1
|
Ghanbari M, Salkovskiy Y, Carlson MA. The rat as an animal model in chronic wound research: An update. Life Sci 2024; 351:122783. [PMID: 38848945 PMCID: PMC11581782 DOI: 10.1016/j.lfs.2024.122783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/29/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
The increasing global prevalence of chronic wounds underscores the growing importance of developing effective animal models for their study. This review offers a critical evaluation of the strengths and limitations of rat models frequently employed in chronic wound research and proposes potential improvements. It explores these models in the context of key comorbidities, including diabetes, venous and arterial insufficiency, pressure-induced blood flow obstruction, and infections. Additionally, the review examines important wound factors including age, sex, smoking, and the impact of anesthetic and analgesic drugs, acknowledging their substantial effects on research outcomes. A thorough understanding of these variables is crucial for refining animal models and can provide valuable insights for future research endeavors.
Collapse
Affiliation(s)
- Mahboubeh Ghanbari
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, USA.
| | - Yury Salkovskiy
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, USA.
| | - Mark A Carlson
- Department of Surgery, Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
2
|
Jia M, Huang J, Chen Y, JinchengLi, Wang K. Experimental study on the effect of scanning path on skin tissue properties of femtosecond laser welding. JOURNAL OF BIOPHOTONICS 2023; 16:e202300205. [PMID: 37643993 DOI: 10.1002/jbio.202300205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/08/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
To study the influence pattern of femtosecond laser scanning path on the welding effect of skin tissue, this experiment analyzed the influence of scanning path on the surface morphology, degree of thermal damage, tensile strength, and microstructure of skin samples after skin attachment by designing nine scanning paths to weld skin tissue. The results showed that the skin samples connected by interrupted parallel mattress eversion sewing method with d = 0.2 mm showed no obvious color changes in morphology, the skin samples were connected on both front and back sides, the tensile strength was the highest, reaching 12.80 N/cm2 , the thermal damage parameter was low at 1.08 × 10-2 , the microstructure had obvious directionality, and the texture was clear and uniformly distributed.
Collapse
Affiliation(s)
- Mengshi Jia
- School of Material Science and Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Jun Huang
- School of Material Science and Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Yuxin Chen
- School of Material Science and Technology, Nanjing University of Science and Technology, Nanjing, China
| | - JinchengLi
- School of Material Science and Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Kehong Wang
- School of Material Science and Technology, Nanjing University of Science and Technology, Nanjing, China
| |
Collapse
|
3
|
Katz L, Kiyota T, Woolman M, Wu M, Pires L, Fiorante A, Ye LA, Leong W, Berman HK, Ghazarian D, Ginsberg HJ, Das S, Aman A, Zarrine-Afsar A. Metabolic Lipids in Melanoma Enable Rapid Determination of Actionable BRAF-V600E Mutation with Picosecond Infrared Laser Mass Spectrometry in 10 s. Anal Chem 2023; 95:14430-14439. [PMID: 37695851 DOI: 10.1021/acs.analchem.3c02901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Rapid molecular profiling of biological tissues with picosecond infrared laser mass spectrometry (PIRL-MS) has enabled the detection of clinically important histologic types and molecular subtypes of human cancers in as little as 10 s of data collection and analysis time. Utilizing an engineered cell line model of actionable BRAF-V600E mutation, we observed statistically significant differences in 10 s PIRL-MS molecular profiles between BRAF-V600E and BRAF-wt cells. Multivariate statistical analyses revealed a list of mass-to-charge (m/z) values most significantly responsible for the identification of BRAF-V600E mutation status in this engineered cell line that provided a highly controlled testbed for this observation. These metabolites predicted BRAF-V600E expression in human melanoma cell lines with greater than 98% accuracy. Through chromatography and tandem mass spectrometry analysis of cell line extracts, a 30-member "metabolite array" was characterized for determination of BRAF-V600E expression levels in subcutaneous melanoma xenografts with an average sensitivity and specificity of 95.6% with 10 s PIRL-MS analysis. This proof-of-principle work warrants a future large-scale study to identify a metabolite array for 10 s determination of actionable BRAF-V600E mutation in human tissue to guide patient care.
Collapse
Affiliation(s)
- Lauren Katz
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Taira Kiyota
- Ontario Institute for Cancer Research (OICR), 661 University Avenue, Suite 510, Toronto, ON M5G 0A3, Canada
| | - Michael Woolman
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Megan Wu
- Peter Gilgan Centre for Research and Learning & Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Layla Pires
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Alexa Fiorante
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Lan Anna Ye
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Wey Leong
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON M5G 2C1, Canada
- Department of Surgery, University of Toronto, 149 College Street, Toronto, ON M5T 1P5, Canada
| | - Hal K Berman
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON M5G 2C1, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto and the Laboratory Medicine Program, University Health Network, 200 Elizabeth Street, Toronto, ON M5G 2C4, Canada
| | - Danny Ghazarian
- Keenan Research Center for Biomedical Science & the Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| | - Howard J Ginsberg
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada
- Department of Surgery, University of Toronto, 149 College Street, Toronto, ON M5T 1P5, Canada
- Keenan Research Center for Biomedical Science & the Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Sixth Floor, Toronto, ON M5S 1A8, Canada
| | - Sunit Das
- Peter Gilgan Centre for Research and Learning & Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
- Department of Surgery, University of Toronto, 149 College Street, Toronto, ON M5T 1P5, Canada
| | - Ahmed Aman
- Ontario Institute for Cancer Research (OICR), 661 University Avenue, Suite 510, Toronto, ON M5G 0A3, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St, Toronto, ON M5S 3M2, Canada
| | - Arash Zarrine-Afsar
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
- Department of Surgery, University of Toronto, 149 College Street, Toronto, ON M5T 1P5, Canada
- Keenan Research Center for Biomedical Science & the Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| |
Collapse
|
4
|
Katz L, Woolman M, Kiyota T, Pires L, Zaidi M, Hofer SO, Leong W, Wouters BG, Ghazarian D, Chan AW, Ginsberg HJ, Aman A, Wilson BC, Berman HK, Zarrine-Afsar A. Picosecond Infrared Laser Mass Spectrometry Identifies a Metabolite Array for 10 s Diagnosis of Select Skin Cancer Types: A Proof-of-Concept Feasibility Study. Anal Chem 2022; 94:16821-16830. [DOI: 10.1021/acs.analchem.2c03918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Lauren Katz
- Techna Institute for the Advancement of Technology for Health, University Health Network, 100 College Street, Toronto, Ontario M5G 1P5, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Michael Woolman
- Techna Institute for the Advancement of Technology for Health, University Health Network, 100 College Street, Toronto, Ontario M5G 1P5, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Taira Kiyota
- Ontario Institute for Cancer Research (OICR), 661 University Ave Suite 510, Toronto, Ontario M5G 0A3, Canada
| | - Layla Pires
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2C1, Canada
| | - Mark Zaidi
