1
|
Wang J, Huang D, Chen D, Ren H, Zhao Y. Emerging Functional Porous Scaffolds for Liver Tissue Engineering. Adv Healthc Mater 2024:e2403741. [PMID: 39722150 DOI: 10.1002/adhm.202403741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/30/2024] [Indexed: 12/28/2024]
Abstract
Liver tissue engineering holds promising in synthesizing or regenerating livers, while the design of functional scaffold remains a challenge. Owing to the intricate simulation of extracellular matrix structure and performance, porous scaffolds have demonstrated advantages in creating liver microstructures and sustaining liver functions. Currently, various methods and processes have been employed to fabricate porous scaffolds, manipulating the properties and morphologies of materials to confer them with unique supportive functions. Additionally, scaffolds must also facilitate tissue growth and deliver cells, possessing therapeutic or regenerative effects. In this review, it is initially outline typical procedures for fabricating porous scaffolds and showcase various morphologies of microstructures. Subsequently, it is delved into the forms of cell loading in porous scaffolds, including scaffold-based, scaffold-free, and synergetic or bioassembly approaches. Lastly, the utilization of porous scaffolds in liver diseases, offering significant insights and future implications for liver regeneration research in tissue engineering is explored.
Collapse
Affiliation(s)
- Jinglin Wang
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Danqing Huang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Dayu Chen
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Haozhen Ren
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yuanjin Zhao
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
2
|
Udagawa D, Nagata S, Yagi H, Nishi K, Morisaku T, Adachi S, Nakano Y, Tanaka M, Hori S, Hasegawa Y, Abe Y, Kitago M, Kitagawa Y. A Novel Approach to Orthotopic Hepatocyte Transplantation Engineered With Liver Hydrogel for Fibrotic Livers, Enhancing Cell-Cell Interaction and Angiogenesis. Cell Transplant 2024; 33:9636897241253700. [PMID: 38770981 PMCID: PMC11110510 DOI: 10.1177/09636897241253700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024] Open
Abstract
Hepatocyte transplantation (HCT) is a potential bridging therapy or an alternative to liver transplantation. Conventionally, single-cell hepatocytes are injected via the portal vein. This strategy, however, has yet to overcome poor cell engraftment and function. Therefore, we developed an orthotopic HCT method using a liver-derived extracellular matrix (L-ECM) gel. PXB cells (flesh mature human hepatocytes) were dispersed into the hydrogel solution in vitro, and the gel solution was immediately gelated in 37°C incubators to investigate the affinity between mature human hepatocyte and the L-ECM gel. During the 3-day cultivation in hepatocyte medium, PXB cells formed cell aggregates via cell-cell interactions. Quantitative analysis revealed human albumin production in culture supernatants. For the in vivo assay, PXB cells were encapsulated in the L-ECM gel and transplanted between the liver lobes of normal rats. Pathologically, the L-ECM gel was localized at the transplant site and retained PXB cells. Cell survival and hepatic function marker expression were verified in another rat model wherein thioacetamide was administered to induce liver fibrosis. Moreover, cell-cell interactions and angiogenesis were enhanced in the L-ECM gel compared with that in the collagen gel. Our results indicate that L-ECM gels can help engraft transplanted hepatocytes and express hepatic function as a scaffold for cell transplantation.
Collapse
Affiliation(s)
- Daisuke Udagawa
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Shogo Nagata
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Yagi
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Kotaro Nishi
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | | | - Shungo Adachi
- Fundamental Innovative Oncology Core, National Cancer Center Research Institute, Tokyo, Japan
| | - Yutaka Nakano
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Masayuki Tanaka
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Shutaro Hori
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yasushi Hasegawa
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yuta Abe
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Minoru Kitago
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Preiss LC, Lauschke VM, Georgi K, Petersson C. Multi-Well Array Culture of Primary Human Hepatocyte Spheroids for Clearance Extrapolation of Slowly Metabolized Compounds. AAPS J 2022; 24:41. [PMID: 35277751 DOI: 10.1208/s12248-022-00689-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/04/2022] [Indexed: 12/13/2022] Open
Abstract
Accurate prediction of human pharmacokinetics using in vitro tools is an important task during drug development. Albeit, currently used in vitro systems for clearance extrapolation such as microsomes and primary human hepatocytes in suspension culture show reproducible turnover, the utility of these systems is limited by a rapid decline of activity of drug metabolizing enzymes. In this study, a multi-well array culture of primary human hepatocyte spheroids was compared to suspension and single spheroid cultures from the same donor. Multi-well spheroids remained viable and functional over the incubation time of 3 days, showing physiological excretion of albumin and α-AGP. Their metabolic activity was similar compared to suspension and single spheroid cultures. This physiological activity, the high cell concentration, and the prolonged incubation time resulted in significant turnover of all tested low clearance compounds (n = 8). In stark contrast, only one or none of the compounds showed significant turnover when single spheroid or suspension cultures were used. Using multi-well spheroids and a regression offset approach (log(CLint) = 1.1 × + 0.85), clearance was predicted within 3-fold for 93% (13/14) of the tested compounds. Thus, multi-well spheroids represent a novel and valuable addition to the ADME in vitro tool kit for the determination of low clearance and overall clearance prediction. Graphical Abstract.
Collapse
Affiliation(s)
- Lena C Preiss
- Department of Drug Metabolism and Pharmacokinetics (DMPK), The Healthcare Business of Merck KGaA, Frankfurter Str. 250, 64293, Darmstadt, Germany.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tuebingen, Tuebingen, Germany
| | - Katrin Georgi
- Department of Drug Metabolism and Pharmacokinetics (DMPK), The Healthcare Business of Merck KGaA, Frankfurter Str. 250, 64293, Darmstadt, Germany
| | - Carl Petersson
- Department of Drug Metabolism and Pharmacokinetics (DMPK), The Healthcare Business of Merck KGaA, Frankfurter Str. 250, 64293, Darmstadt, Germany.
