1
|
Pallod S, Fuller G, Chowdhury T, Rege K. Gold nanobipyramids-based laser-activated sealants for effective skin sealing and repair. Int J Hyperthermia 2024; 41:2301035. [PMID: 38318887 DOI: 10.1080/02656736.2023.2301035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/27/2023] [Indexed: 02/07/2024] Open
Abstract
Anisotropic gold nanostructures have gained increased attention for biomedical applications because of their remarkable optical properties. An emerging type of gold nanostructure-gold nanobipyramids (AuNBP)-has been shown to exhibit superior absorption properties compared to conventionally used gold nanoparticles, which makes them attractive for photothermal applications. We generated a high-shape-purity dispersion of AuNBP using a seed-mediated method and embedded them as photothermal conversion agents in a silk fibroin matrix to investigate their efficacy in photothermal sealing of incisional wounds in immunocompetent mice. These AuNBP-doped laser-activated sealants, or AuNBP-LASE were able to absorb near-infrared laser energy and convert it to heat, thereby inducing transient hyperthermia in the wound and the surrounding tissue. This photothermal conversion facilitated rapid sealing of the skin tissue by the AuNBP-LASE, which resulted in faster functional recovery of skin barrier function compared to nylon sutures at the early stages of repair. Further, the biomechanical properties of the healing skin closed with AuNBP-LASE those of intact skin more rapidly compared to incisions approximated with sutures. Histology studies indicated higher penetration of the LASE within the volume of the incision in skin tissue, lower scab formation, and a similar epidermal gap compared to conventional suturing. These results demonstrate that AuNBP-LASEs can be effective as wound approximation devices for photothermal sealing.
Collapse
Affiliation(s)
- Shubham Pallod
- Center for Biomaterials Innovation and Translation, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- Biological Design Graduate Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Gareth Fuller
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Trishita Chowdhury
- Center for Biomaterials Innovation and Translation, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Kaushal Rege
- Center for Biomaterials Innovation and Translation, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- Biological Design Graduate Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
2
|
Dong J, Breitenborn H, Piccoli R, Besteiro LV, You P, Caraffini D, Wang ZM, Govorov AO, Naccache R, Vetrone F, Razzari L, Morandotti R. Terahertz three-dimensional monitoring of nanoparticle-assisted laser tissue soldering. BIOMEDICAL OPTICS EXPRESS 2020; 11:2254-2267. [PMID: 32341881 PMCID: PMC7173899 DOI: 10.1364/boe.389561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 05/27/2023]
Abstract
In view of minimally-invasive clinical interventions, laser tissue soldering assisted by plasmonic nanoparticles is emerging as an appealing concept in surgical medicine, holding the promise of surgeries without sutures. Rigorous monitoring of the plasmonically-heated solder and the underlying tissue is crucial for optimizing the soldering bonding strength and minimizing the photothermal damage. To this end, we propose a non-invasive, non-contact, and non-ionizing modality for monitoring nanoparticle-assisted laser-tissue interaction and visualizing the localized photothermal damage, by taking advantage of the unique sensitivity of terahertz radiation to the hydration level of biological tissue. We demonstrate that terahertz radiation can be employed as a versatile tool to reveal the thermally-affected evolution in tissue, and to quantitatively characterize the photothermal damage induced by nanoparticle-assisted laser tissue soldering in three dimensions. Our approach can be easily extended and applied across a broad range of clinical applications involving laser-tissue interaction, such as laser ablation and photothermal therapies.