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Stefan O.P. Hofer
- Techna Institute for the Advancement of Technology for Health, University Health Network, 100 College Street, Toronto, Ontario M5G 1P5, Canada
- Department of Surgery, University of Toronto, 149 College Street, Toronto, Ontario M5T 1P5, Canada
- Division of Plastic and Reconstructive Surgery, Department of Surgery and Surgical Oncology, University Health Network, University of Toronto. Toronto General Hospital, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada
| | - Wey Leong
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2C1, Canada
- Department of Surgery, University of Toronto, 149 College Street, Toronto, Ontario M5T 1P5, Canada
- Department of Surgical Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto Ontario M5G 2C1, Canada
| | - Brad G. Wouters
- Techna Institute for the Advancement of Technology for Health, University Health Network, 100 College Street, Toronto, Ontario M5G 1P5, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2C1, Canada
| | - Danny Ghazarian
- Department of Laboratory Medicine and Pathobiology, University of Toronto and University Health Network, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada
| | - An-Wen Chan
- Division of Dermatology, Department of Medicine, University of Toronto, Canada and Women’s College Research Institute, Women’s College Hospital, 76 Grenville St, Toronto, Ontario M5S 1B2, Canada
| | - Howard J. Ginsberg
- Techna Institute for the Advancement of Technology for Health, University Health Network, 100 College Street, Toronto, Ontario M5G 1P5, Canada
- Department of Surgery, University of Toronto, 149 College Street, Toronto, Ontario M5T 1P5, Canada
- Keenan Research Center for Biomedical Science & the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, 30 Bond Street, Toronto, Ontario M5B 1W8, Canada
| | - Ahmed Aman
- Ontario Institute for Cancer Research (OICR), 661 University Ave Suite 510, Toronto, Ontario M5G 0A3, Canada
- Leslie Dan, Faculty of Pharmacy, University of Toronto, 144 College St, Toronto, Ontario M5S 3M2, Canada
| | - Brian C. Wilson
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2C1, Canada
| | - Hal K. Berman
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2C1, Canada
- Laboratory Medicine Program, University Health Network, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada
| | - Arash Zarrine-Afsar
- Techna Institute for the Advancement of Technology for Health, University Health Network, 100 College Street, Toronto, Ontario M5G 1P5, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Department of Surgery, University of Toronto, 149 College Street, Toronto, Ontario M5T 1P5, Canada
- Keenan Research Center for Biomedical Science & the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, 30 Bond Street, Toronto, Ontario M5B 1W8, Canada
| |
Collapse
|
5
|
Huang Z, Kayanattil M, Hayes SA, Miller RJD. Picosecond infrared laser driven sample delivery for simultaneous liquid-phase and gas-phase electron diffraction studies. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2022; 9:054301. [PMID: 36124204 PMCID: PMC9482465 DOI: 10.1063/4.0000159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Here, we report on a new approach based on laser driven molecular beams that provides simultaneously nanoscale liquid droplets and gas-phase sample delivery for femtosecond electron diffraction studies. The method relies on Picosecond InfraRed Laser (PIRL) excitation of vibrational modes to strongly drive phase transitions under energy confinement by a mechanism referred to as Desorption by Impulsive Vibrational Excitation (DIVE). This approach is demonstrated using glycerol as the medium with selective excitation of the OH stretch region for energy deposition. The resulting plume was imaged with both an ultrafast electron gun and a pulsed bright-field optical microscope to characterize the sample source simultaneously under the same conditions with time synchronization equivalent to sub-micrometer spatial resolution in imaging the plume dynamics. The ablation front gives the expected isolated gas phase, whereas the trailing edge of the plume is found to consist of nanoscale liquid droplets to thin films depending on the excitation conditions. Thus, it is possible by adjusting the timing to go continuously from probing gas phase to solution phase dynamics in a single experiment with 100% hit rates and very low sample consumption (<100 nl per diffraction image). This approach will be particularly interesting for biomolecules that are susceptible to denaturation in turbulent flow, whereas PIRL-DIVE has been shown to inject molecules as large as proteins into the gas phase fully intact. This method opens the door as a general approach to atomically resolving solution phase chemistry as well as conformational dynamics of large molecular systems and allow separation of the solvent coordinate on the dynamics of interest.
Collapse
Affiliation(s)
- Zhipeng Huang
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Meghanad Kayanattil
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Stuart A. Hayes
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - R. J. Dwayne Miller
- Departments of Chemistry and Physics, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 1H6, Canada
| |
Collapse
|
6
|
Lee DW, Ryu H, Choi HJ, Park ES. Improvement in linear depressed atrophic scar using 755-nm picosecond alexandrite laser vs. ablative fractional carbon dioxide laser. J COSMET LASER THER 2022; 24:48-55. [PMID: 35864581 DOI: 10.1080/14764172.2022.2100915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
ABBREVIATIONS AFL = ablative fractional laser, CO2= carbon dioxide, LiOB = laser-induced optical breakdown, PIH = postinflammatory hyperpigmentation, mVSS = Modified Vancouver scar scale.
Collapse
Affiliation(s)
- Da Woon Lee
- Department of Plastic and Reconstructive Surgery, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Hyeongrae Ryu
- Department of Plastic and Reconstructive Surgery, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Hwan Jun Choi
- Department of Plastic and Reconstructive Surgery, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Eun Soo Park
- Department of Plastic and Reconstructive Surgery, College of Medicine, Soonchunhyang University, Bucheon, Korea
| |
Collapse
|
7
|
Picosecond Pulsed-Periodic High-Peak Power Nd:YAG Laser Operationally Controlled by KTP-Based Pockels Cell. CRYSTALS 2022. [DOI: 10.3390/cryst12030368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Electro-optical modulators are effectively used for ultrafast pulse lasers operation control. The scheme of picosecond pulse-periodic high-peak-power Nd:YAG lasers is composed of an active-passive mode-locked and negative feedback-controlled master oscillator and regenerative amplifier based on common end-diode-pumped Nd:YAG crystal. A double-crystal thermally compensated Pockels cell based on KTP crystals of the Y-cut direction is employed as a key control element. The cell was assembled using a pair of equal-length crystals grown according to high-resistivity technology. The scheme provides output pulses with energy up to 1.6 mJ, a duration of 25 ps at repetition rates tunable from 0 to 200 Hz. The laser operation stages are analyzed in detail. The scheme looks attractive and promising for developing advanced ultrafast laser systems with higher repetition rates, peak and, accordingly, average power levels. The Pockels cell based on KTP crystals expands the line of available fast electro-optical control elements, along with the previously used RTP ones. The factors limiting laser pulse energy and repetition rate are discussed. Parasitic nonlinear conversion in the crystals of the Pockels cell along the axis may play an essential role. The results of comparative measurements of the second and third harmonics made with the Pockels cells based on KTP and RTP crystals of both X-cut and Y-cut directions are presented. The minimum second and third harmonics efficiency levels observed in the Y-cut Pockels cells of the KTP crystal seem to be their important advantage.
