flex 24 and MED-EL Flex 28. Two radiologists rated independently presence of metal artifacts, overall image quality, as well as dedicated visualization of the osseous spiral lamina, inner and outer cochlear wall, single electrode contacts, and electrode position using 5-point-Likert scales. Inter-rater agreement was calculated by using Cohen's kappa and intraclass correlation. RESULTS Of 116 patients, 94 (81.0%; 56.1 ± 16.9 years; age range, 13-86 years; 49 [52.1%] females) were included in the study. Overall image quality was rated good for all electrode models without significant differences (p = 0.061). Depiction of electrode contacts was rated significantly better for Advanced Bionics HiFocus Mid-Scala, Cochlear Slim-Straight, and MED-EL Flex 24 and 28 compared to Cochlear Contour Advance and Slim-Modiolar (p < 0.001). Depiction of the osseous spiral lamina (p = 0.20), inner (p = 0.42) and outer cochlear wall (p = 0.35), metal artifacts (p = 0.18), and electrode position (p = 0.31) did not show significant differences between electrode models. Inter-rater agreement varied from substantial to almost perfect (0.70-0.93). CONCLUSION CBCT provides excellent visualization of all evaluated CI electrode types, in particular electrode arrays with greater spacing between contacts and contact size allow improved radiologic evaluation.
Collapse
|
30
|
Intracochlear New Fibro-Ossification and Neuronal Degeneration Following Cochlear Implant Electrode Translocation: Long-Term Histopathological Findings in Humans. Otol Neurotol 2022; 43:e153-e164. [PMID: 35015749 DOI: 10.1097/mao.0000000000003402] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE We aim to assess the histopathology of human temporal bones (TBs) with evidence of cochlear implantation (CI) electrode scalar translocation. STUDY DESIGN Otopathology study. SETTING Otopathology laboratory. PATIENTS TBs from patients who had a history of CI and histopathological evidence of interscalar translocation. Specimens with electrode placed entirely within the ST served as controls. INTERVENTION Histopathological assessment of human TBs. MAIN OUTCOME MEASURES TBs from each patient were harvested postmortem and histologically analyzed for intracochlear changes in the context of CI electrode translocation and compared to controls. Intracochlear new fibro-ossification, and spiral ganglion neuron (SGN) counts were assessed. Postoperative word recognition scores (WRS) were also compared. RESULTS Nineteen human TBs with electrode translocation and eight controls were identified. The most common site of translocation was the ascending limb of the basal turn (n = 14 TBs). The average angle of insertion at the point of translocation was 159° ± 79°. Eighteen translocated cases presented moderate fibroosseous changes in the basal region of the cochlea, extending to the translocation point and/or throughout the electrode track in 42%. Lower SGN counts were more pronounced in translocated cases compared to controls, with a significant difference for segment II (p = 0.019). Although final postoperative hearing outcomes were similar between groups, translocated cases had slower rate of improvement in WRS (p = 0.021). CONCLUSIONS Cochlear implant electrode translocation was associated with greater fibroosseous formation and lower SGN population. Our findings suggest that scalar translocations may slow the rate of improvement in WRS overtime as compared to atraumatic electrode insertions.Level of evidence: IV.
Collapse
|
31
|
Canfarotta MW, Dillon MT, Brown KD, Pillsbury HC, Dedmon MM, O'Connell BP. Insertion Depth and Cochlear Implant Speech Recognition Outcomes: A Comparative Study of 28- and 31.5-mm Lateral Wall Arrays. Otol Neurotol 2022; 43:183-189. [PMID: 34772886 PMCID: PMC8752482 DOI: 10.1097/mao.0000000000003416] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVES 1) To compare speech recognition outcomes between cochlear implant (CI) recipients of 28- and 31.5-mm lateral wall electrode arrays, and 2) to characterize the relationship between angular insertion depth (AID) and speech recognition. STUDY DESIGN Retrospective review. SETTING Tertiary academic referral center. PATIENTS Seventy-five adult CI recipients of fully inserted 28-mm (n = 28) or 31.5-mm (n = 47) lateral wall arrays listening with a CI-alone device. INTERVENTIONS Cochlear implantation with postoperative computed tomography. MAIN OUTCOME MEASURES Consonant-nucleus-consonant (CNC) word recognition assessed with the CI-alone at 12 months postactivation. RESULTS The mean AID of the most apical electrode contact for the 31.5-mm array recipients was significantly deeper than the 28-mm array recipients (628° vs 571°, p < 0.001). Following 12 months of listening experience, mean CNC word scores were significantly better for recipients of 31.5-mm arrays compared with those implanted with 28-mm arrays (59.5% vs 48.3%, p = 0.004; Cohen's d = 0.70; 95% CI [0.22, 1.18]). There was a significant positive correlation between AID and CNC word scores (r = 0.372, p = 0.001), with a plateau in performance observed around 600°. CONCLUSIONS Cochlear implant recipients implanted with a 31.5-mm array experienced better speech recognition than those with a 28-mm array at 12 months postactivation. Deeper insertion of a lateral wall array appears to confer speech recognition benefit up to ∼600°, with a plateau in performance observed thereafter. These data provide preliminary evidence of the insertion depth necessary to optimize speech recognition outcomes for lateral wall electrode arrays among CI-alone users.