Collapse
Affiliation(s)
- Junliang Dong
- Institut National de la Recherche Scientifique (INRS), Centre Énergie, Matériaux et Télécommunications (EMT), Varennes, QC J3X 1S2, Canada
| | - Holger Breitenborn
- Institut National de la Recherche Scientifique (INRS), Centre Énergie, Matériaux et Télécommunications (EMT), Varennes, QC J3X 1S2, Canada
| | - Riccardo Piccoli
- Institut National de la Recherche Scientifique (INRS), Centre Énergie, Matériaux et Télécommunications (EMT), Varennes, QC J3X 1S2, Canada
| | - Lucas V Besteiro
- Institut National de la Recherche Scientifique (INRS), Centre Énergie, Matériaux et Télécommunications (EMT), Varennes, QC J3X 1S2, Canada
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Pei You
- Institut National de la Recherche Scientifique (INRS), Centre Énergie, Matériaux et Télécommunications (EMT), Varennes, QC J3X 1S2, Canada
| | - Diego Caraffini
- Institut National de la Recherche Scientifique (INRS), Centre Énergie, Matériaux et Télécommunications (EMT), Varennes, QC J3X 1S2, Canada
| | - Zhiming M Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Alexander O Govorov
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
- Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, USA
| | - Rafik Naccache
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, Montreal, QC H4B 1R6, Canada
- Quebec Centre for Advanced Materials, Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Fiorenzo Vetrone
- Institut National de la Recherche Scientifique (INRS), Centre Énergie, Matériaux et Télécommunications (EMT), Varennes, QC J3X 1S2, Canada
| | - Luca Razzari
- Institut National de la Recherche Scientifique (INRS), Centre Énergie, Matériaux et Télécommunications (EMT), Varennes, QC J3X 1S2, Canada
| | - Roberto Morandotti
- Institut National de la Recherche Scientifique (INRS), Centre Énergie, Matériaux et Télécommunications (EMT), Varennes, QC J3X 1S2, Canada
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| |
Collapse
|
3
|
Ignatieva N, Zakharkina O, Dadasheva A, Shekhter A, Sviridov A, Lunin V. Transformation of the dermal collagen framework under laser heating. JOURNAL OF BIOPHOTONICS 2019; 12:e201960024. [PMID: 31454461 DOI: 10.1002/jbio.201960024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/10/2019] [Accepted: 08/25/2019] [Indexed: 06/10/2023]
Abstract
The aim of this study was to compare between the changes undergone by the dermal collagen framework when heated by IR laser radiation and by traditional means and to reveal the specific features of the dermal matrix modification under moderate IR laser irradiation. Rabbit skin specimens were heated to 50°C, 55°C, 60°C and 65°C in a calorimeter furnace and with a 1.68-μm fiber Raman laser. The proportion of the degraded collagen macromolecules was determined by differential scanning calorimetry. Changes in the architectonics of the collagen framework were revealed by using standard, phase-contrast, polarization optical and scanning electron microscopy techniques. The collagen denaturation and dermal matrix amorphization temperature in the case of laser heating proved to be lower by 10°C than that for heating in the calorimeter furnace. The IR laser treatment of the skin was found to cause a specific low-temperature (45°C-50°C) transformation of its collagen framework, with some collagen macromolecules remaining intact. The transformation reduces to the splitting of collagen bundles and distortion of the course of collagen fibers. The denaturation of collagen macromolecules in the case of traditional heating takes its course in a threshold manner, so that their pre-denaturation morphological changes are insignificant.
Collapse
Affiliation(s)
| | - Olga Zakharkina
- Institute of Photon Technologies, Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Moscow, Russian Federation
| | - Aygun Dadasheva
- Department of Chemistry, Lomonosov Moscow State University, Baku Branch, Baku, Azerbaijan
| | - Anatoly Shekhter
- Institute for Regenerative Medicine, I M Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Alexander Sviridov
- Institute of Photon Technologies, Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Moscow, Russian Federation
| | - Valery Lunin
- Lomonosov Moscow State University, Moskva, Russian Federation
| |
Collapse
|
4
|
Liu J, Li Z, Li J, Liu Z. Application of benzonase in preparation of decellularized lamellar porcine corneal stroma for lamellar keratoplasty. J Biomed Mater Res A 2019; 107:2547-2555. [PMID: 31330094 PMCID: PMC6771539 DOI: 10.1002/jbm.a.36760] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 11/10/2022]
Abstract
This study was to develop anovel and efficient method using endonuclease (benzonase) to preparedecellularized lamellar porcine corneal stroma (DLPCS). The DLPCS was preparedfrom native lamellar porcine corneal stroma (NLPCS) and was treated with 1000 U/ml benzonase for 5hours. We conducted the following measurements and animal transplantation tocompare DLPCS and NLPCS. The residual DNA was decreased significantly from 367.13 ± 19.96 ng/mg to 15.41 ± 0.65 ng/mg after treatment of benzonase by the detection of fluorescentnucleic acid stain. The residual benzonase was also less than detection limit.There was no significant difference in light transmittance of DLPCS comparedwith NLPCS. The extracts of DLPCS did not inhibit cell proliferation of human cornealepithelial cells, mouse fibroblast (L‐929) and African green monkey kidney cell(Vero cell). The DLPCS was transplanted into the corneas of rabbit by lamellarkeratoplasty. There was no corneal melting and graft rejection been observedwithin 12 months. The images demonstrated that the repairment of corneal nervesand keratocytes of DLPCS were in indentical shape and reflection compared withnormal cornea, and no obvious inflammatory cells were observed postoperation, byin vivo confocal microscopy. We provided novel evidence that the application ofbenzonase may improve the quality of DLPCS.