Collapse
|
8
|
Oley MH, Oley MC, Kepel BJ, Manginstar C, Rawung R, Langi FLFG, Barends D, Aling DMR, Wagiu AMJ, Faruk M. Post-skin incision scar tissue assessment using patient and observer scar assessment scales: A randomised controlled trial. Ann Med Surg (Lond) 2021; 71:103006. [PMID: 34840756 PMCID: PMC8606832 DOI: 10.1016/j.amsu.2021.103006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/30/2021] [Accepted: 10/31/2021] [Indexed: 10/31/2022] Open
Abstract
BACKGROUND The scalpel was once the gold standard for surgical incisions. Electrosurgery has started to supplant scalpels but is not yet acceptable for skin incisions due to the risk of burns and deeper injury relative to the scalpels' neat incision with less tissue damage. The unnecessary burden of excessive scar formation makes comparing these two methods challenging. Therefore, this study aims to compare post-incision skin scarring created after monopolar electrosurgery and scalpel surgery, and evaluate the Patient and Observer Scar Assessment Scale (POSAS) suitability for assessing skin incision scars by comparing patients' and observers' scores. METHODS This self-controlled study involved patients undergoing elective and emergency skin surgery procedures. A singular wound site was created using two incision methods (monopolar electrosurgery and scalpel) simultaneously. Post-incision scar tissue formation was evaluated using the POSAS, a subjective scar assessment tool that involved patients self-reporting on pain, itching, color, thickness flexibility, and surface relief. Observer-rated vascularity, pigmentation, thickness, flexibility, and surface relief both using a 5-point Likert-type scale. We performed this assessment three months post-surgery, and the results were analyzed by a battery of statistical tests and linear mixed models. RESULTS Twenty patients were included in this study. Data analyzed using the paired t-test or Wilcoxon rank-sum test indicated no statistically significant differences between the scar tissue created by monopolar electrosurgery and scalpels according to both the patients and the observers. Correlation analyses between the patients' and observers' total POSAS scores indicated these followed a moderate linear relationship (r = 0.51; p < 0.001). Linear mixed models further supported the agreement of POSAS total scores between patients and observers. They also confirmed that electrosurgery was not inferior to the scalpel technique. CONCLUSION Scar tissue from skin incisions made by monopolar electrosurgery were indistinguishable from those created with a scalpel. The POSAS instrument is an acceptable means of assessing scar formation on the skin.
Collapse
Affiliation(s)
- Mendy Hatibie Oley
- Division of Plastic Reconstructive & Aesthetic Surgery, Department of Surgery, Faculty of Medicine, Sam Ratulangi University, Manado, North Sulawesi, Indonesia
- Division of Plastic Reconstructive & Aesthetic Surgery, Department of Surgery, R. D. Kandou Hospital, Manado, North Sulawesi, Indonesia
- Hyperbaric Centre Siloam Hospital, Manado, North Sulawesi, Indonesia
| | - Maximillian Christian Oley
- Hyperbaric Centre Siloam Hospital, Manado, North Sulawesi, Indonesia
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Sam Ratulangi University, Manado, North Sulawesi, Indonesia
- Division of Neurosurgery, Department of Surgery, R. D. Kandou Hospital, Manado, North Sulawesi, Indonesia
| | - Billy Johnson Kepel
- Department of Chemistry, Faculty of Medicine, Sam Ratulangi University, Manado, North Sulawesi, Indonesia
| | - Christian Manginstar
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, Sam Ratulangi University, Manado, North Sulawesi, Indonesia
- Division of Surgical Oncology, Department of Surgery, R. D. Kandou Hospital, Manado, North Sulawesi, Indonesia
| | - Rangga Rawung
- Division of Orthopedic and Traumatology Surgery, Department of Surgery, Faculty of Medicine, Sam Ratulangi University, Manado, North Sulawesi, Indonesia
- Division of Orthopedic and Traumatology Surgery, Department of Surgery, R. D. Kandou Hospital, Manado, North Sulawesi, Indonesia
| | - Fima Lanra Fredrik G. Langi
- Division of Public Health, Department of Surgery, Faculty of Medicine, Sam Ratulangi University, Manado, North Sulawesi, Indonesia
| | - David Barends
- Department of Surgery, Faculty of Medicine, Sam Ratulangi University, Manado, North Sulawesi, Indonesia
| | | | | | - Muhammad Faruk
- Department of Surgery, Faculty of Medicine, Hasanuddin University, Makassar, South Sulawesi, Indonesia
| |
Collapse
|
9
|
Ulmschneider C, Baker J, Vize I, Jiang J. Phonosurgery: A review of current methodologies. World J Otorhinolaryngol Head Neck Surg 2021; 7:344-353. [PMID: 34632350 PMCID: PMC8486699 DOI: 10.1016/j.wjorl.2020.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/31/2020] [Accepted: 09/13/2020] [Indexed: 01/11/2023] Open
Abstract
Cold-steel has served as the gold standard modality of phonosurgery for most of its history. Surgical laser technology has revolutionized this field with its wide use of applications. Additional modalities have also been introduced such as coagulative lasers, photodynamic therapy, and cryotherapy. This review will compare the surgical modalities of cold steel, surgical lasers, phototherapy and cryotherapy. The mechanism of action, tissue effects and typical uses will be addressed for each modality.