Collapse
Affiliation(s)
- Michael W Canfarotta
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | | | | | | | | |
Collapse
|
32
|
Intracochlear electrode array position and cochlear implant outcomes using the nucleus slim modiolar electrode and the extended round window approach: a follow-up study. Eur Arch Otorhinolaryngol 2022; 279:4735-4743. [PMID: 35041067 PMCID: PMC9474433 DOI: 10.1007/s00405-021-07247-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/28/2021] [Indexed: 01/10/2023]
Abstract
PURPOSE The aim of this study was to evaluate the intracochlear position of the Slim Modiolar Electrode (SME) after insertion via the extended Round Window (eRW) approach, and to correlate this with residual hearing preservation and speech perception outcomes. METHODS Twenty-three adult participants, consecutively implanted with the SME via the eRW approach, were included in this prospective, single-center, observational study. Electrode position was evaluated intra-operatively using X-ray fluoroscopy and TIM measurement, and post-operatively using ultra-high resolution CT. Residual hearing [threshold shift in PTA between pre- and post-operative measurement, relative hearing preservation (RHP%)] and speech perception were evaluated at 2 and 12 months after surgery. RESULTS In each of the 23 participants, complete scala tympani positioning of the electrode array could be achieved. In one participant, an initial tip fold-over was corrected during surgery. Average age at implantation was 63.3 years (SD 13.3, range 28-76) and mean preoperative residual hearing was 81.5 dB. The average post-operative PTA threshold shift was 16.2 dB (SD 10.8) at 2 months post-operatively, corresponding with a RHP% score of 44% (SD 34.9). At 12 months, the average RHP% score decreased to 37%. Postoperative phoneme scores improved from 27.1% preoperatively, to 72.1% and 82.1% at 2 and 12 months after surgery, respectively. CONCLUSION Use of the eRW approach results in an increased likelihood of complete scala tympani insertion when inserting the SME, with subsequent excellent levels of speech perception. However, residual hearing preservation was found to be moderate, possibly as a result of the extended round window approach, emphasizing that it is not an all-purpose approach for inserting this particular electrode array.
Collapse
|
33
|
Horvath B, Perenyi A, Molnar FA, Nagy R, Csanady M, Kiss JG, Rovo L. A new method of preoperative assessment of correct electrode array alignment based on post-operative measurements in a cochlear implanted cohort. Eur Arch Otorhinolaryngol 2022; 279:5631-5638. [PMID: 35727414 PMCID: PMC9649508 DOI: 10.1007/s00405-022-07421-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/25/2022] [Indexed: 01/04/2023]
Abstract
PURPOSE During cochlear implantation surgery, a range of complications may occur such as tip fold-over. We recently developed a method to estimate the insertion orientation of the electrode array. The aim of the study was to determine the optimal angle of orientation in a cohort of cochlear implanted patients. METHODS On eighty-five CT scans (80 uncomplicated insertions and 5 cases with tip fold-over), location of the electrode array's Insertion Guide (IG), Orientation marker (OM) and two easily identifiable landmarks (the round window (RW) and the incus short process (ISP)) were manually marked. The angle enclosed by ISP-RW line and the Cochlear™ Slim Modiolar electrode array's OM line determined the electrode array insertion angle. RESULTS The average insertion angle was 45.0-47.2° ± 10.4-12° SD and was validated with 98% confidence interval. Based on the measurements obtained, patients' sex and age had no impact on the size of this angle. Although the angles of the tip fold-over cases (44.9°, 46.9°, 34.2°, 54.3°, 55.9°) fell within this average range, the further it diverted from the average it increased the likelihood for tip fold-over. CONCLUSION Electrode array insertion in the individually calculated angle relative to the visible incus short process provides a useful guide for the surgeon when aiming for the optimal angle, and potentially enhances good surgical outcomes. Our results show that factors other than the orientation angle may additionally contribute to failures in implantation when the Slim Modiolar electrode is used.
Collapse
Affiliation(s)
- Bence Horvath
- Doctoral School of Clinical Medicine, University of Szeged, Szeged, Hungary.
- Department of Oto-Rhino- Laryngology and Head- Neck Surgery, University of Szeged, Szeged, Hungary.
| | - Adam Perenyi
- Department of Oto-Rhino- Laryngology and Head- Neck Surgery, University of Szeged, Szeged, Hungary
| | | | - Roland Nagy
- Department of Oto-Rhino- Laryngology and Head- Neck Surgery, University of Szeged, Szeged, Hungary
| | - Miklos Csanady
- Department of Oto-Rhino- Laryngology and Head- Neck Surgery, University of Szeged, Szeged, Hungary
| | - Jozsef Geza Kiss
- Department of Oto-Rhino- Laryngology and Head- Neck Surgery, University of Szeged, Szeged, Hungary
| | - Laszlo Rovo
- Department of Oto-Rhino- Laryngology and Head- Neck Surgery, University of Szeged, Szeged, Hungary
| |
Collapse
|
34
|
Weltin A, Kieninger J, Urban GA, Buchholz S, Arndt S, Rosskothen-Kuhl N. Standard cochlear implants as electrochemical sensors: Intracochlear oxygen measurements in vivo. Biosens Bioelectron 2021; 199:113859. [PMID: 34911002 DOI: 10.1016/j.bios.2021.113859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/02/2022]
Abstract
Cochlear implants are the most successful neural prostheses worldwide and routinely restore sensorineural hearing loss by direct electrical stimulation of the auditory nerve. Enhancing this standard implant by chemical sensor functionality opens up new possibilities, ranging from access to the biochemical microenvironment of the implanted electrode array to the long-term study of the electrode status. We developed an electrochemical method to turn the platinum stimulation microelectrodes of cochlear implants into electrochemical sensors. The electrodes showed excellent and stable chemical sensor properties, as demonstrated by in vitro characterizations with combined amperometric and active potentiometric dissolved oxygen and hydrogen peroxide measurements. Linear, stable and highly reproducible sensor responses within the relevant concentration ranges with negligible offset were shown. This approach was successfully applied in vivo in an animal model. Intracochlear oxygen dynamics in rats upon breathing pure oxygen were reproducibly and precisely measured in real-time from the perilymph. At the same time, correct implant placement and its functionality was verified by measurements of electrically evoked auditory brainstem responses with clearly distinguishable peaks. Acute measurements indicated no adverse influence of electrical stimulation on electrochemical measurements and vice versa. Our work is ground-breaking towards advanced implant functionality, future implant lifetime monitoring, and implant-life-long in situ investigation of electrode degradation in cochlear implant patients.