| |
Collapse
|
4
|
Handin N, Mickols E, Ölander M, Rudfeldt J, Blom K, Nyberg F, Senkowski W, Urdzik J, Maturi V, Fryknäs M, Artursson P. Conditions for maintenance of hepatocyte differentiation and function in 3D cultures. iScience 2021; 24:103235. [PMID: 34746700 PMCID: PMC8551077 DOI: 10.1016/j.isci.2021.103235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/02/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
Spheroid cultures of primary human hepatocytes (PHH) are used in studies of hepatic drug metabolism and toxicity. The cultures are maintained under different conditions, with possible confounding results. We performed an in-depth analysis of the influence of various culture conditions to find the optimal conditions for the maintenance of an in vivo like phenotype. The formation, protein expression, and function of PHH spheroids were followed for three weeks in a high-throughput 384-well format. Medium composition affected spheroid histology, global proteome profile, drug metabolism and drug-induced toxicity. No epithelial-mesenchymal transition was observed. Media with fasting glucose and insulin levels gave spheroids with phenotypes closest to normal PHH. The most expensive medium resulted in PHH features most divergent from that of native PHH. Our results provide a protocol for culture of healthy PHH with maintained function - a prerequisite for studies of hepatocyte homeostasis and more reproducible hepatocyte research. 3D spheroid cultures were established in 384-well format Eight different media variants were used to optimize the 3D cultures Optimized William's medium was as good as expensive commercial medium The 3D cultures were used to study drug metabolism and toxicity
Collapse
Affiliation(s)
- Niklas Handin
- Department of Pharmacy, Uppsala University, 75123 Uppsala, Sweden
| | - Evgeniya Mickols
- Department of Pharmacy, Uppsala University, 75123 Uppsala, Sweden
| | - Magnus Ölander
- Department of Pharmacy, Uppsala University, 75123 Uppsala, Sweden
| | - Jakob Rudfeldt
- Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| | - Kristin Blom
- Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| | - Frida Nyberg
- Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| | - Wojciech Senkowski
- Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden.,Biotech Research & Innovation Centre (BRIC) and Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Jozef Urdzik
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Varun Maturi
- Department of Pharmacy, Uppsala University, 75123 Uppsala, Sweden
| | - Mårten Fryknäs
- Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| | - Per Artursson
- Department of Pharmacy, Uppsala University, 75123 Uppsala, Sweden
| |
Collapse
|
5
|
Shibuya K, Watanabe M, Goto R, Zaitsu M, Ganchiku Y, Taketomi A. The Efficacy of the Hepatocyte Spheroids for Hepatocyte Transplantation. Cell Transplant 2021; 30:9636897211000014. [PMID: 33900126 PMCID: PMC8085376 DOI: 10.1177/09636897211000014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The safety and short-term efficacy of hepatocyte transplantation (HCTx) have been widely proven. However, issues such as reduced viability and/or function of hepatocytes, insufficient engraftment, and lack of a long-term effect have to be overcome for widespread application of HCTx. In this study, we evaluated hepatocyte spheroids (HSs), formed by self-aggregation of hepatocytes, as an alternative to hepatocytes in single-cell suspension. Hepatocytes were isolated from C57BL/6 J mice liver using a three-step collagenase perfusion technique and HSs were formed by the hanging drop method. After the spheroids formation, the HSs showed significantly higher mRNA expression of albumin, ornithine transcarbamylase, glucose-6-phosphate, alpha-1-antitrypsin, low density lipoprotein receptor, coagulation factors, and apolipoprotein E (ApoE) than 2 dimensional (2D)-cultured hepatocytes (p < 0.05). Albumin production by HSs was significantly higher than that by 2D-cultured hepatocytes (9.5 ± 2.5 vs 3.5 ± 1.8 μg/dL, p < 0.05). The HSs, but not single hepatocytes, maintained viability and albumin mRNA expression in suspension (92.0 ± 2.8% and 1.03 ± 0.09 at 6 h). HSs (3.6 × 106 cells) or isolated hepatocytes (fSH, 3.6 × 106 cells) were transplanted into the liver of ApoE knockout (KO-/-) mice via the portal vein. Following transplantation, serum ApoE concentration (ng/mL) of HS-transplanted mice (1w: 63.1 ± 56.7, 4w: 17.0 ± 10.9) was higher than that of fSH-transplanted mice (1 w: 33.4 ± 13.0, 4w: 13.7 ± 9.6). In both groups, the mRNA levels of pro-inflammatory cytokines (IL-6, IL-1β, TNF-α, MCP-1, and MIP-1β) were upregulated in the liver following transplantation; however, no significant differences were observed. Pathologically, transplanted HSs were observed as flat cell clusters in contact with the portal vein wall on day 7. Additionally, ApoE positive cells were observed in the liver parenchyma distant from the portal vein on day 28. Our results indicate that HS is a promising alternative to single hepatocytes and can be applied for HCTx.
Collapse
Affiliation(s)
- Kazuaki Shibuya
- Department of Gastroenterological surgery I, 12810Hokkaido university graduate school, kita-ku, Sapporo, Japan
| | - Masaaki Watanabe
- Transplant surgery, 163693Hokkaido University Hospital, kita-ku, Sapporo, Japan
| | - Ryoichi Goto
- Department of Gastroenterological surgery I, 12810Hokkaido university graduate school, kita-ku, Sapporo, Japan
| | - Masaaki Zaitsu
- Department of Gastroenterological surgery I, 12810Hokkaido university graduate school, kita-ku, Sapporo, Japan
| | - Yoshikazu Ganchiku
- Department of Gastroenterological surgery I, 12810Hokkaido university graduate school, kita-ku, Sapporo, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological surgery I, 12810Hokkaido university graduate school, kita-ku, Sapporo, Japan
| |
Collapse
|
6
|
Roy HS, Singh R, Ghosh D. SARS-CoV-2 and tissue damage: current insights and biomaterial-based therapeutic strategies. Biomater Sci 2021; 9:2804-2824. [PMID: 33666206 DOI: 10.1039/d0bm02077j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The effect of SARS-CoV-2 infection on humanity has gained worldwide attention and importance due to the rapid transmission, lack of treatment options and high mortality rate of the virus. While scientists across the world are searching for vaccines/drugs that can control the spread of the virus and/or reduce the risks associated with infection, patients infected with SARS-CoV-2 have been reported to have tissue/organ damage. With most tissues/organs having limited regenerative potential, interventions that prevent further damage or facilitate healing would be helpful. In the past few decades, biomaterials have gained prominence in the field of tissue engineering, in view of their major role in the regenerative process. Here we describe the effect of SARS-CoV-2 on multiple tissues/organs, and provide evidence for the positive role of biomaterials in aiding tissue repair. These findings are further extrapolated to explore their prospects as a therapeutic platform to address the tissue/organ damage that is frequently observed during this viral outbreak. This study suggests that the biomaterial-based approach could be an effective strategy for regenerating tissues/organs damaged by SARS-CoV-2.
Collapse
Affiliation(s)
- Himadri Shekhar Roy
- Department of Biological Science, Institute of Nanoscience and Technology (INST), Habitat Centre, Sector 64, Phase 10, Mohali-160062, Punjab, India.
| | - Rupali Singh
- Department of Biological Science, Institute of Nanoscience and Technology (INST), Habitat Centre, Sector 64, Phase 10, Mohali-160062, Punjab, India.
| | - Deepa Ghosh
- Department of Biological Science, Institute of Nanoscience and Technology (INST), Habitat Centre, Sector 64, Phase 10, Mohali-160062, Punjab, India.
| |
Collapse
|
7
|
De Chiara F, Ferret-Miñana A, Ramón-Azcón J. The Synergy between Organ-on-a-Chip and Artificial Intelligence for the Study of NAFLD: From Basic Science to Clinical Research. Biomedicines 2021; 9:248. [PMID: 33801289 PMCID: PMC7999375 DOI: 10.3390/biomedicines9030248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 12/15/2022] Open
Abstract
Non-alcoholic fatty liver affects about 25% of global adult population. On the long-term, it is associated with extra-hepatic compliances, multiorgan failure, and death. Various invasive and non-invasive methods are employed for its diagnosis such as liver biopsies, CT scan, MRI, and numerous scoring systems. However, the lack of accuracy and reproducibility represents one of the biggest limitations of evaluating the effectiveness of drug candidates in clinical trials. Organ-on-chips (OOC) are emerging as a cost-effective tool to reproduce in vitro the main NAFLD's pathogenic features for drug screening purposes. Those platforms have reached a high degree of complexity that generate an unprecedented amount of both structured and unstructured data that outpaced our capacity to analyze the results. The addition of artificial intelligence (AI) layer for data analysis and interpretation enables those platforms to reach their full potential. Furthermore, the use of them do not require any ethic and legal regulation. In this review, we discuss the synergy between OOC and AI as one of the most promising ways to unveil potential therapeutic targets as well as the complex mechanism(s) underlying NAFLD.
Collapse
Affiliation(s)
- Francesco De Chiara
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac 10–12, 08028 Barcelona, Spain; (A.F.-M.); (J.R.-A.)
| | - Ainhoa Ferret-Miñana
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac 10–12, 08028 Barcelona, Spain; (A.F.-M.); (J.R.-A.)
| | - Javier Ramón-Azcón
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac 10–12, 08028 Barcelona, Spain; (A.F.-M.); (J.R.-A.)