Collapse
Affiliation(s)
| | - Jeffrey Baker
- University of Wisconsin Madison School of Medicine and Public Health, United States
| | - Ian Vize
- University of Wisconsin Madison School of Medicine and Public Health, United States
| | - Jack Jiang
- University of Wisconsin Madison School of Medicine and Public Health, United States
| |
Collapse
|
10
|
Friedrich RE, Quade M, Jowett N, Kroetz P, Amling M, Kohlrusch FK, Zustin J, Gosau M, SchlÜter H, Miller RJD. Ablation Precision and Thermal Effects of a Picosecond Infrared Laser (PIRL) on Roots of Human Teeth: A Pilot Study Ex Vivo. In Vivo 2021; 34:2325-2336. [PMID: 32871757 DOI: 10.21873/invivo.12045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 01/25/2023]
Abstract
BACKGROUND/AIM Picosecond infrared laser (PIRL) was investigated regarding its possible therapeutic application in cutting dental roots. MATERIALS AND METHODS Extracted human teeth were processed in the root area by laser ablations followed by histological evaluation. Dentin adjacent to the cutting surface was evaluated morphometrically. RESULTS PIRL produced clearly defined cutting boundaries in dental roots. At the bottom of the cavity, the ablation surface became slightly concave. Heat development in this scantly hydrated tissue was considerable. We attributed the excess heating effects to heat accumulation due to multiple pulse overlap across a limited scan range imposed by tooth geometries. CONCLUSION Defined areas of the tooth root may be treated using the PIRL. For clinical translation, it would be necessary to improve beam delivery to facilitate beam steering for the intended oral application (e.g. by using a fiber) and identify optimal repetition rates/scan speeds combined with cooling techniques to minimize accumulated heat within ablation cavities.
Collapse
Affiliation(s)
- Reinhard E Friedrich
- Oral and Craniomaxillofacial Surgery, Eppendorf University Hospital, University of Hamburg, Hamburg, Germany
| | - Maria Quade
- Oral and Craniomaxillofacial Surgery, Eppendorf University Hospital, University of Hamburg, Hamburg, Germany
| | - Nate Jowett
- Otorhinolaryngology, Eppendorf University Hospital, University of Hamburg, Hamburg, Germany.,Otolaryngology - Head and Neck Surgery, Mass Eye & Ear and Harvard Medical School, Boston, MA, U.S.A.,Atomically Resolved Dynamics Division, Max Planck Research Department for Structural Dynamics, University of Hamburg, Hamburg, Germany
| | - Peter Kroetz
- Atomically Resolved Dynamics Division, Max Planck Research Department for Structural Dynamics, University of Hamburg, Hamburg, Germany
| | - Michael Amling
- Institute of Osteology and Biomechanics, Eppendorf University Hospital, University of Hamburg, Hamburg, Germany
| | - Felix K Kohlrusch
- Oral and Craniomaxillofacial Surgery, Eppendorf University Hospital, University of Hamburg, Hamburg, Germany
| | - Jozef Zustin
- Institute of Osteology and Biomechanics, Eppendorf University Hospital, University of Hamburg, Hamburg, Germany.,Institute of Pathology, Gemeinschaftspraxis Pathologie-Regensburg, Regensburg, Germany
| | - Martin Gosau
- Oral and Craniomaxillofacial Surgery, Eppendorf University Hospital, University of Hamburg, Hamburg, Germany
| | - Hartmut SchlÜter
- Institute of Clinical Chemistry and Laboratory Medicine, Eppendorf University Hospital, University of Hamburg, Hamburg, Germany
| | - R J Dwayne Miller
- Atomically Resolved Dynamics Division, Max Planck Research Department for Structural Dynamics, University of Hamburg, Hamburg, Germany.,Departments of Chemistry and Physics, University of Toronto, Toronto, Canada.,PIRL Laboratory, Eppendorf University Hospital, University of Hamburg, Hamburg, Germany
| |
Collapse
|
11
|
Deshmukh R, Stevenson LJ, Vajpayee RB. Laser-assisted corneal transplantation surgery. Surv Ophthalmol 2021; 66:826-837. [PMID: 33524460 DOI: 10.1016/j.survophthal.2021.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/01/2022]
Abstract
Corneal transplant surgeries have a broad range of indications with outcomes largely dependent on surgeon experience. Traditional manual techniques have certain limitations pertaining to the preparation of donor tissue and the recipient bed that might affect the predictability of visual outcomes. Use of lasers for keratoplasty procedures not only improves the repeatability and consistency of the technique, but also enables the surgeon to control the thickness and shape of the transplant tissue tailored to the specific condition. Despite the advantages, cost-effectiveness and technical know-how remain the major challenges. We discuss the various techniques of laser-assisted keratoplasties with respect to their methods, precision, and efficacy in various corneal indications.
Collapse
Affiliation(s)
- Rashmi Deshmukh
- Division of Ophthalmology and Visual Sciences, Eye ENT Centre, Queens Medical Centre, University of Nottingham, UK.
| | | | - Rasik B Vajpayee
- Royal Victorian Eye and Ear Hospital, Melbourne, Australia; Vision Eye Institute, Melbourne, Australia; University of Melbourne, Australia
| |
Collapse
|
12
|
Meisenbichler C, Kluibenschedl F, Müller T. A 3-in-1 Hand-Held Ambient Mass Spectrometry Interface for Identification and 2D Localization of Chemicals on Surfaces. Anal Chem 2020; 92:14314-14318. [PMID: 33063994 PMCID: PMC7643069 DOI: 10.1021/acs.analchem.0c02615] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
Desorption electrospray ionization
(DESI), easy ambient sonic-spray
ionization (EASI) and low-temperature plasma (LTP) ionization are
powerful ambient ionization techniques for mass spectrometry. However,
every single method has its limitation in terms of polarity and molecular
weight of analyte molecules. After the miniaturization of every possible
component of the different ion sources, we finally were able to embed
two emitters and an ion transfer tubing into a small, hand-held device.
The pen-like interface is connected to the mass spectrometer and a
separate control unit via a bundle of flexible tubing and cables.
The novel device allows the user to ionize an extended range of chemicals
by simple switching between DESI, voltage-free EASI, or LTP ionization
as well as to freely move the interface over a surface of interest.
A mini camera, which is mounted on the tip of the pen, magnifies the
desorption area and enables a simple positioning of the pen. The interface
was successfully tested using different types of chemicals, pharmaceuticals,
and real life samples. Moreover, the combination of optical data from
the camera module and chemical data obtained by mass analysis facilitates
a novel type of imaging mass spectrometry, which we name “interactive
mass spectrometry imaging (IMSI)”.