Collapse
Affiliation(s)
- Andreas Weltin
- Laboratory for Sensors, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany; BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany.
| | - Jochen Kieninger
- Laboratory for Sensors, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany; BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany
| | - Gerald A Urban
- Laboratory for Sensors, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany; BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany
| | - Sarah Buchholz
- Department of Oto-Rhino-Laryngology, Section of Experimental and Clinical Otology, Neurobiological Research Laboratory, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Susan Arndt
- Department of Oto-Rhino-Laryngology, Section of Experimental and Clinical Otology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Nicole Rosskothen-Kuhl
- Department of Oto-Rhino-Laryngology, Section of Experimental and Clinical Otology, Neurobiological Research Laboratory, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.
| |
Collapse
|
35
|
Jwair S, Boerboom RA, Versnel H, Stokroos RJ, Thomeer HGXM. Evaluating cochlear insertion trauma and hearing preservation after cochlear implantation (CIPRES): a study protocol for a randomized single-blind controlled trial. Trials 2021; 22:895. [PMID: 34886884 PMCID: PMC8656003 DOI: 10.1186/s13063-021-05878-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/25/2021] [Indexed: 12/26/2022] Open
Abstract
Background In order to preserve residual hearing in patients with sensorineural hearing loss (SNHL) who receive a cochlear implant (CI), insertion trauma to the delicate structures of the cochlea needs to be minimized. The surgical approach comprises the conventional mastoidectomy-posterior tympanotomy (MPT) to arrive at the middle ear, followed by either a cochleostomy (CO) or the round window (RW) approach. Both techniques have their benefits and disadvantages. Another important aspect in structure preservation is the design of the electrode array. Two different designs are used: a “straight” lateral wall lying electrode array (LW) or a “pre-curved” perimodiolar lying electrode array (PM). Interestingly, until now, the best surgical approach and design of the implant is uncertain. Our hypothesis is that there is a difference in hearing preservation outcomes between the four possible treatment options. Methods We designed a monocenter, multi-arm, randomized controlled trial to compare insertion trauma between four groups of patients, with each group having a unique combination of an electrode array type (LW or PM) and surgical approach (RW or CO). In total, 48 patients will be randomized into one of these four intervention groups. Our primary objective is the comparison of postoperative hearing preservation between these four groups. Secondly, we aim to assess structure preservation (i.e., scalar translocation, with basilar membrane disruption or tip fold-over of array) for each group. Thirdly, we will compare objective outcomes of hearing and structure preservation by way of electrocochleography (ECochG). Discussion Cochlear implantation by way of a cochleostomy or round window approach, using different electrode array types, is the standard medical care for patients with severe to profound bilateral sensorineural hearing loss, as it is a relatively simple and low-risk procedure that greatly benefits patients. However, loss of residual hearing remains a problem. This trial is the first randomized controlled trial that evaluates the effect of cochlear insertion trauma of several CI treatment options on hearing preservation. Trial registration Netherlands Trial Register (NTR) NL8586. Registered on 4 May 2020. Retrospectively registered; 3/48 participants were included before registration. Supplementary Information The online version contains supplementary material available at 10.1186/s13063-021-05878-2.
Collapse
Affiliation(s)
- Saad Jwair
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, P.O. Box 85500, 3508, GA, Utrecht, the Netherlands. .,UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands.
| | - Ralf A Boerboom
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, P.O. Box 85500, 3508, GA, Utrecht, the Netherlands.,UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Huib Versnel
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, P.O. Box 85500, 3508, GA, Utrecht, the Netherlands.,UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Robert J Stokroos
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, P.O. Box 85500, 3508, GA, Utrecht, the Netherlands.,UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Hans G X M Thomeer
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, P.O. Box 85500, 3508, GA, Utrecht, the Netherlands.,UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
36
|
Implications of Phase Changes in Extracochlear Electrocochleographic Recordings During Cochlear Implantation. Otol Neurotol 2021; 43:e181-e190. [PMID: 34772884 DOI: 10.1097/mao.0000000000003414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To assess the prevalence and implications of phase changes in extracochlear electrocochleography (ECochG) recordings during cochlear implantation. MATERIALS AND METHODS Extracochlear ECochG recordings were performed before and after insertion of the cochlear implant (CI) electrode by a recording electrode placed on the promontory. Acoustic stimuli were tone bursts at 250, 500, 750, and 1,000 Hz. The pure tone average (PTA) was determined before and approximately 4 weeks after surgery. RESULTS Extracochlear ECochG recordings in 69 ears of 68 subjects were included. At 250 Hz, the mean phase change was 43° (n = 50, standard deviation (SD) 44°), at 500 Hz 36° (n = 64, SD 36°), at 750 Hz 33° (n = 42, SD 39°), and at 1,000 Hz 22° (n = 54, SD 27°). Overall, in 48 out of 210 ECochG recordings a phase change of ≥45° (23%) was detectable. Ears with an amplitude drop >3 dB and a phase change ≥45° (n = 3) had a complete or near complete loss of residual cochlear function in all cases. A phase change of ≥90° in one recording was not associated with a larger amplitude change of the ECochG signal (1.9 dB vs. -0.9 dB, p = 0.1052, n = 69), but with a significantly larger postoperative hearing loss (17 dB vs. 26 dB, p = 0.0156, n = 69). CONCLUSIONS Phase changes occur regularly in extracochlear ECochG recordings during cochlear implantation. Phase changes of ≥90° with or without amplitude changes in the ECochG signal are associated with a larger postoperative hearing loss and could therefore represent an independent marker for cochlear trauma or changes of inner ear mechanics relevant for the postoperative hearing outcome.