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| |
Collapse
|
8
|
Ali M, Payne SL. Biomaterial-based cell delivery strategies to promote liver regeneration. Biomater Res 2021; 25:5. [PMID: 33632335 PMCID: PMC7905561 DOI: 10.1186/s40824-021-00206-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/05/2021] [Indexed: 02/08/2023] Open
Abstract
Chronic liver disease and cirrhosis is a widespread and untreatable condition that leads to lifelong impairment and eventual death. The scarcity of liver transplantation options requires the development of new strategies to attenuate disease progression and reestablish liver function by promoting regeneration. Biomaterials are becoming an increasingly promising option to both culture and deliver cells to support in vivo viability and long-term function. There is a wide variety of both natural and synthetic biomaterials that are becoming established as delivery vehicles with their own unique advantages and disadvantages for liver regeneration. We review the latest developments in cell transplantation strategies to promote liver regeneration, with a focus on the use of both natural and synthetic biomaterials for cell culture and delivery. We conclude that future work will need to refine the use of these biomaterials and combine them with novel strategies that recapitulate liver organization and function in order to translate this strategy to clinical use.
Collapse
Affiliation(s)
- Maqsood Ali
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Samantha L Payne
- Department of Biomedical Engineering, School of Engineering, Tufts University, Medford, MA, 02155, USA.
| |
Collapse
|
9
|
Kobayashi J, Arisaka Y, Yui N, Yamato M, Okano T. Preservation of heparin-binding EGF-like growth factor activity on heparin-modified poly( N-isopropylacrylamide)-grafted surfaces. RSC Adv 2021; 11:37225-37232. [PMID: 35496401 PMCID: PMC9043771 DOI: 10.1039/d1ra07317f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/09/2021] [Indexed: 11/28/2022] Open
Abstract
A heparin-modified poly(N-isopropylacrylamide) (PIPAAm)-grafted surface bound with heparin-binding epidermal growth factor-like growth factor (HB-EGF) was able to culture hepatocytes maintaining high albumin secretion and high expression of hepatocyte-specific genes. However, the activity of HB-EGF on the surface and its binding effects on hepatocytes remain unclear. In this study, we investigated the temperature-dependent interactions of HB-EGF and EGF receptor (EGFR) with heparin-modified PIPAAm to evaluate the activity of HB-EGF on the surface. Quartz crystal microbalance (QCM) measurements revealed that the amounts of adsorbed HB-EGF on either the heparin-modified PIPAAm-grafted surface (heparin-IC1) or PIPAAm-grafted surfaces were almost the same regardless of swelling/deswelling of grafted PIPAAm chains. The heparin-IC1 surface bound to HB-EGF at 37 °C had the ability to bind to hepatocytes through specific affinity interaction with EGFR, whose activation was confirmed by western blotting. However, the physisorbed HB-EGF on the PIPAAm surface greatly diminished its activity. Taken together, the introduction of heparin into grafted PIPAAm chains on the surface plays a pivotal role in holding HB-EGF while preserving its activity. Hydration and swelling of surface-grafted PIPAAm chains at 20 °C greatly diminished the attachment of hepatocytes with HB-EGF bound to heparin-IC1, whereas hepatocytes were able to bind to HB-EGF bound to heparin-IC1 at 37 °C. Thus, the equilibrated affinity interaction between EGFRs and surface-bound HB-EGF was considered to be attenuated by steric hindrance due to hydration and/or swelling of grafted PIPAAm chains. Activity of HB-EGF bound to a heparin-modified poly(N-isopropylacrylamide) (PIPAAm)-grafted surface was preserved through specific binding to heparin, whereas physisorbed HB-EGF on a PIPAAm-grafted surface greatly diminished its activity.![]()
Collapse
Affiliation(s)
- Jun Kobayashi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Yoshinori Arisaka
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan
- Cell Sheet Tissue Engineering Center, Department of Pharmaceutics and Pharmaceutical Chemistry, Health Sciences, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, USA
| |
Collapse
|
10
|
Hendrawan S, Bono E, Hutter A, Weber U, Lheman J, Baer HU. Evaluation of 3D PLLA scaffolds coated with nano-thick collagen as carrier for hepatocytes. J Biomed Mater Res B Appl Biomater 2020; 109:723-732. [PMID: 33063448 DOI: 10.1002/jbm.b.34738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 09/09/2020] [Accepted: 09/30/2020] [Indexed: 12/30/2022]
Abstract
Orthotopic liver transplantation is presently the most effectual method for the treatment of end-stage liver diseases. Though, one major issue is the restricted number of donor organs that are accessible. Hence, liver tissue engineering is under investigation with the goal of restoring liver functions. In this study, we investigated 3D porous scaffolds made of PLLA coated with a nano thick collagen layer (matrices). Primary rat dermal fibroblasts were used in a first study phase to check matrices' cytocompatibility. More than 70% of seeded cells could adhere and remain viable 24 and 48 hours after the seeding. To test the suitability of the matrices for human primary hepatocytes, HepaRG cells were seeded and analyzed for viability, adhesion rate, and functionality such as albumin secretion. About 80% of seeded HepaRG adhered to the scaffolds remaining viable up to 72 hours. Cells were homogeneously distributed in the entire scaffold with albumin secretion increasing with time. Our results indicate that PLLA collagen-coated matrices allow hepatocytes attachment and distribution throughout the 3D structure, as well as support cell functionality. Such matrices have been applied in our clinical phase II trial. Functional hepatocytes were successfully implanted in patients suffering from liver-cirrhosis with higher cell numbers and adhesions rate compared to our previous trial with the first matrix type and a general improvement in clinical condition.
Collapse
Affiliation(s)
- Siufui Hendrawan
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Tarumanagara University, Jakarta, Indonesia.,Tarumanagara Human Cell Technology Laboratory, Jakarta, Indonesia
| | - Epifania Bono
- Zürich University of Applied Sciences, Institute of Chemistry and Biotechnology, Wädenswil, Switzerland
| | - Albert Hutter
- Zürich University of Applied Sciences, Institute of Chemistry and Biotechnology, Wädenswil, Switzerland
| | - Ursula Weber
- Tarumanagara Human Cell Technology Laboratory, Jakarta, Indonesia.,Baermed, Centre of Abdominal Surgery, Hirslanden Clinic, Zürich, Switzerland.,Department of Visceral and Transplantation Surgery, University of Bern, Bern, Switzerland
| | - Jennifer Lheman
- Tarumanagara Human Cell Technology Laboratory, Jakarta, Indonesia
| | - Hans U Baer
- Baermed, Centre of Abdominal Surgery, Hirslanden Clinic, Zürich, Switzerland.,Department of Visceral and Transplantation Surgery, University of Bern, Bern, Switzerland.,Rumah Sakit Gading Pluit, Jakarta, Indonesia
| |
Collapse
|
11
|
Hendrawan S, Lheman J, Nuraeni, Weber U, Baer HU. Hepatocyte and Islet Cell Cotransplantation on Poly-L-Lactide Matrix for the Treatment of Liver Cirrhosis. Int J Hepatol 2020; 2020:5410359. [PMID: 33123384 PMCID: PMC7582088 DOI: 10.1155/2020/5410359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 09/26/2020] [Accepted: 10/07/2020] [Indexed: 11/18/2022] Open
Abstract
The human autologous hepatocyte matrix implant is a promising alternative procedure to counter liver damage. We assessed the outcome of human hepatocytes isolation from cirrhotic liver compared to the clinical and histological scores of disease severity. A total of 11 patients with various clinical scores (CTP and MELD) and histological score (Metavir, fibrosis) of liver cirrhosis were included in the hepatocyte matrix implant clinical phase I study. The liver segment and pancreatic tissue were harvested from each patient, and hepatocytes and cells of islets of Langerhans were isolated. The freshly isolated human hepatocytes were coseeded with the islet cells onto poly(l-lactic acid) (PLLA) scaffolds, cultured, and transplanted back into the patient. Human hepatocytes were isolated from 11 cirrhotic liver specimens with a resulting yield of 1.4 ± 0.5 × 106 cells per gram of the liver specimen and a viability rate of 52 ± 13%. It was found that the yield and viability of the liver cells were not correlated with the clinical and histological scores of the liver cirrhosis. A correlation was found between the hepatocyte yield obtained and the average number of hepatocytes counted in 10 microscopic fields of view. More viable cells were obtained from cirrhotic livers caused by chronic hepatitis B as compared to chronic hepatitis C in the same MELD score range. There was no correlation between the clinical and histological disease severity scores of liver cirrhosis and the outcome of hepatocytes isolation. It seems that the yield could depend on the type of hepatitis underlying the cirrhotic tissue. The study was registered at www.clinicaltrial.gov with the study identifier: NCT01335568.