Collapse
Affiliation(s)
- Christina Meisenbichler
- Institute of Organic Chemistry, Leopold-Franzens University Innsbruck, 6020 Innsbruck, Austria
| | - Florian Kluibenschedl
- Institute of Organic Chemistry, Leopold-Franzens University Innsbruck, 6020 Innsbruck, Austria
| | - Thomas Müller
- Institute of Organic Chemistry, Leopold-Franzens University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
13
|
Woolman M, Qiu J, Kuzan-Fischer CM, Ferry I, Dara D, Katz L, Daud F, Wu M, Ventura M, Bernards N, Chan H, Fricke I, Zaidi M, Wouters BG, Rutka JT, Das S, Irish J, Weersink R, Ginsberg HJ, Jaffray DA, Zarrine-Afsar A. In situ tissue pathology from spatially encoded mass spectrometry classifiers visualized in real time through augmented reality. Chem Sci 2020; 11:8723-8735. [PMID: 34123126 PMCID: PMC8163395 DOI: 10.1039/d0sc02241a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Integration between a hand-held mass spectrometry desorption probe based on picosecond infrared laser technology (PIRL-MS) and an optical surgical tracking system demonstrates in situ tissue pathology from point-sampled mass spectrometry data. Spatially encoded pathology classifications are displayed at the site of laser sampling as color-coded pixels in an augmented reality video feed of the surgical field of view. This is enabled by two-way communication between surgical navigation and mass spectrometry data analysis platforms through a custom-built interface. Performance of the system was evaluated using murine models of human cancers sampled in situ in the presence of body fluids with a technical pixel error of 1.0 ± 0.2 mm, suggesting a 84% or 92% (excluding one outlier) cancer type classification rate across different molecular models that distinguish cell-lines of each class of breast, brain, head and neck murine models. Further, through end-point immunohistochemical staining for DNA damage, cell death and neuronal viability, spatially encoded PIRL-MS sampling is shown to produce classifiable mass spectral data from living murine brain tissue, with levels of neuronal damage that are comparable to those induced by a surgical scalpel. This highlights the potential of spatially encoded PIRL-MS analysis for in vivo use during neurosurgical applications of cancer type determination or point-sampling in vivo tissue during tumor bed examination to assess cancer removal. The interface developed herein for the analysis and the display of spatially encoded PIRL-MS data can be adapted to other hand-held mass spectrometry analysis probes currently available. Integration between a hand-held mass spectrometry desorption probe based on picosecond infrared laser technology (PIRL-MS) and an optical surgical tracking system demonstrates in situ tissue pathology from point-sampled mass spectrometry data.![]()
Collapse
Affiliation(s)
- Michael Woolman
- Techna Institute for the Advancement of Technology for Health, University Health Network 100 College Street, Room 7-207, MaRS Building, Princess Margaret Cancer Research Tower, 7th floor (STTARR) Toronto ON M5G 1P5 Canada +1-416-581-8473.,Department of Medical Biophysics, University of Toronto 101 College Street Toronto ON M5G 1L7 Canada
| | - Jimmy Qiu
- Techna Institute for the Advancement of Technology for Health, University Health Network 100 College Street, Room 7-207, MaRS Building, Princess Margaret Cancer Research Tower, 7th floor (STTARR) Toronto ON M5G 1P5 Canada +1-416-581-8473
| | - Claudia M Kuzan-Fischer
- Peter Gilgan Centre for Research and Learning, Hospital for Sick Children 686 Bay Street Toronto ON M5G 0A4 Canada.,Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children Toronto ON M5G 1X8 Canada
| | - Isabelle Ferry
- Peter Gilgan Centre for Research and Learning, Hospital for Sick Children 686 Bay Street Toronto ON M5G 0A4 Canada.,Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children Toronto ON M5G 1X8 Canada
| | - Delaram Dara
- Techna Institute for the Advancement of Technology for Health, University Health Network 100 College Street, Room 7-207, MaRS Building, Princess Margaret Cancer Research Tower, 7th floor (STTARR) Toronto ON M5G 1P5 Canada +1-416-581-8473
| | - Lauren Katz
- Techna Institute for the Advancement of Technology for Health, University Health Network 100 College Street, Room 7-207, MaRS Building, Princess Margaret Cancer Research Tower, 7th floor (STTARR) Toronto ON M5G 1P5 Canada +1-416-581-8473.,Department of Medical Biophysics, University of Toronto 101 College Street Toronto ON M5G 1L7 Canada
| | - Fowad Daud
- Techna Institute for the Advancement of Technology for Health, University Health Network 100 College Street, Room 7-207, MaRS Building, Princess Margaret Cancer Research Tower, 7th floor (STTARR) Toronto ON M5G 1P5 Canada +1-416-581-8473.,Department of Medical Biophysics, University of Toronto 101 College Street Toronto ON M5G 1L7 Canada
| | - Megan Wu
- Peter Gilgan Centre for Research and Learning, Hospital for Sick Children 686 Bay Street Toronto ON M5G 0A4 Canada
| | - Manuela Ventura
- Techna Institute for the Advancement of Technology for Health, University Health Network 100 College Street, Room 7-207, MaRS Building, Princess Margaret Cancer Research Tower, 7th floor (STTARR) Toronto ON M5G 1P5 Canada +1-416-581-8473
| | - Nicholas Bernards
- Techna Institute for the Advancement of Technology for Health, University Health Network 100 College Street, Room 7-207, MaRS Building, Princess Margaret Cancer Research Tower, 7th floor (STTARR) Toronto ON M5G 1P5 Canada +1-416-581-8473
| | - Harley Chan
- Techna Institute for the Advancement of Technology for Health, University Health Network 100 College Street, Room 7-207, MaRS Building, Princess Margaret Cancer Research Tower, 7th floor (STTARR) Toronto ON M5G 1P5 Canada +1-416-581-8473
| | - Inga Fricke
- Techna Institute for the Advancement of Technology for Health, University Health Network 100 College Street, Room 7-207, MaRS Building, Princess Margaret Cancer Research Tower, 7th floor (STTARR) Toronto ON M5G 1P5 Canada +1-416-581-8473
| | - Mark Zaidi
- Techna Institute for the Advancement of Technology for Health, University Health Network 100 College Street, Room 7-207, MaRS Building, Princess Margaret Cancer Research Tower, 7th floor (STTARR) Toronto ON M5G 1P5 Canada +1-416-581-8473
| | - Brad G Wouters
- Techna Institute for the Advancement of Technology for Health, University Health Network 100 College Street, Room 7-207, MaRS Building, Princess Margaret Cancer Research Tower, 7th floor (STTARR) Toronto ON M5G 1P5 Canada +1-416-581-8473.,Department of Medical Biophysics, University of Toronto 101 College Street Toronto ON M5G 1L7 Canada
| | - James T Rutka