Collapse
Affiliation(s)
- Jing Liu
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University; College of Medicine, Xiamen University, Xiamen, Fujian Province, China
| | - Zhihan Li
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University; College of Medicine, Xiamen University, Xiamen, Fujian Province, China
| | - Jie Li
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University; College of Medicine, Xiamen University, Xiamen, Fujian Province, China
| | - Zuguo Liu
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University; College of Medicine, Xiamen University, Xiamen, Fujian Province, China.,Xiang'an Hospital of Xiamen University.,Xiamen Eye Center of Xiamen University
| |
Collapse
|
5
|
Kramer EA, Rentschler ME. Energy-Based Tissue Fusion for Sutureless Closure: Applications, Mechanisms, and Potential for Functional Recovery. Annu Rev Biomed Eng 2019; 20:1-20. [PMID: 29865874 DOI: 10.1146/annurev-bioeng-071516-044702] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
As minimally invasive surgical techniques progress, the demand for efficient, reliable methods for vascular ligation and tissue closure becomes pronounced. The surgical advantages of energy-based vessel sealing exceed those of traditional, compression-based ligatures in procedures sensitive to duration, foreign bodies, and recovery time alike. Although the use of energy-based devices to seal or transect vasculature and connective tissue bundles is widespread, the breadth of heating strategies and energy dosimetry used across devices underscores an uncertainty as to the molecular nature of the sealing mechanism and induced tissue effect. Furthermore, energy-based techniques exhibit promise for the closure and functional repair of soft and connective tissues in the nervous, enteral, and dermal tissue domains. A constitutive theory of molecular bonding forces that arise in response to supraphysiological temperatures is required in order to optimize and progress the use of energy-based tissue fusion. While rapid tissue bonding has been suggested to arise from dehydration, dipole interactions, molecular cross-links, or the coagulation of cellular proteins, long-term functional tissue repair across fusion boundaries requires that the reaction to thermal damage be tailored to catalyze the onset of biological healing and remodeling. In this review, we compile and contrast findings from published thermal fusion research in an effort to encourage a molecular approach to characterization of the prevalent and promising energy-based tissue bond.
Collapse
Affiliation(s)
- Eric A Kramer
- Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA;
| | - Mark E Rentschler
- Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA; .,Departments of Surgery and Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| |
Collapse
|
6
|
Ghosh D, Urie R, Chang A, Nitiyanandan R, Lee JK, Kilbourne J, Rege K. Light-Activated Tissue-Integrating Sutures as Surgical Nanodevices. Adv Healthc Mater 2019; 8:e1900084. [PMID: 31066511 PMCID: PMC9617568 DOI: 10.1002/adhm.201900084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/26/2019] [Indexed: 01/13/2023]
Abstract
Sutures are typically the primary means of soft tissue repair in surgery and trauma. Despite their widespread use, sutures do not result in immediate sealing of approximated tissues, which can result in bacterial infection and leakage. Nonabsorbable sutures and staples can be traumatic to tissue, and the trauma can be exacerbated by their subsequent removal. Use of cyanoacrylate glues is limited because of their brittleness and toxicity. In this work, laser-activated tissue-integrating sutures (LATIS) are described as novel nanodevices for soft tissue approximation and repair. Incorporation of gold nanorods within fibers generated from collagen result in LATIS fibers which demonstrate robust photothermal responses following irradiation with near infrared laser light. Compared to conventional sutures, LATIS fibers result in greater biomechanical recovery of incised skin in a mouse model of skin closure after spine surgeries. Histopathology analyses show improved repair of the epidermal gap in skin, which indicate faster tissue recovery using LATIS. The studies indicate that LATIS-facilitated approximation of skin in live mice synergizes the benefits of conventional suturing and laser-activated tissue integration, resulting in new approaches for faster sealing, tissue repair, and healing.
Collapse
Affiliation(s)
- Deepanjan Ghosh
- Biological Design, Arizona State University, Tempe, AZ 85287, USA
| | - Russell Urie
- Chemical Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Andy Chang
- Chemical Engineering, Arizona State University, Tempe, AZ 85287, USA
| | | | - Jung Keun Lee
- Diagnostic Pathology Center, College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Jacquelyn Kilbourne
- Department of Animal Care and Technologies (DACT), Arizona State University, Tempe, AZ 85287, USA
| | - Kaushal Rege
- Biological Design, Arizona State University, Tempe, AZ 85287, USA
- Chemical Engineering, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
7
|
Trujillo-de Santiago G, Sharifi R, Yue K, Sani ES, Kashaf SS, Alvarez MM, Leijten J, Khademhosseini A, Dana R, Annabi N. Ocular adhesives: Design, chemistry, crosslinking mechanisms, and applications. Biomaterials 2019; 197:345-367. [PMID: 30690421 PMCID: PMC6687460 DOI: 10.1016/j.biomaterials.2019.01.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/16/2018] [Accepted: 01/05/2019] [Indexed: 12/12/2022]
Abstract
Closure of ocular wounds after an accident or surgery is typically performed by suturing, which is associated with numerous potential complications, including suture breakage, inflammation, secondary neovascularization, erosion to the surface and secondary infection, and astigmatism; for example, more than half of post-corneal transplant infections are due to suture related complications. Tissue adhesives provide promising substitutes for sutures in ophthalmic surgery. Ocular adhesives are not only intended to address the shortcomings of sutures, but also designed to be easy to use, and can potentially minimize post-operative complications. Herein, recent progress in the design, synthesis, and application of ocular adhesives, along with their advantages, limitations, and potential are discussed. This review covers two main classes of ocular adhesives: (1) synthetic adhesives based on cyanoacrylates, polyethylene glycol (PEG), and other synthetic polymers, and (2) adhesives based on naturally derived polymers, such as proteins and polysaccharides. In addition, different technologies to cover and protect ocular wounds such as contact bandage lenses, contact lenses coupled with novel technologies, and decellularized corneas are discussed. Continued advances in this area can help improve both patient satisfaction and clinical outcomes.