Collapse
Affiliation(s)
- Siufui Hendrawan
- Tarumanagara Human Cell Technology Laboratory, Faculty of Medicine, Tarumanagara University, Jakarta 11440, Indonesia
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Tarumanagara University, Jakarta 11440, Indonesia
| | - Jennifer Lheman
- Tarumanagara Human Cell Technology Laboratory, Faculty of Medicine, Tarumanagara University, Jakarta 11440, Indonesia
| | - Nuraeni
- Tarumanagara Human Cell Technology Laboratory, Faculty of Medicine, Tarumanagara University, Jakarta 11440, Indonesia
| | - Ursula Weber
- Tarumanagara Human Cell Technology Laboratory, Faculty of Medicine, Tarumanagara University, Jakarta 11440, Indonesia
- Baermed, Centre of Abdominal Surgery, Hirslanden Clinic, 8032 Zürich, Switzerland
| | - Hans Ulrich Baer
- Baermed, Centre of Abdominal Surgery, Hirslanden Clinic, 8032 Zürich, Switzerland
- Department of Visceral and Transplantation Surgery, University of Bern, Switzerland
| |
Collapse
|
12
|
Papatheodoridi M, Mazza G, Pinzani M. Regenerative hepatology: In the quest for a modern prometheus? Dig Liver Dis 2020; 52:1106-1114. [PMID: 32868215 DOI: 10.1016/j.dld.2020.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022]
Abstract
As liver-related morbidity and mortality is rising worldwide and orthotopic liver transplantation (OLT) remains the only standard-of-care for end-stage liver disease or acute liver failure, shortage of donor organs is becoming more prominent. Importantly, advances in regenerative Hepatology and liver bioengineering are bringing new hope to the possibility of restoring impaired hepatic functionality in the presence of acute or chronic liver failure. Hepatocyte transplantation and artificial liver-support systems were the first strategies used in regenerative hepatology but have presented various types of efficiency limitations restricting their widespread use. In parallel, liver bioengineering has been a rapidly developing field bringing continuously novel advancements in biomaterials, three dimensional (3D) scaffolds, cell sources and relative methodologies for creating bioengineered liver tissue. The current major task in liver bioengineering is to build small implantable liver mass for treating inherited metabolic disorders, bioengineered bile ducts for congenital biliary defects and large bioengineered liver organs for transplantation, as substitutes to donor-organs, in cases of acute or acute-on-chronic liver failure. This review aims to summarize the state-of-the-art and upcoming technologies of regenerative Hepatology that are emerging as promising alternatives to the current standard-of care in liver disease.
Collapse
Affiliation(s)
- Margarita Papatheodoridi
- Sheila Sherlock Liver Unit, Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Giuseppe Mazza
- Sheila Sherlock Liver Unit, Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Massimo Pinzani
- Sheila Sherlock Liver Unit, Institute for Liver and Digestive Health, University College London, London, United Kingdom.
| |
Collapse
|
13
|
Tasnim F, Singh NH, Tan EKF, Xing J, Li H, Hissette S, Manesh S, Fulwood J, Gupta K, Ng CW, Xu S, Hill J, Yu H. Tethered primary hepatocyte spheroids on polystyrene multi-well plates for high-throughput drug safety testing. Sci Rep 2020; 10:4768. [PMID: 32179810 PMCID: PMC7075904 DOI: 10.1038/s41598-020-61699-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 02/19/2020] [Indexed: 12/26/2022] Open
Abstract
Hepatocyte spheroids are useful models for mimicking liver phenotypes in vitro because of their three-dimensionality. However, the lack of a biomaterial platform which allows the facile manipulation of spheroid cultures on a large scale severely limits their application in automated high-throughput drug safety testing. In addition, there is not yet a robust way of controlling spheroid size, homogeneity and integrity during extended culture. This work addresses these bottlenecks to the automation of hepatocyte spheroid culture by tethering 3D hepatocyte spheroids directly onto surface-modified polystyrene (PS) multi-well plates. However, polystyrene surfaces are inert toward functionalization, and this makes the uniform conjugation of bioactive ligands very challenging. Surface modification of polystyrene well plates is achieved herein using a three-step sequence, resulting in a homogeneous distribution of bioactive RGD and galactose ligands required for spheroid tethering and formation. Importantly, treatment of polystyrene tethered spheroids with vehicle and paradigm hepatotoxicant (chlorpromazine) treatment using an automated liquid handling platform shows low signal deviation, intact 3D spheroidal morphology and Z’ values above 0.5, and hence confirming their amenability to high-throughput automation. Functional analyses performance (i.e. urea and albumin production, cytochrome P450 activity and induction studies) of the polystyrene tethered spheroids reveal significant improvements over hepatocytes cultured as collagen monolayers. This is the first demonstration of automated hepatotoxicant treatment on functional 3D hepatocyte spheroids tethered directly on polystyrene multi-well plates, and will serve as an important advancement in the application of 3D tethered spheroid models to high throughput drug screening.
Collapse
Affiliation(s)
- Farah Tasnim
- Institute of Bioengineering and Nanotechnology, #04-01, 31 Biopolis Way, The Nanos, Singapore, 138669, Singapore
| | - Nisha Hari Singh
- Institute of Bioengineering and Nanotechnology, #04-01, 31 Biopolis Way, The Nanos, Singapore, 138669, Singapore
| | - Elijah Keng Foo Tan
- Mechanobiology Institute, T-Labs, #05-01, 5A Engineering Drive 1, Singapore, 117411, Singapore.,Yong Loo Lin School of Medicine (Department of Physiology) and Graduate School for Integrative Sciences & Engineering (NGS), National University of Singapore, MD9-04-11, 2 Medical Drive, Singapore, 117593, Singapore
| | - Jiangwa Xing
- Institute of Bioengineering and Nanotechnology, #04-01, 31 Biopolis Way, The Nanos, Singapore, 138669, Singapore
| | - Huan Li
- Institute of Bioengineering and Nanotechnology, #04-01, 31 Biopolis Way, The Nanos, Singapore, 138669, Singapore
| | - Sebastien Hissette
- Institute of Bioengineering and Nanotechnology, #04-01, 31 Biopolis Way, The Nanos, Singapore, 138669, Singapore
| | - Sravanthy Manesh
- Experimental Therapeutics Centre (ETC), Level 3, 31 Biopolis Way, The Nanos, Singapore, 138669, Singapore
| | - Justina Fulwood
- Experimental Therapeutics Centre (ETC), Level 3, 31 Biopolis Way, The Nanos, Singapore, 138669, Singapore
| | - Kapish Gupta
- Mechanobiology Institute, T-Labs, #05-01, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Chan Way Ng
- Yong Loo Lin School of Medicine (Department of Physiology) and Graduate School for Integrative Sciences & Engineering (NGS), National University of Singapore, MD9-04-11, 2 Medical Drive, Singapore, 117593, Singapore
| | - Shuoyu Xu
- Institute of Bioengineering and Nanotechnology, #04-01, 31 Biopolis Way, The Nanos, Singapore, 138669, Singapore
| | - Jeffrey Hill
- Experimental Therapeutics Centre (ETC), Level 3, 31 Biopolis Way, The Nanos, Singapore, 138669, Singapore.,Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, BN19RH, UK
| | - Hanry Yu
- Institute of Bioengineering and Nanotechnology, #04-01, 31 Biopolis Way, The Nanos, Singapore, 138669, Singapore. .,Mechanobiology Institute, T-Labs, #05-01, 5A Engineering Drive 1, Singapore, 117411, Singapore. .,Yong Loo Lin School of Medicine (Department of Physiology) and Graduate School for Integrative Sciences & Engineering (NGS), National University of Singapore, MD9-04-11, 2 Medical Drive, Singapore, 117593, Singapore. .,CAMP IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Enterprise Wing, Level 4, Singapore, 138602, Singapore.