- Peter Gilgan Centre for Research and Learning, Hospital for Sick Children 686 Bay Street Toronto ON M5G 0A4 Canada.,Department of Surgery, University of Toronto 149 College Street Toronto ON M5T 1P5 Canada.,Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children Toronto ON M5G 1X8 Canada
| | - Sunit Das
- Peter Gilgan Centre for Research and Learning, Hospital for Sick Children 686 Bay Street Toronto ON M5G 0A4 Canada.,Department of Surgery, University of Toronto 149 College Street Toronto ON M5T 1P5 Canada.,Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children Toronto ON M5G 1X8 Canada
| | - Jonathan Irish
- Techna Institute for the Advancement of Technology for Health, University Health Network 100 College Street, Room 7-207, MaRS Building, Princess Margaret Cancer Research Tower, 7th floor (STTARR) Toronto ON M5G 1P5 Canada +1-416-581-8473
| | - Robert Weersink
- Techna Institute for the Advancement of Technology for Health, University Health Network 100 College Street, Room 7-207, MaRS Building, Princess Margaret Cancer Research Tower, 7th floor (STTARR) Toronto ON M5G 1P5 Canada +1-416-581-8473
| | - Howard J Ginsberg
- Techna Institute for the Advancement of Technology for Health, University Health Network 100 College Street, Room 7-207, MaRS Building, Princess Margaret Cancer Research Tower, 7th floor (STTARR) Toronto ON M5G 1P5 Canada +1-416-581-8473.,Department of Surgery, University of Toronto 149 College Street Toronto ON M5T 1P5 Canada.,Keenan Research Center for Biomedical Science, The Li Ka Shing Knowledge Institute, St. Michael's Hospital 30 Bond Street Toronto ON M5B 1W8 Canada
| | - David A Jaffray
- Techna Institute for the Advancement of Technology for Health, University Health Network 100 College Street, Room 7-207, MaRS Building, Princess Margaret Cancer Research Tower, 7th floor (STTARR) Toronto ON M5G 1P5 Canada +1-416-581-8473.,Department of Medical Biophysics, University of Toronto 101 College Street Toronto ON M5G 1L7 Canada
| | - Arash Zarrine-Afsar
- Techna Institute for the Advancement of Technology for Health, University Health Network 100 College Street, Room 7-207, MaRS Building, Princess Margaret Cancer Research Tower, 7th floor (STTARR) Toronto ON M5G 1P5 Canada +1-416-581-8473.,Department of Medical Biophysics, University of Toronto 101 College Street Toronto ON M5G 1L7 Canada.,Department of Surgery, University of Toronto 149 College Street Toronto ON M5T 1P5 Canada.,Keenan Research Center for Biomedical Science, The Li Ka Shing Knowledge Institute, St. Michael's Hospital 30 Bond Street Toronto ON M5B 1W8 Canada
| |
Collapse
|
14
|
Hu X, Qin N, Xue J, Li S, Huang X, Sun J, Xu F, Li Z, Li D, Hua H. Dehydrodiconiferyl alcohol from Silybum marianum (L.) Gaertn accelerates wound healing via inactivating NF-κB pathways in macrophages. J Pharm Pharmacol 2020; 72:305-317. [PMID: 31742713 DOI: 10.1111/jphp.13205] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/21/2019] [Accepted: 10/26/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the molecular mechanisms of the efficacy of lignin compound dehydrodiconiferyl alcohol (DHCA) isolated from Silybum marianum (L.) Gaertn in improving wound healing. These findings preliminarily brought to light the promising therapeutic potential of DHCA in skin wound healing. METHODS First, the effect of DHCA on healing in vivo was studied using a full-thickness scalp wound model of mice by topical administration. Histopathological examinations were then conducted by haematoxylin and eosin (H&E), Masson's trichrome staining and the immunofluorescence assay. Second, we further examined the anti-inflammatory mechanism of DHCA in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages by immunofluorescence assay and Western blot analysis. KEY FINDINGS DHCA could promote scalp wound healing in mice by enhancing epithelial cell proliferation and collagen formation and reducing inflammatory cells infiltration. Moreover, the NF-κB nuclear translocation was suppressed remarkably by DHCA administration in connective tissue of healing area. DHCA was also shown to inhibit production of nitric oxide (NO) and interleukin (IL)-1β with downregulated inducible nitric oxide synthase (iNOS) expression in LPS-induced RAW 246.7 cells. More importantly, DHCA administration upregulated p-IκBα expression and induced nuclear translocation of NF-κB without affecting its expression. CONCLUSIONS Our study indicated that DHCA exerted anti-inflammatory activity through inactivation of NF-κB pathways in macrophages and subsequently improved wound healing.
Collapse
Affiliation(s)
- Xu Hu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Ningbo Qin
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- National Engineering Research Center of Seafood, Dalian, China
| | - Jingjing Xue
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Siqi Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaofang Huang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Jianan Sun
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Fanxing Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhanlin Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
15
|
Abstract
Objective: Using a contact-free laser technique for stapedotomy reduces the risk of mechanical damage of the stapes footplate. However, the risk of inner ear dysfunction due to thermal, acoustic, or direct damage has still not been solved. The objective of this study was to describe the first experiences in footplate perforation in cadaver tissue performed by the novel Picosecond-Infrared-Laser (PIRL), allowing a tissue preserving ablation. Patients and Intervention: Three human cadaver stapes were perforated using a fiber-coupled PIRL. The results were compared with footplate perforations performed with clinically applied Er:YAG laser. Therefore, two different laser energies for the Er:YAG laser (30 and 60 mJ) were used for footplate perforation of three human cadaver stapes each. Main Outcome Measure: Comparisons were made using histology and environmental scanning electron microscopy (ESEM) analysis. Results: The perforations performed by the PIRL (total energy: 640–1070 mJ) revealed a precise cutting edge with an intact trabecular bone structure and no considerable signs of coagulation. Using the Er:YAG-Laser with a pulse energy of 30 mJ (total energy: 450–600 mJ), a perforation only in the center of the ablation zone was possible, whereas with a pulse energy of 60 mJ (total energy: of 195–260 mJ) the whole ablation zone was perforated. For both energies, the cutting edge appeared irregular with trabecular structure of the bone only be conjecturable and signs of superficial carbonization. Conclusion: The microscopic results following stapes footplate perforation suggest a superiority of the PIRL in comparison to the Er:YAG laser regarding the precision and tissue preserving ablation.