Collapse
Affiliation(s)
- Grissel Trujillo-de Santiago
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA; Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02139, MA, USA; Microsystems Technologies Laboratories, MIT, Cambridge, 02139, MA, USA; Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, NL 64849, Mexico
| | - Roholah Sharifi
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA; Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02139, MA, USA
| | - Kan Yue
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA; Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02139, MA, USA
| | - Ehsan Shrizaei Sani
- Chemical and Biomolecular Engineering Department, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Sara Saheb Kashaf
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA; Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02139, MA, USA
| | - Mario Moisés Alvarez
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA; Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02139, MA, USA; Microsystems Technologies Laboratories, MIT, Cambridge, 02139, MA, USA; Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, NL 64849, Mexico
| | - Jeroen Leijten
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA; Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02139, MA, USA; Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medicine, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
| | - Ali Khademhosseini
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA; Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02139, MA, USA; Chemical and Biomolecular Engineering Department, University of California - Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California - Los Angeles, Los Angeles, CA 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, CA 90095, USA; Department of Radiology, David Geffen School of Medicine, University of California - Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90095, USA
| | - Reza Dana
- Massachusetts Eye and Ear Infirmary and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Nasim Annabi
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA; Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02139, MA, USA; Chemical and Biomolecular Engineering Department, University of California - Los Angeles, Los Angeles, CA 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
8
|
Urie R, Guo C, Ghosh D, Thelakkaden M, Wong V, Lee JK, Kilbourne J, Yarger J, Rege K. Rapid Soft Tissue Approximation and Repair using Laser-activated Silk Nanosealants. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1802874. [PMID: 37138942 PMCID: PMC10153584 DOI: 10.1002/adfm.201802874] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Tissue approximation and repair have been conventionally performed with sutures and staples, but these means are inherently traumatic. Tissue approximation using laser-responsive nanomaterials can lead to rapid tissue sealing and repair, and is an attractive alternative to existing clinical methods. Here, we demonstrate the use of laser-activated nanosealants (LANS) with gold nanorods (GNRs) embedded in silk fibroin polypeptide matrices. The adaptability of LANS for sealing soft tissues is demonstrated using two different modalities: insoluble thin films for internal, intestinal tissue repair, and semi-soluble pastes for external repair, shown by skin repair in live mice. Laser repaired intestinal tissue held over seven times more fluid pressure than sutured intestine and also prevented bacterial leakage. Skin incisions in mice closed using LANS' showed indication of increased mechanical strength and faster repair compared to suturing. Laser-activated silk-GNR nanosealants rapidly seal soft-tissue tears and show high promise for tissue approximation and repair in trauma and routine surgery.