| |
Collapse
|
14
|
da Silva Morais A, Oliveira JM, Reis RL. Biomaterials and Microfluidics for Liver Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1230:65-86. [DOI: 10.1007/978-3-030-36588-2_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
A Hepatic Scaffold from Decellularized Liver Tissue: Food for Thought. Biomolecules 2019; 9:biom9120813. [PMID: 31810291 PMCID: PMC6995515 DOI: 10.3390/biom9120813] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 02/07/2023] Open
Abstract
Allogeneic liver transplantation is still deemed the gold standard solution for end-stage organ failure; however, donor organ shortages have led to extended waiting lists for organ transplants. In order to overcome the lack of donors, the development of new therapeutic options is mandatory. In the last several years, organ bioengineering has been extensively explored to provide transplantable tissues or whole organs with the final goal of creating a three-dimensional growth microenvironment mimicking the native structure. It has been frequently reported that an extracellular matrix-based scaffold offers a structural support and important biological molecules that could help cellular proliferation during the recellularization process. The aim of the present review is to underline the recent developments in cell-on-scaffold technology for liver bioengineering, taking into account: (1) biological and synthetic scaffolds; (2) animal and human tissue decellularization; (3) scaffold recellularization; (4) 3D bioprinting; and (5) organoid technology. Future possible clinical applications in regenerative medicine for liver tissue engineering and for drug testing were underlined and dissected.
Collapse
|
16
|
Grant R, Hallett J, Forbes S, Hay D, Callanan A. Blended electrospinning with human liver extracellular matrix for engineering new hepatic microenvironments. Sci Rep 2019; 9:6293. [PMID: 31000735 PMCID: PMC6472345 DOI: 10.1038/s41598-019-42627-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 04/03/2019] [Indexed: 12/21/2022] Open
Abstract
Tissue engineering of a transplantable liver could provide an alternative to donor livers for transplant, solving the problem of escalating donor shortages. One of the challenges for tissue engineers is the extracellular matrix (ECM); a finely controlled in vivo niche which supports hepatocytes. Polymers and decellularized tissue scaffolds each provide some of the necessary biological cues for hepatocytes, however, neither alone has proved sufficient. Enhancing microenvironments using bioactive molecules allows researchers to create more appropriate niches for hepatocytes. We combined decellularized human liver tissue with electrospun polymers to produce a niche for hepatocytes and compared the human liver ECM to its individual components; Collagen I, Laminin-521 and Fibronectin. The resulting scaffolds were validated using THLE-3 hepatocytes. Immunohistochemistry confirmed retention of proteins in the scaffolds. Mechanical testing demonstrated significant increases in the Young's Modulus of the decellularized ECM scaffold; providing significantly stiffer environments for hepatocytes. Each scaffold maintained hepatocyte growth, albumin production and influenced expression of key hepatic genes, with the decellularized ECM scaffolds exerting an influence which is not recapitulated by individual ECM components. Blended protein:polymer scaffolds provide a viable, translatable niche for hepatocytes and offers a solution to current obstacles in disease modelling and liver tissue engineering.
Collapse
Affiliation(s)
- Rhiannon Grant
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Scotland, UK
| | - John Hallett
- Scottish Centre for Regenerative Medicine, University of Edinburgh, Scotland, UK
| | - Stuart Forbes
- Scottish Centre for Regenerative Medicine, University of Edinburgh, Scotland, UK
| | - David Hay
- Scottish Centre for Regenerative Medicine, University of Edinburgh, Scotland, UK
| | - Anthony Callanan
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Scotland, UK.
| |
Collapse
|
17
|
Brown JH, Das P, DiVito MD, Ivancic D, Tan LP, Wertheim JA. Nanofibrous PLGA electrospun scaffolds modified with type I collagen influence hepatocyte function and support viability in vitro. Acta Biomater 2018; 73:217-227. [PMID: 29454157 PMCID: PMC5985221 DOI: 10.1016/j.actbio.2018.02.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 01/23/2018] [Accepted: 02/08/2018] [Indexed: 02/06/2023]
Abstract
A major challenge of maintaining primary hepatocytes in vitro is progressive loss of hepatocyte-specific functions, such as protein synthesis and cytochrome P450 (CYP450) catalytic activity. We developed a three-dimensional (3D) nanofibrous scaffold made from poly(l-lactide-co-glycolide) (PLGA) polymer using a newly optimized wet electrospinning technique that resulted in a highly porous structure that accommodated inclusion of primary human hepatocytes. Extracellular matrix (ECM) proteins (type I collagen or fibronectin) at varying concentrations were chemically linked to electrospun PLGA using amine coupling to develop an in vitro culture system containing the minimal essential ECM components of the liver micro-environment that preserve hepatocyte function in vitro. Cell-laden nanofiber scaffolds were tested in vitro to maintain hepatocyte function over a two-week period. Incorporation of type I collagen onto PLGA scaffolds (PLGA-Chigh: 100 µg/mL) led to 10-fold greater albumin secretion, 4-fold higher urea synthesis, and elevated transcription of hepatocyte-specific CYP450 genes (CYP3A4, 3.5-fold increase and CYP2C9, 3-fold increase) in primary human hepatocytes compared to the same cells grown within unmodified PLGA scaffolds over two weeks. These indices, measured using collagen-bonded scaffolds, were also higher than scaffolds coupled to fibronectin or an ECM control sandwich culture composed of type I collagen and Matrigel. Induction of CYP2C9 activity was also higher in these same type I collagen PLGA scaffolds compared to other ECM-modified or unmodified PLGA constructs and was equivalent to the ECM control at 7 days. Together, we demonstrate a minimalist ECM-based 3D synthetic scaffold that accommodates primary human hepatocyte inclusion into the matrix, maintains long-term in vitro survival and stimulates function, which can be attributed to coupling of type I collagen. STATEMENT OF SIGNIFICANCE Culturing primary hepatocytes within a three-dimensional (3D) structure that mimics the natural liver environment is a promising strategy for extending the function and viability of hepatocytes in vitro. In the present study we generate porous PLGA nanofibers, that are chemically modified with extracellular matrix proteins, to serve as 3D scaffolds for the in vitro culture of primary human hepatocytes. Our findings demonstrate that the use of ECM proteins, especially type I collagen, in a porous 3D environment helps to improve the synthetic function of primary hepatocytes over time. We believe the work presented within will provide insights to readers for drug toxicity and tissue engineering applications.