Collapse
|
16
|
Hanley L, Wickramasinghe R, Yung YP. Laser Desorption Combined with Laser Postionization for Mass Spectrometry. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:225-245. [PMID: 30786215 DOI: 10.1146/annurev-anchem-061318-115447] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Lasers with pulse lengths from nanoseconds to femtoseconds and wavelengths from the mid-infrared to extreme ultraviolet (UV) have been used for desorption or ablation in mass spectrometry. Such laser sampling can often benefit from the addition of a second laser for postionization of neutrals. The advantages offered by laser postionization include the ability to forego matrix application, high lateral resolution, decoupling of ionization from desorption, improved analysis of electrically insulating samples, and potential for high sensitivity and depth profiling while minimizing differential detection. A description of postionization by vacuum UV radiation is followed by a consideration of multiphoton, short pulse, and other postionization strategies. The impacts of laser pulse length and wavelength are considered for laser desorption or laser ablation at low pressures. Atomic and molecular analysis via direct laser desorption/ionization using near-infrared ultrashort pulses is described. Finally, the postionization of clusters, the role of gaseous collisions, sampling at ambient pressure, atmospheric pressure photoionization, and the addition of UV postionization to MALDI are considered.
Collapse
Affiliation(s)
- Luke Hanley
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, USA;
| | | | | |
Collapse
|
17
|
Wurlitzer M, Hessling E, Rinas K, Fuh M, Petersen H, Ricklefs F, Lamszus K, Regelsberger J, Maier S, Kruber S, Hansen NO, Miller RJD, Schlüter H. Mass Spectrometric Lipid Profiles of Picosecond Infrared Laser-Generated Tissue Aerosols Discriminate Different Brain Tissues. Lasers Surg Med 2019; 52:228-234. [PMID: 31067361 DOI: 10.1002/lsm.23096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2019] [Indexed: 11/05/2022]
Abstract
BACKGROUND AND OBJECTIVES A picosecond infrared laser (PIRL) has recently been demonstrated to cut biological tissue without scar formation based on the minimal destructive action on the surrounding cells. During cutting with PIRL, the irradiated tissue is ablated by a cold vaporization process termed desorption by impulsive vibrational excitation. In the resulting aerosol, all molecules are dissolved in small droplets and even labile biomolecules like proteins remain intact after ablation. It is hypothesized that these properties enable the PIRL in combination with mass spectrometry as an intelligent laser scalpel for guided surgery. In this study, it was tested if PIRL-generated tissue aerosols are applicable for direct analysis with mass spectrometry, and if the acquired mass spectra can be used to discriminate different brain areas. MATERIALS AND METHODS Brain tissues were irradiated with PIRL. The aerosols were collected and directly infused into a mass spectrometer via electrospray ionization without any sample preparation or lipid extraction. RESULTS The laser produced clear cuts with no marks of burning. Lipids from five different classes were identified in the mass spectra of all samples. By principal component analysis the different brain areas were clearly distinguishable from each other. CONCLUSIONS The results demonstrate the potential for real-time analysis of lipids with a PIRL-based laser scalpel, coupled to a mass spectrometer, for the discrimination of tissues during surgeries. Lasers Surg. Med. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marcus Wurlitzer
- Department of Mass Spectrometric Proteomics, Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Elisabeth Hessling
- Department of Mass Spectrometric Proteomics, Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Karsten Rinas
- Department of Mass Spectrometric Proteomics, Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - MarcelineManka Fuh
- Department of Mass Spectrometric Proteomics, Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Hannes Petersen
- Department of Otorhinolaryngology, Head and Neck Surgery and Oncology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Franz Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Katrin Lamszus
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Jan Regelsberger
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Stephanie Maier
- Atomically Resolved Dynamics Division, Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Sebastian Kruber
- Atomically Resolved Dynamics Division, Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Nils-Owe Hansen
- Atomically Resolved Dynamics Division, Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - RJDwayne Miller
- Atomically Resolved Dynamics Division, Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany.,Departments of Chemistry and Physics, Lash Miller Chemical Laboratories, University of Toronto, 80 St. George Street, LM245A, Toronto, Ontario, M5S 3H6, Canada
| | - Hartmut Schlüter
- Department of Mass Spectrometric Proteomics, Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| |
Collapse
|
18
|
Mass spectrometry-based intraoperative tumor diagnostics. Future Sci OA 2019; 5:FSO373. [PMID: 30906569 PMCID: PMC6426168 DOI: 10.4155/fsoa-2018-0087] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/08/2019] [Indexed: 02/08/2023] Open
Abstract
In surgical oncology, decisions regarding the amount of tissue to be removed can have important consequences: the decision between preserving sufficient healthy tissue and eliminating all tumor cells is one to be made intraoperatively. This review discusses the latest technical innovations for a more accurate tumor margin localization based on mass spectrometry. Highlighting the latest mass spectrometric inventions, real-time diagnosis seems to be within reach; focusing on the intelligent knife, desorption electrospray ionization, picosecond infrared laser and MasSpec pen, the current technical status is evaluated critically concerning its scientific and medical practice.
Collapse
|
19
|
New frontiers in drug development utilizing desorption by impulsive vibrational excitation for sample preparation, tissue imaging and beyond. Bioanalysis 2018; 10:1625-1629. [PMID: 30354194 DOI: 10.4155/bio-2018-0221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
20
|
Miller RJD. Ultrafast imaging of photochemical dynamics: roadmap to a new conceptual basis for chemistry. Faraday Discuss 2018; 194:777-828. [PMID: 27991637 DOI: 10.1039/c6fd00241b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- R J Dwayne Miller
- The Max Planck Institute for the Structure and Dynamics of Matter, The Hamburg Centre for Ultrafast Imaging, Luruper Chausse 149, Hamburg 22607, Germany. and Departments of Chemistry and Physics, University of Toronto, 80 St. George Street, Toronto, Ontario L5G 3J6, Canada
| |
Collapse
|
21
|
Schulz EC, Kaub J, Busse F, Mehrabi P, Müller-Werkmeister HM, Pai EF, Robertson WD, Miller RJD. Protein crystals IR laser ablated from aqueous solution at high speed retain their diffractive properties: applications in high-speed serial crystallography. J Appl Crystallogr 2017. [DOI: 10.1107/s1600576717014479] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In order to utilize the high repetition rates now available at X-ray free-electron laser sources for serial crystallography, methods must be developed to softly deliver large numbers of individual microcrystals at high repetition rates and high speeds. Picosecond infrared laser (PIRL) pulses, operating under desorption by impulsive vibrational excitation (DIVE) conditions, selectively excite the OH vibrational stretch of water to directly propel the excited volume at high speed with minimized heating effects, nucleation formation or cavitation-induced shock waves, leaving the analytes intact and undamaged. The soft nature and laser-based sampling flexibility provided by the technique make the PIRL system an interesting crystal delivery approach for serial crystallography. This paper demonstrates that protein crystals extracted directly from aqueous buffer solutionviaPIRL-DIVE ablation retain their diffractive properties and can be usefully exploited for structure determination at synchrotron sources. The remaining steps to implement the technology for high-speed serial femtosecond crystallography, such as single-crystal localization, high-speed sampling and synchronization, are described. This proof-of-principle experiment demonstrates the viability of a new laser-based high-speed crystal delivery system without the need for liquid-jet injectors or fixed-target mounting solutions.