Collapse
Affiliation(s)
- Russell Urie
- Chemical Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Chengchen Guo
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Deepanjan Ghosh
- Biological Design, Arizona State University, Tempe, AZ 85287, USA
| | - Mitzi Thelakkaden
- Harrington Biomedical Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Valerie Wong
- College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Jung Keun Lee
- College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Jacquelyn Kilbourne
- Department of Animal Care Technologies, Arizona State University, Tempe, AZ 85287, USA
| | - Jeffery Yarger
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Kaushal Rege
- Chemical Engineering, Arizona State University, Tempe, AZ 85287, USA
- To whom all correspondence should be addressed Prof. Kaushal Rege, Chemical Engineering, 501 E. Tyler Mall, ECG 303, Arizona State University, Tempe, AZ 85287-6106 USA, , Phone: (480)-727-8616, Fax: 480-727-9321
| |
Collapse
|
9
|
Mushaben M, Urie R, Flake T, Jaffe M, Rege K, Heys J. Spatiotemporal modeling of laser tissue soldering using photothermal nanocomposites. Lasers Surg Med 2018; 50:143-152. [PMID: 28990678 PMCID: PMC5820132 DOI: 10.1002/lsm.22746] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2017] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Laser tissue soldering using photothermal solders is a technology that facilitates rapid sealing using heat-induced changes in the tissue and the solder material. The solder material is made of gold nanorods embedded in a protein matrix patch that can be placed over the tissue rupture site and heated with a laser. Although laser tissue soldering is an attractive approach for surgical repair, potential photothermal damage can limit the success of this approach. Development of predictive mathematical models of photothermal effects including cell death, can lead to more efficient approaches in laser-based tissue repair. METHODS We describe an experimental and modeling investigation into photothermal solder patches for sealing porcine and mouse cadaver intestine sections using near-infrared laser irradiation. Spatiotemporal changes in temperature were determined at the surface as well as various depths below the patch. A mathematical model, based on the finite element method, predicts the spatiotemporal temperature distribution in the patch and surrounding tissue, as well as concomitant cell death in the tissue is described. RESULTS For both the porcine and mouse intestine systems, the model predicts temperatures that are quantitatively similar to the experimental measurements with the model predictions of temperature increase often being within a just a few degrees of experimental measurements. CONCLUSION This mathematical model can be employed to identify optimal conditions for minimizing healthy cell death while still achieving a strong seal of the ruptured tissue using laser soldering. Lasers Surg. Med. 50:143-152, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Madaline Mushaben
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana
| | - Russell Urie
- Department of Chemical Engineering, Arizona State University, Tempe, Arizona
| | - Tanner Flake
- Department of Chemical Engineering, Arizona State University, Tempe, Arizona
| | - Michael Jaffe
- College of Veterinary Medicine, Midwestern University, Glendale, 85308, Arizona
| | - Kaushal Rege
- Department of Chemical Engineering, Arizona State University, Tempe, Arizona
| | - Jeffrey Heys
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana
| |
Collapse
|
10
|
Kaur M, Tomar A, Shaikh F, Falera R, Bageshwar LMS, Titiyal JS. Sealing clear corneal incisions in cataract surgery. EXPERT REVIEW OF OPHTHALMOLOGY 2018. [DOI: 10.1080/17469899.2018.1427063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Manpreet Kaur
- Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Ankit Tomar
- Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Farin Shaikh
- Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Ruchita Falera
- Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Lalit M. S. Bageshwar
- Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Jeewan S. Titiyal
- Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
11
|
Tal K, Strassmann E, Loya N, Ravid A, Kariv N, Weinberger D, Katzir A, Gaton DD. Corneal cut closure using temperature-controlled CO2 laser soldering system. Lasers Med Sci 2015; 30:1367-71. [PMID: 25796630 DOI: 10.1007/s10103-015-1737-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/03/2015] [Indexed: 11/30/2022]
Abstract
We aimed to evaluate the effectiveness of temperature-controlled laser soldering for repair of large perforated corneas in a porcine model. Eight Yorkshire pigs aged 6 months underwent 6-mm-deep 180° crescent-shaped trephination of the central corneas. Right corneal injuries were repaired by placement of 47 % bovine albumin along the cut followed by CO2 laser soldering (power density 16 W/cm(2)) to a target temperature of 65(°). Left corneal injuries were repaired with 10/0 nylon sutures. The groups were compared for operative time, leakage, and histopathological findings. Mean tissue temperature was 63 ± 4 °C. Mean operative time was 31.57 ± 2.8 min in laser-soldered eyes and 41.38 ± 2.3 min in controls (p < 0.0001, unpaired Student's t test). Compared to controls, the soldered corneas had less neovascularization, complete re-epithelization, and mild stromal inflammation. There was no leakage in either group. Combined CO2 laser and radiometer is effective for the in vivo repair of corneal cuts. These results have important implications for modern corneal surgery. Further studies are needed in the clinical setting.
Collapse
Affiliation(s)
- Kfir Tal
- Department of Ophthalmology, Rabin Medical Center, Beilinson Hospital, Petach Tikva, 49100, Israel,
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Buzzonetti L, Capozzi P, Petrocelli G, Valente P, Petroni S, Menabuoni L, Rossi F, Pini R. Laser welding in penetrating keratoplasty and cataract surgery in pediatric patients: early results. J Cataract Refract Surg 2013; 39:1829-34. [PMID: 24140371 DOI: 10.1016/j.jcrs.2013.05.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 05/31/2013] [Accepted: 05/31/2013] [Indexed: 12/20/2022]
Abstract
PURPOSE To evaluate the efficacy of diode laser welding to close corneal wounds in penetrating keratoplasty (PKP) and cataract surgery in pediatric patients. SETTING Ophthalmology Department, Bambino Gesù Children's Hospital, Rome, Italy. DESIGN Prospective observational study. METHODS Patients had surgery for congenital cataract (Group 1) or femtosecond laser-assisted PKP (Group 2). The surgery was followed by corneal wound closure using diode laser welding of the stroma. In Group 1, no standard suturing was used. In Group 2, the donor button was sutured onto the recipient using 8 single nylon sutures or a 10-0 nylon running suture (12 passages). Laser welding was then used as an adjunct to the traditional suturing procedure. RESULTS Group 1 comprised 7 eyes (7 patients; mean age 8.1 years ± 5.3 [SD], range 1 to 15 years) and Group 2, 5 eyes (5 patients; mean age 10.6 ± 3.3 years, range 6 to 15 years). The adhesion of the laser-welded tissues was perfect; there were no collateral effects, and restoration of the treated tissues was optimum. Seidel testing showed no wound leakage during the follow-up. Postoperative astigmatism did not change significantly from the first day after cataract surgery and shifted moderately 3 months after PKP. CONCLUSION Laser welding of corneal tissue appeared to be safe and effective in children for whom a sutureless surgical procedure is important to reduce the use of anesthesia for suture management, prevent endophthalmitis, and improve the antiamblyopic effect.