Collapse
Affiliation(s)
- Jessica H Brown
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States; Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Prativa Das
- Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Michael D DiVito
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States; Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - David Ivancic
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States; Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Lay Poh Tan
- Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 Singapore..
| | - Jason A Wertheim
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States; Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, United States; Department of Surgery, Jesse Brown VA Medical Center, Chicago, IL 60612, United States; Simpson Querrey Institute for BioNanotechnology in Medicine, Northwestern University, Chicago, IL 60611, United States; Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, United States.
| |
Collapse
|
18
|
Calitz C, Hamman JH, Fey SJ, Wrzesinski K, Gouws C. Recent advances in three-dimensional cell culturing to assess liver function and dysfunction: from a drug biotransformation and toxicity perspective. Toxicol Mech Methods 2018; 28:369-385. [PMID: 29297242 DOI: 10.1080/15376516.2017.1422580] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Carlemi Calitz
- Pharmacen™, Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Josias H. Hamman
- Pharmacen™, Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Stephen J. Fey
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Krzysztof Wrzesinski
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Chrisna Gouws
- Pharmacen™, Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
19
|
Bierwolf J, Volz T, Lütgehetmann M, Allweiss L, Riecken K, Warlich M, Fehse B, Kalff JC, Dandri M, Pollok JM. Primary Human Hepatocytes Repopulate Livers of Mice After In Vitro Culturing and Lentiviral-Mediated Gene Transfer. Tissue Eng Part A 2017; 22:742-53. [PMID: 27068494 PMCID: PMC4876526 DOI: 10.1089/ten.tea.2015.0427] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cell-based therapies represent a promising alternative to orthotopic liver transplantation. However, therapeutic effects are limited by low cell engraftment rates. We recently introduced a technique creating human hepatocyte spheroids for potential therapeutic application. The aim of this study was to evaluate whether these spheroids are suitable for engraftment in diseased liver tissues. Intrasplenic spheroid transplantation into immunodeficient uPA/SCID/beige mice was performed. Hepatocyte transduction ability prior to transplantation was tested by lentiviral labeling using red-green-blue (RGB) marking. Eight weeks after transplantation, animals were sacrificed and livers were analyzed by immunohistochemistry and immunofluorescence. To investigate human hepatocyte-specific gene expression profiles in mice, quantitative real-time-PCR was applied. Human albumin and alpha-1-antitrypsin concentrations in mouse serum were quantified to assess the levels of human chimerism. Precultured human hepatocytes reestablished their physiological liver tissue architecture and function upon transplantation in mice. Positive immunohistochemical labeling of the proliferating cell nuclear antigen revealed that human hepatocytes retained their in vivo proliferation capacity. Expression profiles of human genes analyzed in chimeric mouse livers resembled levels determined in native human tissue. Extensive vascularization of human cell clusters was detected by demonstration of von Willebrand factor activity. To model gene therapy approaches, lentiviral transduction was performed ex vivo and fluorescent microscopic imaging revealed maintenance of RGB marking in vivo. Altogether, this is the first report demonstrating that cultured and retroviral transduced human hepatocyte spheroids are able to engraft and maintain their regenerative potential in vivo.
Collapse
Affiliation(s)
- Jeanette Bierwolf
- 1 Department for General, Visceral, Thoracic, and Vascular Surgery, University Medical Center Bonn , Bonn, Germany
| | - Tassilo Volz
- 2 Department of Internal Medicine, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| | - Marc Lütgehetmann
- 2 Department of Internal Medicine, University Medical Center Hamburg-Eppendorf , Hamburg, Germany .,3 Department of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| | - Lena Allweiss
- 2 Department of Internal Medicine, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| | - Kristoffer Riecken
- 4 Department of Stem Cell Transplantation, Research Department Cell and Gene Therapy, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| | - Michael Warlich
- 2 Department of Internal Medicine, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| | - Boris Fehse
- 4 Department of Stem Cell Transplantation, Research Department Cell and Gene Therapy, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| | - Joerg C Kalff
- 1 Department for General, Visceral, Thoracic, and Vascular Surgery, University Medical Center Bonn , Bonn, Germany
| | - Maura Dandri
- 2 Department of Internal Medicine, University Medical Center Hamburg-Eppendorf , Hamburg, Germany .,5 German Center for Infection Research , Hamburg-Lübeck-Borstel Partner Site, Hamburg, Germany
| | - Joerg-Matthias Pollok
- 1 Department for General, Visceral, Thoracic, and Vascular Surgery, University Medical Center Bonn , Bonn, Germany
| |
Collapse
|
20
|
In vivo and ex vivo methods of growing a liver bud through tissue connection. Sci Rep 2017; 7:14085. [PMID: 29074999 PMCID: PMC5658340 DOI: 10.1038/s41598-017-14542-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 10/12/2017] [Indexed: 12/28/2022] Open
Abstract
Cell-based therapy has been proposed as an alternative to orthotopic liver transplantation. The novel transplantation of an in vitro-generated liver bud might have therapeutic potential. In vivo and ex vivo methods for growing a liver bud are essential for paving the way for the clinical translation of liver bud transplantation. We herein report a novel transplantation method for liver buds that are grown in vivo involving orthotopic transplantation on the transected parenchyma of the liver, which showed long engraftment and marked growth in comparison to heterotopic transplantation. Furthermore, this study demonstrates a method for rapidly fabricating scalable liver-like tissue by fusing hundreds of liver bud-like spheroids using a 3D bioprinter. Its system to fix the shape of the 3D tissue with the needle-array system enabled the fabrication of elaborate geometry and the immediate execution of culture circulation after 3D printing—thereby avoiding an ischemic environment ex vivo. The ex vivo-fabricated human liver-like tissue exhibited self-tissue organization ex vivo and engraftment on the liver of nude rats. These achievements conclusively show both in vivo and ex vivo methods for growing in vitro-generated liver buds. These methods provide a new approach for in vitro-generated liver organoids transplantation.
Collapse
|
21
|
Kuo YC, Rajesh R. Guided differentiation and tissue regeneration of induced pluripotent stem cells using biomaterials. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.04.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Phaechamud T, Chitrattha S. Pore formation mechanism of porous poly(dl-lactic acid) matrix membrane. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 61:744-52. [DOI: 10.1016/j.msec.2016.01.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/04/2015] [Accepted: 01/06/2016] [Indexed: 01/15/2023]
|
23
|
Jang M, Neuzil P, Volk T, Manz A, Kleber A. On-chip three-dimensional cell culture in phaseguides improves hepatocyte functions in vitro. BIOMICROFLUIDICS 2015; 9:034113. [PMID: 26180570 PMCID: PMC4482807 DOI: 10.1063/1.4922863] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/12/2015] [Indexed: 05/05/2023]
Abstract
The in vitro study of liver functions and liver cell specific responses to external stimuli deals with the problem to preserve the in vivo functions of primary hepatocytes. In this study, we used the biochip OrganoPlate(TM) (MIMETAS) that combines different advantages for the cultivation of hepatocytes in vitro: (1) the perfusion flow is achieved without a pump allowing easy handling and placement in the incubator; (2) the phaseguides allow plating of matrix-embedded cells in lanes adjacent to the perfusion flow without physical barrier; and (3) the matrix-embedding ensures indirect contact of the cells to the flow. In order to evaluate the applicability of this biochip for the study of hepatocyte's functions, Matrigel(TM)-embedded HepG2 cells were cultured over three weeks in this biochip and compared to a static Matrigel culture (3D) and a monolayer culture (2D). Chip-cultured cells grew in spheroid-like structures and were characterized by the formation of bile canaliculi and a high viability over 14 days. Hepatocyte-specific physiology was achieved as determined by an increase in albumin production. Improved detoxification metabolism was demonstrated by strongly increased cytochrome P450 activity and urea production. Additionally, chip-cultured cells displayed increased sensitivity to acetaminophen. Altogether, the OrganoPlate seems to be a very useful alternative for the cultivation of hepatocytes, as their behavior was strongly improved over 2D and static 3D cultures and the results were largely comparable and partly superior to the previous reports on biochip-cultured hepatocytes. As for the low technical needs, this platform has the appearance of being highly applicable for further studies of hepatocytes' responses to external stimuli.