Collapse
|
37
|
Torres R, Daoudi H, Lahlou G, Sterkers O, Ferrary E, Mosnier I, Nguyen Y. Restoration of High Frequency Auditory Perception After Robot-Assisted or Manual Cochlear Implantation in Profoundly Deaf Adults Improves Speech Recognition. Front Surg 2021; 8:729736. [PMID: 34568420 PMCID: PMC8461256 DOI: 10.3389/fsurg.2021.729736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Purpose: Robot-assisted cochlear implantation has recently been implemented in clinical practice; however, its effect on hearing outcomes is unknown. The aim of this preliminary study was to evaluate hearing performance 1 year post-implantation whether the electrode array was inserted manually or assisted by a robot. Methods: Forty-two profoundly deaf adults were implanted either manually (n = 21) or assisted by a robot (RobOtol®, Collin, Bagneux, France) with three different electrode array types. Participants were paired by age, and electrode array type. The scalar position of the electrode array in the cochlea was assessed by 3D reconstruction from the pre- and post-implantation computed tomography. Pure-tone audiometry and speech perception in silence (percentage of disyllabic words at 60 dB) were tested on the implanted ear 1 year post-implantation in free-field conditions. The pure-tone average was calculated at 250–500–750 Hz, 500–1,000–2,000–3,000 Hz, and 3,000–4,000–8,000 Hz for low, mid, and high frequencies, respectively. Results: One year after cochlear implantation, restoration of the high-frequency thresholds was associated with better speech perception in silence, but not with low or mid frequencies (p < 0.0001; Adjusted R2 = 0.64, polynomial non-linear regression). Although array translocation was similar using either technique, the number of translocated electrodes was lower when the electrode arrays had been inserted with the assistance of the robot compared with manual insertion (p = 0.018; Fisher's exact test). Conclusion: The restoration of high-frequency thresholds (3,000–4,000–8,000 Hz) by cochlear implantation was associated with good speech perception in silence. The numbers of translocated electrodes were reduced after a robot-assisted insertion.
Collapse
Affiliation(s)
- Renato Torres
- Unité Fonctionnelle Implants Auditifs, Service Oto-Rhino-Laryngologie, AP-HP/Sorbonne Université, Paris, France.,Centre de Recherche en Audiologie Adulte, GHU Pitié-Salpêtrière/Fondation Pour l'Audition, AP-HP, Paris, France.,Technologies et Thérapie Génique Pour la Surdité, Institut de l'Audition, Institut Pasteur, INSERM, Paris, France.,Departamento de Ciencias Fisiológicas, Facultad de Medicina, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru
| | - Hannah Daoudi
- Unité Fonctionnelle Implants Auditifs, Service Oto-Rhino-Laryngologie, AP-HP/Sorbonne Université, Paris, France.,Centre de Recherche en Audiologie Adulte, GHU Pitié-Salpêtrière/Fondation Pour l'Audition, AP-HP, Paris, France.,Technologies et Thérapie Génique Pour la Surdité, Institut de l'Audition, Institut Pasteur, INSERM, Paris, France
| | - Ghizlene Lahlou
- Unité Fonctionnelle Implants Auditifs, Service Oto-Rhino-Laryngologie, AP-HP/Sorbonne Université, Paris, France.,Centre de Recherche en Audiologie Adulte, GHU Pitié-Salpêtrière/Fondation Pour l'Audition, AP-HP, Paris, France.,Technologies et Thérapie Génique Pour la Surdité, Institut de l'Audition, Institut Pasteur, INSERM, Paris, France
| | - Olivier Sterkers
- Unité Fonctionnelle Implants Auditifs, Service Oto-Rhino-Laryngologie, AP-HP/Sorbonne Université, Paris, France.,Centre de Recherche en Audiologie Adulte, GHU Pitié-Salpêtrière/Fondation Pour l'Audition, AP-HP, Paris, France.,Technologies et Thérapie Génique Pour la Surdité, Institut de l'Audition, Institut Pasteur, INSERM, Paris, France
| | - Evelyne Ferrary
- Unité Fonctionnelle Implants Auditifs, Service Oto-Rhino-Laryngologie, AP-HP/Sorbonne Université, Paris, France.,Centre de Recherche en Audiologie Adulte, GHU Pitié-Salpêtrière/Fondation Pour l'Audition, AP-HP, Paris, France.,Technologies et Thérapie Génique Pour la Surdité, Institut de l'Audition, Institut Pasteur, INSERM, Paris, France
| | - Isabelle Mosnier
- Unité Fonctionnelle Implants Auditifs, Service Oto-Rhino-Laryngologie, AP-HP/Sorbonne Université, Paris, France.,Centre de Recherche en Audiologie Adulte, GHU Pitié-Salpêtrière/Fondation Pour l'Audition, AP-HP, Paris, France.,Technologies et Thérapie Génique Pour la Surdité, Institut de l'Audition, Institut Pasteur, INSERM, Paris, France
| | - Yann Nguyen
- Unité Fonctionnelle Implants Auditifs, Service Oto-Rhino-Laryngologie, AP-HP/Sorbonne Université, Paris, France.,Centre de Recherche en Audiologie Adulte, GHU Pitié-Salpêtrière/Fondation Pour l'Audition, AP-HP, Paris, France.,Technologies et Thérapie Génique Pour la Surdité, Institut de l'Audition, Institut Pasteur, INSERM, Paris, France
| |
Collapse
|
38
|