Collapse
Affiliation(s)
- Luca Buzzonetti
- From the Ophthalmology Departments, Bambino Gesù Children's Hospital (Buzzonetti, Capozzi, Petrocelli, Valente, Petroni), IRCCS, Rome, and Misericordia e Dolce Hospital (Menabuoni), Prato, and Istituto di Fisica Applicata Nello Carrara (Rossi, Pini), Italian National Research Council, Sesto Fiorentino, Florence, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Strassmann E, Livny E, Loya N, Kariv N, Ravid A, Katzir A, Gaton DD. CO₂ laser welding of corneal cuts with albumin solder using radiometric temperature control. Ophthalmic Res 2013; 50:174-9. [PMID: 24009005 DOI: 10.1159/000353436] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 05/08/2013] [Indexed: 11/19/2022]
Abstract
PURPOSE To examine the efficacy and reproducibility of CO₂ laser soldering of corneal cuts using real-time infrared fiber-optic radiometric control of tissue temperature in bovine eyes (in vitro) and to evaluate the duration of this procedure in rabbit eyes (in vivo). METHODS In vitro experiment: a 6-mm central perforating cut was induced in 40 fresh bovine eyes and sealed with a CO₂ laser, with or without albumin soldering, following placement of a single approximating nylon suture. A fiber-optic radiometric temperature control system for the CO₂ laser was used. Leaking pressure and histological findings were analyzed and compared between groups. In vivo experiment: following creation of a central perforation, 6 rabbit eyes were treated with a CO₂ laser with albumin solder and 6 rabbit eyes were treated with 10-0 nylon sutures. The amount of time needed for completion of the procedures was compared. RESULTS In vitro experiment: effective sealing was achieved by CO₂ laser soldering. Mean (± SD) leaking pressure was 109 ± 30 mm Hg in the bovine corneas treated by the laser with albumin solder compared to 51 ± 7 mm Hg in the sutured control eyes (n = 10 each; p < 0.001). Mean leaking pressures were much lower in the corneal cuts sealed only with the laser without albumin solder (48 ± 12 mm Hg) and in the cuts sealed only with albumin without laser welding (6.3 ± 4 mm Hg) than in the cuts treated with laser welding and albumin solder. In vivo experiment: mean surgical time was 140 ± 17 s in the laser-treated rabbits compared to 330 ± 30 s in the sutured controls (n = 6; p < 0.001). A histopathological study of the rabbit corneas 1 day after laser soldering revealed sealed corneal edges with a small gap bridged by coagulated albumin. The inflammatory reaction was minimal in contrast to the sutured controls. No thermal damage was detected at the wound edges. CONCLUSIONS CO₂ laser soldering combined with the fiber-optic radiometer is an effective, reliable, and rapid tool for the closure of corneal wounds, and holds advantages over conventional suturing in terms of leaking pressure and surgical time.
Collapse
Affiliation(s)
- Eyal Strassmann
- Department of Ophthalmology, Hadassah Medical Center and the Hebrew University, Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
14
|
Huang HC, Walker CR, Nanda A, Rege K. Laser welding of ruptured intestinal tissue using plasmonic polypeptide nanocomposite solders. ACS NANO 2013; 7:2988-2998. [PMID: 23530530 DOI: 10.1021/nn303202k] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Approximately 1.5 million people suffer from colorectal cancer and inflammatory bowel disease in the United States. Occurrence of leakage following standard surgical anastomosis in intestinal and colorectal surgery is common and can cause infection leading to life-threatening consequences. In this report, we demonstrate that plasmonic nanocomposites, generated from elastin-like polypeptides (ELPs) cross-linked with gold nanorods, can be used to weld ruptured intestinal tissue upon exposure to near-infrared (NIR) laser irradiation. Mechanical properties of these nanocomposites can be modulated based on the concentration of gold nanorods embedded within the ELP matrix. We employed photostable, NIR-absorbing cellularized and noncellularized GNR-ELP nanocomposites for ex vivo laser welding of ruptured porcine small intestines. Laser welding using the nanocomposites significantly enhanced the tensile strength, leakage pressure, and bursting pressure of ruptured intestinal tissue. This, in turn, provided a liquid-tight seal against leakage of luminal liquid from the intestine and resulting bacterial infection. This study demonstrates the utility of laser tissue welding using plasmonic polypeptide nanocomposites and indicates the translational potential of these materials in intestinal and colorectal repair.