Collapse
|
22
|
Ischenko AA, Weber PM, Miller RJD. Capturing Chemistry in Action with Electrons: Realization of Atomically Resolved Reaction Dynamics. Chem Rev 2017; 117:11066-11124. [DOI: 10.1021/acs.chemrev.6b00770] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Anatoly A. Ischenko
- Institute
of Fine Chemical Technologies, Moscow Technological University, Vernadskogo
86, 119571 Moscow, Russia
| | - Peter M. Weber
- Department
of Chemistry, Brown University, 324 Brook Street, 02912 Providence, Rhode Island, United States
| | - R. J. Dwayne Miller
- The Max Planck Institute for the Structure and Dynamics of Matter, Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
- Departments
of Chemistry and Physics, University of Toronto, 80 St. George, M5S 3H6 Toronto, Canada
| |
Collapse
|
23
|
Zou J, Wu C, Robertson WD, Zhigilei LV, Miller RJD. Molecular dynamics investigation of desorption and ion separation following picosecond infrared laser (PIRL) ablation of an ionic aqueous protein solution. J Chem Phys 2017; 145:204202. [PMID: 27908131 DOI: 10.1063/1.4967164] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Molecular dynamics simulations were performed to characterize the ablation process induced by a picosecond infrared laser (PIRL) operating in the regime of desorption by impulsive vibrational excitation (DIVE) of a model peptide (lysozyme)/counter-ion system in aqueous solution. The simulations were performed for ablation under typical experimental conditions found within a time-of-flight mass spectrometer (TOF-MS), that is in vacuum with an applied electric field (E = ± 107 V/m), for up to 2 ns post-ablation and compared to the standard PIRL-DIVE ablation condition (E = 0 V/m). Further, a simulation of ablation under an extreme field condition (E = 1010 V/m) was performed for comparison to extend the effective dynamic range of the effect of the field on charge separation. The results show that the plume dynamics were retained under a typical TOF-MS condition within the first 1 ns of ablation. Efficient desorption was observed with more than 90% of water molecules interacting with lysozyme stripped off within 1 ns post-ablation. The processes of ablation and desolvation of analytes were shown to be independent of the applied electric field and thus decoupled from the ion separation process. Unlike under the extreme field conditions, the electric field inside a typical TOF-MS was shown to modify the ions' motion over a longer time and in a soft manner with no enhancement to fragmentation observed as compared to the standard PIRL-DIVE. The study indicates that the PIRL-DIVE ablation mechanism could be used as a new, intrinsically versatile, and highly sensitive ion source for quantitative mass spectrometry.
Collapse
Affiliation(s)
- J Zou
- Departments of Chemistry and Physics, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - C Wu
- Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904-4745, USA
| | - W D Robertson
- Max Plank Institute for the Structure and Dynamics of Matter, 149 Luruper Chaussee, 27761 Hamburg, Germany
| | - L V Zhigilei
- Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904-4745, USA
| | - R J D Miller
- Departments of Chemistry and Physics, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
24
|
Rahman N, Rahman H, Haris M, Mahmood R. Wound healing potentials of Thevetia peruviana: Antioxidants and inflammatory markers criteria. J Tradit Complement Med 2017; 7:519-525. [PMID: 29034202 PMCID: PMC5634754 DOI: 10.1016/j.jtcme.2017.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/17/2016] [Accepted: 01/11/2017] [Indexed: 11/26/2022] Open
Abstract
Thevetia peruviana is a medicinal plant used in the treatment of external wounds, infected area, ring worms, tumours etc. in traditional system of medicine. The aim of the study was to evaluate the wound healing potentials of T. peruviana leaves hexane (LH) and fruit rind (FW) water extracts and to prove the folkloric claims. The antimicrobial, antioxidant and anti-inflammatory potentials could be important strategies in defining potent wound healing drug. Based on these approaches the current study was designed using incision, excision and dead space wound models with the biochemical, antioxidant enzymes and inflammatory marker analysis. The fruit rind water extract showed highest WBS of 1133 ± 111.4 g. The extracts in excision model retrieved the excised wound i.e. complete healing of wound at day 14. The hydroxyproline content of FW and LH treated dry granuloma tissue was increased to 65.73 ± 3.2 mg/g and 53.66 ± 0.38 mg/g, accompanied by elevations of hexosamine and hexauronic acid with upregulation of GSH, catalase, SOD, peroxidase and the down regulation of the inflammatory marker (NO) and oxidative stress marker (LPO) in wet granulation tissue was documented. Conclusively, both the extracts showed enhanced WBS, rate of wound contraction, skin collagen tissue development, and early epithelisation. Therapeutic wound healing effect was further proven by reduced free radicals and inflammatory makers associated with enhanced antioxidants and connective tissue with histological evidence of more collagen formation. The present research could establish T. peruviana as potential source of effective wound healing drugs.
Collapse
Affiliation(s)
- Nazneen Rahman
- Department of Biotechnology and Bioinformatics, Kuvempu University, Jnanasahyadri, Shankaraghatta, 577 451, Shimoga Dist., Karnataka, India
| | - Haseebur Rahman
- Department of Biotechnology and Bioinformatics, Kuvempu University, Jnanasahyadri, Shankaraghatta, 577 451, Shimoga Dist., Karnataka, India
| | - Mir Haris
- Department of Biotechnology and Bioinformatics, Kuvempu University, Jnanasahyadri, Shankaraghatta, 577 451, Shimoga Dist., Karnataka, India
| | - Riaz Mahmood
- Department of Biotechnology and Bioinformatics, Kuvempu University, Jnanasahyadri, Shankaraghatta, 577 451, Shimoga Dist., Karnataka, India
| |
Collapse
|