MacPhail ME, Connell NT, Totten DJ, Gray MT, Pisoni D, Yates CW, Nelson RF. Speech Recognition Outcomes in Adults With Slim Straight and Slim Modiolar Cochlear Implant Electrode Arrays. Otolaryngol Head Neck Surg 2021; 166:943-950. [PMID: 34399646 DOI: 10.1177/01945998211036339] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To compare differences in audiologic outcomes between slim modiolar electrode (SME) CI532 and slim lateral wall electrode (SLW) CI522 cochlear implant recipients. STUDY DESIGN Retrospective cohort study. SETTING Tertiary academic hospital. METHODS Comparison of postoperative AzBio sentence scores in quiet (percentage correct) in adult cochlear implant recipients with SME or SLW matched for preoperative AzBio sentence scores in quiet and aided and unaided pure tone average. RESULTS Patients with SLW (n = 52) and patients with SME (n = 37) had a similar mean (SD) age (62.0 [18.2] vs 62.6 [14.6] years, respectively), mean preoperative aided pure tone average (55.9 [20.4] vs 58.1 [16.4] dB; P = .59), and mean AzBio score (percentage correct, 11.1% [13.3%] vs 8.0% [11.5%]; P = .25). At last follow-up (SLW vs SME, 9.0 [2.9] vs 9.9 [2.6] months), postoperative mean AzBio scores in quiet were not significantly different (percentage correct, 70.8% [21.3%] vs 65.6% [24.5%]; P = .29), and data log usage was similar (12.9 [4.0] vs 11.3 [4.1] hours; P = .07). In patients with preoperative AzBio <10% correct, the 6-month mean AzBio scores were significantly better with SLW than SME (percentage correct, 70.6% [22.9%] vs 53.9% [30.3%]; P = .02). The intraoperative tip rollover rate was 8% for SME and 0% for SLW. CONCLUSIONS Cochlear implantation with SLW and SME provides comparable improvement in audiologic functioning. SME does not exhibit superior speech recognition outcomes when compared with SLW.
Collapse
Affiliation(s)
| | - Nathan T Connell
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Douglas J Totten
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Mitchell T Gray
- School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - David Pisoni
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Charles W Yates
- School of Medicine, Indiana University, Indianapolis, Indiana, USA.,Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Rick F Nelson
- School of Medicine, Indiana University, Indianapolis, Indiana, USA.,Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
39
|
Abstract
Supplemental Digital Content is available in the text. The primary objective of this study is to identify the biographic, audiologic, and electrode position factors that influence speech perception performance in adult cochlear implant (CI) recipients implanted with a device from a single manufacturer. The secondary objective is to investigate the independent association of the type of electrode (precurved or straight) with speech perception.
Collapse
|
40
|
Liebscher T, Mewes A, Hoppe U, Hornung J, Brademann G, Hey M. Electrode Translocations in Perimodiolar Cochlear Implant Electrodes: Audiological and Electrophysiological Outcome. Z Med Phys 2021; 31:265-275. [DOI: 10.1016/j.zemedi.2020.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/16/2020] [Accepted: 05/05/2020] [Indexed: 10/24/2022]
|
41
|
Jia H, Pan J, Gu W, Tan H, Chen Y, Zhang Z, Jiang M, Li Y, Sterkers O, Wu H. Robot-Assisted Electrode Array Insertion Becomes Available in Pediatric Cochlear Implant Recipients: First Report and an Intra-Individual Study. Front Surg 2021; 8:695728. [PMID: 34307444 PMCID: PMC8294934 DOI: 10.3389/fsurg.2021.695728] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/02/2021] [Indexed: 11/28/2022] Open
Abstract
Background: As an advanced surgical technique to reduce trauma to the inner ear, robot-assisted electrode array (EA) insertion has been applied in adult cochlear implantation (CI) and was approved as a safe surgical procedure that could result in better outcomes. As the mastoid and temporal bones are generally smaller in children, which would increase the difficulty for robot-assisted manipulation, the clinical application of these systems for CI in children has not been reported. Given that the pediatric candidate is the main population, we aim to investigate the safety and reliability of robot-assisted techniques in pediatric cochlear implantation. Methods: Retrospective cohort study at a referral center in Shanghai including all patients of simultaneous bilateral CI with robotic assistance on one side (RobOtol® system, Collin ORL, Bagneux, France), and manual insertion on the other (same brand of EA and CI in both side), from December 2019 to June 2020. The surgical outcomes, radiological measurements (EA positioning, EA insertion depth, mastoidectomy size), and audiological outcomes (Behavior pure-tone audiometry) were evaluated. Results: Five infants (17.8 ± 13.5 months, ranging from 10 to 42 months) and an adult (39 years old) were enrolled in this study. Both perimodiolar and lateral wall EAs were included. The robot-assisted EA insertion was successfully performed in all cases, although the surgical zone in infants was about half the size in adults, and no difference was observed in mastoidectomy size between robot-assisted and manual insertion sides (p = 0.219). The insertion depths of EA with two techniques were similar (P = 0.583). The robot-assisted technique showed no scalar deviation, but scalar deviation occurred for one manually inserted pre-curved EA (16%). Early auditory performance was similar to both techniques. Conclusion: Robot-assisted technique for EA insertion is approved to be used safely and reliably in children, which is possible and potential for better scalar positioning and might improve long-term auditory outcome. Standard mastoidectomy size was enough for robot-assisted technique. This first study marks the arrival of the era of robotic CI for all ages.