Collapse
Affiliation(s)
| | | | - Thomas Volk
- Department of Anaesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center , Kirrbergerstrasse 57, 66421 Homburg (Saar), Germany
| | | | - Astrid Kleber
- Department of Anaesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center , Kirrbergerstrasse 57, 66421 Homburg (Saar), Germany
| |
Collapse
|
24
|
Zhang S, Zhang B, Chen X, Chen L, Wang Z, Wang Y. Three-dimensional culture in a microgravity bioreactor improves the engraftment efficiency of hepatic tissue constructs in mice. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:2699-2709. [PMID: 25056199 DOI: 10.1007/s10856-014-5279-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 07/13/2014] [Indexed: 06/03/2023]
Abstract
Tissue-engineered liver using primary hepatocytes has been considered a valuable new therapeutic modality as an alternative to whole organ liver transplantation for different liver diseases. The development of clinically feasible liver tissue engineering approaches, however, has been hampered by the poor engraftment efficiency of hepatocytes. We developed a three-dimensional (3D) culture system using a microgravity bioreactor (MB), biodegradable scaffolds and growth-factor-reduced Matrigel to construct a tissue-engineered liver for transplantation into the peritoneal cavity of non-obese diabetic severe combined immunodeficient mice. The number of viable cells in the hepatic tissue constructs was stably maintained in the 3D MB culture system. Hematoxylin-eosin staining and zonula occludens-1 expression revealed that neonatal mouse liver cells were reorganized to form tissue-like structures during MB culture. Significantly upregulated hepatic functions (albumin secretion, urea production and cytochrome P450 activity) were observed in the MB culture group. Post-transplantation analysis indicated that the engraftment efficiency of the hepatic tissue constructs prepared in MB cultures was higher than that of those prepared in the static cultures. Higher level of hepatic function in the implants was confirmed by the expression of albumin. These findings suggest that 3D MB culture systems may offer an improved method for creating tissue-engineered liver because of the higher engraftment efficiency and the reduction of the initial cell function loss.
Collapse
Affiliation(s)
- Shichang Zhang
- Institute of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China,
| | | | | | | | | | | |
Collapse
|
25
|
Li P, Zhang J, Liu J, Ma H, Liu J, Lie P, Wang Y, Liu G, Zeng H, Li Z, Wei X. Promoting the recovery of injured liver with poly (3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) scaffolds loaded with umbilical cord-derived mesenchymal stem cells. Tissue Eng Part A 2014; 21:603-15. [PMID: 25273546 DOI: 10.1089/ten.tea.2013.0331] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cell-based therapies are major focus of current research for treatment of liver diseases. In this study, mesenchymal stem cells were isolated from human umbilical cord Wharton's jelly (WJ-MSCs). Results confirmed that WJ-MSCs isolated in this study could express the typical MSC-specific markers and be induced to differentiate into adipocytes, osteoblasts, and chondrocytes. They could also be induced to differentiate into hepatocyte-like cells. Poly (3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) (PHBVHHx) is a new member of polyhydroxyalkanoate family and biodegradable polyester produced by bacteria. PHBVHHx scaffolds showed much higher cell attachment and viability than the other polymers tested. PHBVHHx scaffolds loaded with WJ-MSCs were transplanted into liver-injured mice. Liver morphology improved after 30 days of transplantation and looked similar to normal liver. Concentrations of serum alanine aminotransferase and total bilirubin were significantly lower, and albumin was significantly higher on days 14 and 30 in the WJ-MSCs+scaffold group than in the carbon tetrachloride (CCl4) group. Hematoxylin-eosin staining showed that liver had similar structure of normal liver lobules and similar size and shape of normal hepatic cells, and Masson staining demonstrated that liver had less blue staining for collagen after 30 days of transplantation. Real-time reverse transcription-polymerase chain reaction (RT-PCR) showed that the expression of the bile duct epithelial cell gene CK-19 in mouse liver is significantly lower on days 14 and 30 in the WJ-MSCs+scaffold group than in the CCl4 group. Real-time RT-PCR, immunocytochemistry, and periodic acid-Schiff staining showed that WJ-MSCs in scaffolds differentiated into hepatocyte-like cells on days 14 and 30 in the WJ-MSCs+scaffold group. Real-time RT-PCR also demonstrated that WJ-MSCs in scaffolds expressed endothelial cell genes Flk-1, vWF, and VE-cadherin on days 14 and 30 in the WJ-MSCs+scaffold group, indicating that WJ-MSCs also differentiated into endothelial-like cells. These results demonstrated that PHBVHHx scaffolds loaded with WJ-MSCs significantly promoted the recovery of injured liver and could be further studied for liver tissue engineering.
Collapse
Affiliation(s)
- Pengshan Li
- 1 Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University , Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Qin D, Long T, Deng J, Zhang Y. Urine-derived stem cells for potential use in bladder repair. Stem Cell Res Ther 2014; 5:69. [PMID: 25157812 PMCID: PMC4055102 DOI: 10.1186/scrt458] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Engineered bladder tissues, created with autologous bladder cells seeded on biodegradable scaffolds, are being developed for use in patients who need cystoplasty. However, in individuals with organ damage from congenital disorders, infection, irradiation, or cancer, abnormal cells obtained by biopsy from the compromised tissue could potentially contaminate the engineered tissue. Thus, an alternative cell source for construction of the neo-organ would be useful. Although other types of stem cells have been investigated, autologous mesenchymal stem cells (MSCs) are most suitable to use in bladder regeneration. These cells are often used as a cell source for bladder repair in three ways - secreting paracrine factors, recruiting resident cells, and trans-differentiation, inducing MSCs to differentiate into bladder smooth muscle cells and urothelial cells. Adult stem cell populations have been demonstrated in bone marrow, fat, muscle, hair follicles, and amniotic fluid. These cells remain an area of intense study, as their potential for therapy may be applicable to bladder disorders. Recently, we have found stem cells in the urine and the cells are highly expandable, and have self-renewal capacity and paracrine properties. As a novel cell source, urine-derived stem cells (USCs) provide advantages for cell therapy and tissue engineering applications in bladder tissue repair because they originate from the urinary tract system. Importantly, USCs can be obtained via a noninvasive, simple, and low-cost approach and induced with high efficiency to differentiate into bladder cells.
Collapse
|
27
|
Zhang S, Chen L, Liu T, Wang Z, Wang Y. Integration of single-layer skin hollow fibers and scaffolds develops a three-dimensional hybrid bioreactor for bioartificial livers. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:207-216. [PMID: 23963686 DOI: 10.1007/s10856-013-5033-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 08/14/2013] [Indexed: 06/02/2023]
Abstract
Bioartificial liver support systems are expected to be an effective therapy as a "bridge" for liver transplantation or reversible acute liver disease. A major roadblock in the application of bioartificial livers is the need for a bioreactor that fully meets the requirements of hepatocyte culture, mass transfer and immunobarriers. In this study, we developed a three-dimensional hybrid bioreactor (3DHB) on a base of single-layer skin polyethersulfone hollow fibers by integrating with polyurethane scaffolds. The mass transfer of bilirubin and albumin from the intracapillary space to the extracapillary space of the hollow fibers was not significantly different between 3DHBs and hollow fiber bioreactors (HFBs). Cell viability staining showed that high-density hepatocytes were uniformly found in different regions of the 3DHB after 7 days of culture. Liver-specific functions of human mature hepatocytes cultured in the 3DHB, such as albumin secretion, urea production, ammonia removal rate and cytochrome P450 activity, were maintained stably and were significantly higher compared with the HFB. These results indicated that the 3DHB has good mass transfer and improves cell distribution and liver-specific functions. Meanwhile, the ammonia and unconjugated bilirubin concentrations in plasma from patients with liver failure were significantly decreased during 6 h of circulation by hepatocytes cultured in the 3DHB. Most hepatocytes in the 3DHB were viable after 6 h exposure to the patient plasma. We further demonstrated that bioartificial liver systems with 3DHB can remove toxins from and endure the deleterious effects of the patient plasma. Therefore, the 3DHB has the potential to accomplish different actions for the clinical application of bioartificial livers.