Collapse
Affiliation(s)
- Huang-Chiao Huang
- Chemical Engineering, Arizona State University, Tempe, Arizona 85287-6106, United States
| | | | | | | |
Collapse
|
15
|
Thermal transitions of fibrillar collagen unveiled by second-harmonic generation microscopy of corneal stroma. Biophys J 2013; 103:1179-87. [PMID: 22995490 DOI: 10.1016/j.bpj.2012.07.055] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 07/19/2012] [Accepted: 07/27/2012] [Indexed: 11/24/2022] Open
Abstract
The thermal transitions of fibrillar collagen are investigated with second-harmonic generation polarization anisotropy microscopy. Second-harmonic generation images and polarization anisotropy profiles of corneal stroma heated in the 35-80°C range are analyzed by means of a theoretical model that is suitable to probe principal intramolecular and interfibrillar parameters of immediate physiological interest. Our results depict the tissue modification with temperature as the interplay of three destructuration stages at different hierarchical levels of collagen assembly including its tertiary structure and interfibrillar alignment, thus supporting and extending previous findings. This method holds the promise of a quantitative inspection of fundamental biophysical and biochemical processes and may find future applications in real-time and postsurgical functional imaging of collagen-rich tissues subjected to thermal treatments.
Collapse
|
16
|
Matteini P, Ratto F, Rossi F, de Angelis M, Cavigli L, Pini R. Hybrid nanocomposite films for laser-activated tissue bonding. JOURNAL OF BIOPHOTONICS 2012; 5:868-877. [PMID: 22899671 DOI: 10.1002/jbio.201200115] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 07/09/2012] [Accepted: 07/25/2012] [Indexed: 06/01/2023]
Abstract
We report new advancements in the biomedical exploitation of plasmonic nanoparticles as an effective platform for the photothermal repair of biological tissue. Chitosan films are loaded with gold nanorods with intense optical absorption in the "therapeutic window" of deepest light penetration through the body, and then activated by near infrared laser excitation to give adhesion with adjacent connective tissues. The adhesion consists of 0.07 mm(2) welds of ~20 kPa tensile strength at the film/tissue interface, which are obtained by administration of pulses with duration in the hundreds of millisecond timescale from a diode laser at ~130 J cm(-2). We investigate the adhesive effect as a function of pulse power and duration and identify an optimal operative window to achieve effective and reproducible welds with minimal detrimental superheating. These results may prove valuable to standardize laser bonding techniques and meet current needs for new knowledge which is urged by the penetration of nanotechnology into biomedical optics.
Collapse
Affiliation(s)
- Paolo Matteini
- Istituto di Fisica Applicata Nello Carrara, Consiglio Nazionale delle Ricerche, Sesto Fiorentino, Italy
| | | | | | | | | | | |
Collapse
|
17
|
Romanos GE, Gladkova ND, Feldchtein FI, Karabut MM, Kiseleva EB, Snopova LB, Fomina YV. Oral mucosa response to laser patterned microcoagulation (LPM) treatment. An animal study. Lasers Med Sci 2012; 28:25-31. [PMID: 22322393 DOI: 10.1007/s10103-011-1024-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 10/24/2011] [Indexed: 11/25/2022]
Abstract
In this study a minimally invasive microsurgical approach was used for laser patterned microcoagulation (LPM) to initiate gingival and oral mucosal tissue regeneration. We performed a feasibility assessment and histological examination of laser damage and regeneration in the gingiva and oral mucosa using an animal model. The study animals comprised 18 healthy rabbits which were treated in vivo with single pulses from a diode laser at a wavelength of 980 nm and a power of up to 20 W applied to the gingival and oral mucosa at multiple time points. Biopsies were stained with hematoxylin and eosin, nitroblue tetrazolium chloride and picrosirius red, and evaluated by two pathologists blinded to the parameters and date of laser exposure. Histological analysis revealed that the continuity of the epithelial basal cell layer had been reestablished by 1-2 days after LPM, and complete epithelial regeneration had occurred by 7-12 days. A pronounced reactive inflammation developed in the column area 1 day after treatment. High activity of fibroblasts producing new collagen participated in the formation of a network of new thin-wall blood vessel. By the 28th day the tissue structure was almost completely restored with a similar increase of vascularity, and there were no signs of scarring. By the 90th day, tissue structure was completely restored, indicating complete healing. A single LPM treatment induces a wound healing response in the oral mucosa, showing the potential of LPM for the initiation of oral mucosa and gingival regeneration. Complete healing observed in 3 months after treatment with no keratinization change or scar tissue formation.