Collapse
Affiliation(s)
- Huan Jia
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Jinxi Pan
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Wenxi Gu
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Haoyue Tan
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Ying Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Zhihua Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Mengda Jiang
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Li
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Olivier Sterkers
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,APHP, Groupe hospitalo-Universitaire Pitié Salpêtrière, Otorhinolaryngology Department, Unit of Otology, Auditory Implants and Skull Base Surgery, Paris, France
| | - Hao Wu
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| |
Collapse
|
42
|
Aebischer P, Mantokoudis G, Weder S, Anschuetz L, Caversaccio M, Wimmer W. In-Vitro Study of Speed and Alignment Angle in Cochlear Implant Electrode Array Insertions. IEEE Trans Biomed Eng 2021; 69:129-137. [PMID: 34110987 DOI: 10.1109/tbme.2021.3088232] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE The insertion of the electrode array is a critical step in cochlear implantation. Herein we comprehensively investigate the impact of the alignment angle and feed-forward speed on deep insertions in artificial scala tympani models with accurate macro-anatomy and controlled frictional properties. METHODS Motorized insertions (n=1033) were performed in six scala tympani models with varying speeds and alignment angles. We evaluated reaction forces and micrographs of the insertion process and developed a mathematical model to estimate the normal force distribution along the electrode arrays. RESULTS Insertions parallel to the cochlear base significantly reduce insertion energies and lead to smoother array movement. Non-constant insertion speeds allow to reduce insertion forces for a fixed total insertion time compared to a constant feed rate. CONCLUSION In cochlear implantation, smoothness and peak forces can be reduced with alignment angles parallel to the scala tympani centerline and with non-constant feed-forward speed profiles. SIGNIFICANCE Our results may help to provide clinical guidelines and improve surgical tools for manual and automated cochlear implantation.
Collapse
|
43
|
Lee J, Biggs K, Muzaffar J, Bance M, Monksfield P. Hearing loss in inner ear and systemic autoimmune disease: A systematic review of post-cochlear implantation outcomes. Laryngoscope Investig Otolaryngol 2021; 6:469-487. [PMID: 34195369 PMCID: PMC8223457 DOI: 10.1002/lio2.563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES To assess outcomes following cochlear implantation (CI) in patients with hearing loss secondary to primary or secondary autoimmune inner ear disease (AIED). METHODS A systematic review and narrative synthesis was completed according to PRISMA guidelines. Databases searched included MEDLINE, PubMed, EMBASE, Web of Science, Cochrane Collection, and ClinicalTrials.gov. No limits were placed on year of publication or language. RESULTS A total of 551 studies were identified, of which 29 were included after removal of duplicates, and screening the title, abstract, and full text. All except one study were OCEBM grade IV. 114 of 115 patients displayed improvement in hearing following cochlear implantation. With implant use, roughly a third of these patients had hearing that improved over time, a third improved and plateaued, and a third remained stable. There was no additional risk of perioperative complications found in AIED patients compared what is generally accepted in general cochlear implantation, although two episodes of device failure after 6 months were noted, and four patients with secondary AIED displayed poor initial audiological outcomes. CONCLUSION CI in both primary and secondary AIED provides marked improvement in hearing. Early CI may be a valid management option, provide long-lasting hearing in patients and reduce the side effects of long-term systemic immunosuppressants. However, patients should be counseled residual hearing may be lost if there is cochlear ossification or fibrosis which may make implant insertion more traumatic. LEVEL OF EVIDENCE NA.
Collapse
Affiliation(s)
| | - Kirsty Biggs
- University Hospitals of North MidlandsStoke‐on TrentUK
| | - Jameel Muzaffar
- University Hospitals Birmingham NHS Foundation TrustBirminghamUK
- University of CambridgeCambridgeUK
| | - Manohar Bance
- University of CambridgeCambridgeUK
- Cambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Peter Monksfield
- University Hospitals Birmingham NHS Foundation TrustBirminghamUK
| |
Collapse
|
44
|
Schvartz-Leyzac KC, Zwolan TA, Pfingst BE. Using the electrically-evoked compound action potential (ECAP) interphase gap effect to select electrode stimulation sites in cochlear implant users. Hear Res 2021; 406:108257. [PMID: 34020316 DOI: 10.1016/j.heares.2021.108257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/25/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
Studies in cochlear implanted animals show that the IPG Effect for ECAP growth functions (i.e., the magnitude of the change in ECAP amplitude growth function (AGF) slope or peak amplitude when the interphase gap (IPG) is increased) can be used to estimate the densities of spiral ganglion neurons (SGNs) near the electrode stimulation and recording sites. In humans, the same ECAP IPG Effect measures correlate with speech recognition performance. The present study examined the efficacy of selecting electrode sites for stimulation based on the IPG Effect, in order to improve performance of CI users on speech recognition tasks. We measured the ECAP IPG Effect for peak amplitude in adult (>18 years old) CI users (N= 18 ears), and created experimental programs to stimulate electrodes with either the highest or lowest ECAP IPG Effect for peak amplitude. Subjects also listened to a program without any electrodes deactivated. In a subset of subject ears (11/18), we compared performance differences between the experimental programs to post-operative computerized tomography (CT) scans to examine underlying factors that might contribute to the efficacy of an electrode site-selection approach. For sentences-in-noise, average performance was better when subjects listened to the experimental program that stimulated electrodes with the highest rather than the lowest IPG Effect for ECAP peak amplitude. A similar pattern was noted for transmission and perception of consonant place cues in a consonant recognition task. However, on average, performance when listening to a program with higher IPG Effect values was equal to that when listening with all electrodes activated. Results also suggest that scalar location (scala tympani or vestibuli) should be considered when using an ECAP-based electrode site-selection procedure to optimize CI performance.
Collapse
Affiliation(s)
- Kara C Schvartz-Leyzac
- Kresge Hearing Research Institute, Department of Otolaryngology, Michigan Medicine, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5616, United States; Hearing Rehabilitation Center, Department of Otolaryngology, Michigan Medicine, 475 W. Market Place, Building 1, Suite A, Ann Arbor, MI 48108, United States.
| | - Teresa A Zwolan
- Hearing Rehabilitation Center, Department of Otolaryngology, Michigan Medicine, 475 W. Market Place, Building 1, Suite A, Ann Arbor, MI 48108, United States
| | - Bryan E Pfingst
- Kresge Hearing Research Institute, Department of Otolaryngology, Michigan Medicine, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5616, United States
| |
Collapse
|
45
|
Abstract
OBJECTIVE To study the surgical results, intracochlear position of the electrode array (EA) and auditory performance of the LISTENT LCI-20PI cochlear implant device, and daily use status at 3 years. STUDY DESIGN A retrospective study. SETTING A single-tertiary referral center. PATIENTS Between January and December 2016, 20 patients underwent cochlear implantation using the LISTENT LCI-20PI (lateral wall EA). INTERVENTION Cochlear implantation. MAIN OUTCOME MEASURES Measurement of cochlear size, extent of posterior tympanotomy, and insertion depth. Scalar position of the EA evaluated by 3D reconstruction. Auditory outcomes 1 year after implantation and daily use status at 3 years. RESULTS EAs were completely inserted in all cases with an insertion depth of 288 ± 36.8 degrees. One year later, the average sentence recognition score (SRS) was 90 ± 21.7%. EA scalar location was analyzed in 18 patients. Thirteen EAs (72.2%) were fully inserted into the scala tympani (ST) and 5 (27.8%) had shifted from the ST to the scala vestibuli (SV). There was no statistically significant difference in cochlear size, extent of posterior tympanotomy, or insertion depth between these two groups. EAs inserted by cochleostomy had a higher chance of scalar shift than those inserted via the round window (60% vs 15.4%, p = 0.099). SRS at 1 year with full ST insertion was significantly better than in those with scalar shift (99 ± 1.3% vs 83 ± 16.5%, p = 0.002). Three years after implantation, 92% of patients were daily users and 46% were telephone users. CONCLUSIONS The LISTENT LCI-20PI provided accredited hearing rehabilitation with a short insertion depth. Full insertion into the ST was associated with better cochlear implantation outcomes.
Collapse
|
46
|
Robot-assisted Cochlear Implant Electrode Array Insertion in Adults: A Comparative Study With Manual Insertion. Otol Neurotol 2021; 42:e438-e444. [PMID: 33306661 DOI: 10.1097/mao.0000000000003002] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To describe the first cochlear array insertions using a robot-assisted technique, with different types of straight or precurved electrode arrays, compared with arrays manually inserted into the cochlea. STUDY DESIGN Retrospective review. SETTING Tertiary otologic center. PATIENTS Twenty cochlear implantations in the robot-assisted group and 40 in the manually inserted group. INTERVENTIONS Cochlear implantations using a robot-assisted technique (RobOtol) with straight (eight Cochlear CI522/622, and eight Advanced Bionics Hifocus Slim J) or precurved (four Advanced Bionics Hifocus Mid-Scala) matched to manual cochlear implantations. Three-dimensional reconstruction images of the basilar membrane and the electrode array were obtained from pre- and postimplantation computed tomography. MAIN OUTCOME MEASURES Rate and localization of scalar translocations. RESULTS For straight electrode arrays, scalar translocations occurred in 19% (3/16) of the robot-assisted group and 31% (10/32) of the manually inserted group. Considering the number of translocated electrodes, this was lower in the robot-assisted group (7%) than in the manually inserted group (16%) (p < 0.0001, χ2 test). For precurved electrode arrays, scalar translocations occurred in 50% (2/4) of the robot-assisted group and 38% (3/8) of the manually inserted group. CONCLUSION This study showed a safe and reliable insertion of different electrode array types with a robot-assisted technique, with a less traumatic robotic insertion of straight electrode arrays when compared with manual insertion.
Collapse
|
47
|
Slim, Modiolar Cochlear Implant Electrode: Melbourne Experience and Comparison With the Contour Perimodiolar Electrode. Otol Neurotol 2021; 41:639-643. [PMID: 32150026 DOI: 10.1097/mao.0000000000002617] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To describe the tip fold over rate, scalar localization, and speech perception outcomes of the CI532 Slim Modiolar Electrode. PATIENTS AND INTERVENTION All patients receiving the CI532 implant before June 2018. MAIN OUTCOME MEASURES Outcome measures for adults patients include pre- and postoperative speech perception, operative report details, electrode position as determined by X-ray and cone beam computed tomography. Comparison made with previous experience with the Contour perimodiolar electrode (CI512). In the pediatric population tip fold-over rate, measured by intraoperative X-ray, was the exclusive outcome. RESULTS One hundred twenty-five CI532 devices were implanted in adults and 69 in children. Electrode tip fold-over occurred in eight adults cases and none among children (4.1%). Cone beam CT scans of 120 out of 125 adult patients confirmed scala tympani (ST) position in all but one case where the electrode had been placed into scala vestibuli. There were no translocations from ST to scala vestibuli. This compares favorably with the CI512 translocation rate of 17%. Speech perception outcomes demonstrated good performance with mean preop phoneme scores of 16.2% (±13) increasing to 64.2% (±14) and 71.6 (±16) 3 and 12-months postop, respectively. Compared with a matched group of CI512 recipients, CI532 recipient phoneme scores were significantly higher 3 and 12-months postop by 4 and 7%, respectively. CONCLUSION The slim modiolar, CI532 electrode has provided very reliable ST position with a low rate of tip fold over. A trend toward better speech perception scores in CI532 compared with CI512 was observed.