Collapse
Affiliation(s)
- Georgios E Romanos
- Eastman Institute for Oral Health, Division of Periodontology, Unit of Laser Dentistry, University of Rochester, 625 Elmwood Avenue, Rochester, NY 14620, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Gu C, Ni T, Verter EE, Redmond RW, Kochevar IE, Yao M. Photochemical tissue bonding: A potential strategy for treating limbal stem cell deficiency. Lasers Surg Med 2011; 43:433-42. [DOI: 10.1002/lsm.21066] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
|
20
|
Matteini P, Ratto F, Rossi F, Cicchi R, Stringari C, Kapsokalyvas D, Pavone FS, Pini R. Photothermally-induced disordered patterns of corneal collagen revealed by SHG imaging. OPTICS EXPRESS 2009; 17:4868-78. [PMID: 19293918 DOI: 10.1364/oe.17.004868] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The loss of organization of the corneal collagen lattice induced by photothermal effects was analyzed by using second-harmonic generation (SHG) imaging. Porcine cornea samples were treated with low-power laser irradiation in order to get localized areas of tissue disorganization. The disorder induced within the irradiated area of corneal stroma was quantified by means of Discrete Fourier Transform, auto-correlation and entropy analyses of the SHG images. Polarization modulated SHG measurements allowed to probe the changes in the structural anisotropy of sub-micron hierarchical levels of the stromal collagen. Our results emphasize the great potential of the SHG imaging to detect subtle modifications in the collagen assembly. The proposed analytical methods may be used to track several genetic, pathologic, accidental or surgical-induced disorder states of biological tissues.
Collapse
Affiliation(s)
- Paolo Matteini
- Istituto di Fisica Applicata Nello Carrara, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, Sesto Fiorentino, I-50019, Italy
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Ratto F, Matteini P, Rossi F, Menabuoni L, Tiwari N, Kulkarni SK, Pini R. Photothermal effects in connective tissues mediated by laser-activated gold nanorods. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2009; 5:143-51. [PMID: 19223241 DOI: 10.1016/j.nano.2008.10.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 10/18/2008] [Accepted: 10/29/2008] [Indexed: 11/16/2022]
Abstract
We report a study on the application of laser-activated nanoparticles in the direct welding of connective tissues, which may become a valuable technology in biomedicine. We use colloidal gold nanorods as new near-infrared chromophores to mediate functional photothermal effects in the eye lens capsules. Samples obtained ex vivo from porcine eyes are treated to simulate heterotransplants with 810-nm diode laser radiation in association with a stain of gold nanorods of aspect ratio approximately 4. This stain is applied at the interface between a patch of capsule from a donor eye and the capsule of a recipient eye. Then, by administration of laser pulses of 40 msec and approximately 100-140 J/cm(2), we achieved the local denaturation of the endogenous collagen filaments, which reveals that the treated area reached temperatures above 50 degrees C. The thermal damage is confined within 50-70 mum in a radial distance from the irradiated area.
Collapse
Affiliation(s)
- Fulvio Ratto
- Istituto di Fisica Applicata, Consiglio Nazionale delle Ricerche, Sesto Fiorentino, Italy
| | | | | | | | | | | | | |
Collapse
|
22
|
Rossi F, Matteini P, Ratto F, Menabuoni L, Lenzetti I, Pini R. Laser tissue welding in ophthalmic surgery. JOURNAL OF BIOPHOTONICS 2008; 1:331-342. [PMID: 19343656 DOI: 10.1002/jbio.200810028] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Laser welding of ocular tissues is an alternative technique or adjunct to conventional suturing in ophthalmic surgery. It is based on the photothermal interaction of laser light with the main components of the extracellular matrix of connective tissues. The advantages of the welding procedure with respect to standard suturing and stapling are reduced operation times, lesser inflammation, faster healing and increased ability to induce tissue regeneration. The procedure we set up is based on the use of an infrared diode laser in association with the topical application of the chromophore Indocyanine Green. Laser light may be delivered either continuously or in pulses, thus identifying two different techniques that have been applied clinically in various types of transplants of the cornea.
Collapse
Affiliation(s)
- Francesca Rossi
- Istituto di Fisica Applicata, Consiglio Nazionale delle Ricerche,Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | | | | | | | | | | |
Collapse
|