Collapse
|
48
|
Audiologic Outcomes of Cochlear Implantation in Cochlear Malformations: A Comparative Analysis of Lateral Wall and Perimodiolar Electrode Arrays. Otol Neurotol 2021; 41:e1201-e1206. [PMID: 33433084 DOI: 10.1097/mao.0000000000002833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Cochlear implantation in children with inner ear malformations has been shown to be beneficial. The aims of this study are to evaluate open set word recognition outcomes among children with cochlear implants who have cochlear malformations, and to further assess if either the lateral wall (LW) or perimodiolar (PM) electrode arrays confer any performance outcome advantages. STUDY DESIGN Retrospective case series. SETTING Tertiary referral center. PATIENTS Pediatric cochlear implant recipients with cochlear malformations who were implanted at our institution within the last 10 years and had speech perception scores were eligible for inclusion in the study. Potential participants were excluded if they had less than 1 year of listening experience with the cochlear implant or suspected cochlear nerve deficiency. INTERVENTION None. MAIN OUTCOME MEASURE Most recent consonant-nucleus-consonant word score. RESULTS ANOVA analysis demonstrated that the type of cochlear malformation was significantly associated with speech perception outcome (p = 0.006). Those with IP2 malformations had significantly better word recognition outcomes than the remaining cochlear malformations. Array type (LW or PM) was not associated with better word recognition outcomes in long-term follow-up of patients with IP2 malformations (p = 0.13). CONCLUSIONS In children who have cochlear malformations, cochlear implantation results in varying word recognition outcomes based on the type of malformation. While the participants in this study demonstrated postoperative open set word recognition skills, those with IP2 malformations demonstrated the most benefit. Electrode type was not found to significantly impact outcomes in this cohort.
Collapse
|
49
|
Abstract
OBJECTIVE The intracochlear position of an electrode array may influence the outcome after cochlear implantation. The design of the electrode array can increase the risk of trauma causing penetration of the basilar membrane or shift of the electrode array into the scala vestibuli. The aim of the present study was to identify a scalar shift after implantation of two different electrode arrays developed by one manufacturer. STUDY DESIGN Retrospective analysis. SETTING Tertiary referral center. PATIENTS AND INTERVENTION Cochlear implant recipients implanted between 2010 and 2014 and receiving either a mid-scala (n = 30) or a perimodiolar (n = 30) electrode array. MAIN OUTCOME MEASURE Occurrence of scalar shift in association with the electrode type. RESULTS Scalar shift occurred in 26.7% (8 of 30) of the patients implanted with a perimodiolar electrode array and in 6.7% (2 of 30) of the patients implanted with the mid-scala electrode array. The mean insertion depth in the patients experiencing scalar shift after implantation of the mid-scala electrode was much deeper (21.59 ± 0.34 mm) when compared with the mean insertion depth of the patients with scalar shift after implantation with a perimodiolar electrode array (17.85 ± 2.19 mm). There tends to be a correlation between the cochlear length and the occurrence of a scalar shift. However, the number of patients with scalar shift in the mid-scala group is rather small. CONCLUSION Based on the presented data, more patients implanted with a perimodiolar electrode array have a scalar shift when compared with the midscalar electrode array.
Collapse
|
50
|
Rupp R, Hornung J, Balk M, Sievert M, Müller S, Hoppe U, Iro H, Gostian AO. Cochlear Implantation Following Explorative Tympanotomy in Patients With Sudden Sensorineural Hearing Loss: Surgical Features and Audiological Outcomes. EAR, NOSE & THROAT JOURNAL 2021; 102:NP277-NP283. [PMID: 33848205 DOI: 10.1177/01455613211009141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate the anatomical status of the round window niche and hearing outcome of cochlear implantation (CI) after explorative tympanotomy (ExT) with sealing of the round window membrane in patients with sudden sensorineural hearing loss at a tertiary referral medical center. METHODS Between January 1, 2007, and July 30, 2020, 1602 patients underwent CI at our department. Out of these, all patients previously treated by ExT with sealing of the round window membrane because of unilateral sudden hearing loss were included in the study. A retrospective chart review was conducted concerning method of round window membrane sealing, intraoperative findings during CI, postoperative imaging, and hearing results. RESULTS Twenty one patients (9 females; 8 right ears; 54.3 years [± 12.9 years]) underwent ExT with sealing of the round window membrane with subsequent CI after 26.6 months (± 32.9 mo) on average. During CI, in 76% of cases (n = 16), the round window niche was blocked by connective tissue due to the previous intervention but could be removed completely in all cases. The connective tissue itself and its removal had no detrimental effects on the round window membrane. Postoperative computed tomography scan showed no electrode dislocation. Mean postoperative word recognition score after 3 months was 57.4% (± 17.2%) and improved significantly to 73.1% (± 16.4%, P = .005) after 2 years. CONCLUSION Performing CI after preceding ExT, connective tissue has to be expected blocking the round window niche. Remaining tissue can be removed safely and does not alter the round window membrane allowing for a proper electrode insertion. Short- and long-term hearing results are satisfactory. Consequently, ExT with sealing of the round window membrane in patients with sudden sensorineural hearing loss does not impede subsequent CI that can still be performed safely.
Collapse
Affiliation(s)
- Robin Rupp
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty, 9171Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Joachim Hornung
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty, 9171Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Matthias Balk
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty, 9171Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Matti Sievert
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty, 9171Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sarina Müller
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty, 9171Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ulrich Hoppe
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty, 9171Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Heinrich Iro
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty, 9171Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Antoniu-Oreste Gostian
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty, 9171Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|