Collapse
Affiliation(s)
- Shichang Zhang
- Institute of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China,
| | | | | | | | | |
Collapse
|
28
|
Abstract
Liver extracellular matrix (ECM) composition, topography and biomechanical properties influence cell-matrix interactions. The ECM presents guiding cues for hepatocyte phenotype maintenance, differentiation and proliferation both in vitro and in vivo. Current understanding of such cell-guiding cues along with advancement of techniques for scaffold fabrication has led to evolution of matrices for liver tissue culture from simple porous scaffolds to more complex 3D matrices with microarchitecture similar to in vivo. Natural and synthetic polymeric biomaterials fabricated in different topographies and porous matrices have been used for hepatocyte culture. Heterotypic and homotypic cell interactions are necessary for developing an adult liver as well as an artificial liver. A high oxygen demand of hepatocytes as well as graded oxygen distribution in liver is another challenging attribute of the normal liver architecture that further adds to the complexity of engineered substrate design. A balanced interplay of cell-matrix interactions along with cell-cell interactions and adequate supply of oxygen and nutrient determines the success of an engineered substrate for liver cells. Techniques devised to incorporate these features of hepatic function and mimic liver architecture range from maintaining liver cells in mm-sized tailor-made scaffolds to a more bottoms up approach that starts from building the microscopic subunit of the whole tissue. In this review, we discuss briefly various biomaterials used for liver tissue engineering with respect to design parameters such as scaffold composition and chemistry, biomechanical properties, topography, cell-cell interactions and oxygenation.
Collapse
Affiliation(s)
- Era Jain
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India.,Biomedical Engineering Department, St. Louis University, St. Louis, MO, USA
| | - Apeksha Damania
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India.
| |
Collapse
|
29
|
Burkhardt B, Martinez-Sanchez JJ, Bachmann A, Ladurner R, Nüssler AK. Long-term culture of primary hepatocytes: new matrices and microfluidic devices. Hepatol Int 2013. [PMID: 26202403 DOI: 10.1007/s12072-013-9487-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Prediction of in vivo drug-induced hepatotoxicity by in vitro cell culture systems is still one of the main challenges in drug development. To date, most in vitro approaches are based on monolayer cultures of primary hepatocytes, although it is known that they rapidly lose their morphology and liver-specific functions, such as activities of drug-metabolizing enzymes and transporters. Hepatocyte dedifferentiation can be delayed by culturing cells in a 3D environment. Combination with continuous medium flow, which creates a more physiological situation, further improves the maintenance of hepatic functions. Here, we present recently developed hydrogels and scaffolds for 3D culture of hepatocytes, which aim at preserving hepatic morphology and functionality for up to 4 weeks in culture. Furthermore, major benefits and drawbacks of microfluidic devices for in vitro hepatotoxicity screening are discussed. Although promising advances have been made regarding the preservation of hepatic functions in 3D flow culture, major issues, such as expensive equipment, large cell numbers and low throughput, are still hampering their use in drug toxicity screening. For these devices to be applied and accepted in the drug-developing industry, it is necessary to combine easily accessible matrices that highly preserve the activities of drug-metabolizing enzymes with a user-friendly microfluidic platform, thereby finding the right balance between reflecting the in vivo situation and enabling satisfying throughput for drug candidate screening.
Collapse
Affiliation(s)
- Britta Burkhardt
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Germany.
| | - Juan José Martinez-Sanchez
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Germany
| | - Anastasia Bachmann
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Germany
| | - Ruth Ladurner
- Clinic for General, Visceral and Transplantation Surgery, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Andreas K Nüssler
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Germany.
| |
Collapse
|
30
|
Turner PA, Weeks CA, McMurphy AJ, Janorkar AV. Spheroid organization kinetics of H35 rat hepatoma model cell system on elastin-like polypeptide-polyethyleneimine copolymer substrates. J Biomed Mater Res A 2013; 102:852-61. [PMID: 23564487 DOI: 10.1002/jbm.a.34743] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/15/2013] [Accepted: 04/02/2013] [Indexed: 01/28/2023]
Abstract
Though two-dimensional systems have yielded some success in deriving morphological and functional markers of hepatocyte culture, they largely fail to capture the three-dimensional organization, long-term viability, and functionality of the hepatic tissue. We have engineered a system for inducing self-assembly of model H35 rat hepatoma spheroids using a copolymer comprised of biocompatible elastin-like polypeptide (ELP) chemically conjugated to positively charged polyethyleneimine (PEI). We have achieved a conjugation ratio of 30 mol %, though our studies analyzing spheroid organization kinetics indicate conjugate ratios of 5 mol % and greater to be optimal for cell culture based on least variability in spheroid sizes and minimum incidence of overgrown aggregates. Furthermore, our ELP-PEI system indicated the potential for influencing ultimate spheroid dimensions, with spheroid size inversely related to polyelectrolyte conjugation. Overall, this study provides a good starting point to investigate functional correlations between spheroid size and functional markers and their future use as an in vitro diagnostic or tissue engineering tool.
Collapse
Affiliation(s)
- Paul A Turner
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, Mississippi
| | | | | | | |
Collapse
|
31
|
Hoss M, Šarić T, Denecke B, Peinkofer G, Bovi M, Groll J, Ko K, Salber J, Halbach M, Schöler HR, Zenke M, Neuss S. Expansion and differentiation of germline-derived pluripotent stem cells on biomaterials. Tissue Eng Part A 2013; 19:1067-80. [PMID: 23234562 DOI: 10.1089/ten.tea.2012.0185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Stem cells with broad differentiation potential, such as the recently described germline-derived pluripotent stem cells (gPS cells), are an appealing source for tissue engineering strategies. Biomaterials can inhibit, support, or induce proliferation and differentiation of stem cells. Here we identified (1) polymers that maintain self-renewal and differentiation potential of gPS cells for feeder-free expansion and (2) polymers supporting the cardiomyogenic fate of gPS cells by analyzing a panel of polymers of an established biomaterial bank previously used to assess growth of diverse stem cell types. Identification of cytocompatible gPS cell/biomaterial combinations required analysis of several parameters, including morphology, viability, cytotoxicity, apoptosis, proliferation, and differentiation potential. Pluripotency of gPS cells was visualized by the endogenous Oct4-promoter-driven GFP and by Sox2 and Nanog immunofluorescence. Viability assay, proliferation assay, and flow cytometry showed that gPS cells efficiently adhere and are viable on synthetic polymers, such as Resomer(®) LR704 (poly(L-lactic-D,L-lactic acid), poly(tetrafluor ethylene) (PTFE), poly(vinylidene fluoride) (PVDF), and on gelatine-coated tissue culture polystyrene. Expansion experiments showed that Resomer LR704 is an alternative substrate for feeder-free gPS cell maintenance. Resomer LR704, PTFE, and PVDF were found to be suitable for gPS cell differentiation. Spontaneous beating in embryoid bodies cultured on Resomer LR704 occurred already on day 8 of differentiation, much earlier compared to the other surfaces. This indicates that Resomer LR704 supports spontaneous cardiomyogenic differentiation of gPS cells, which was also confirmed on molecular, protein and functional level.
Collapse
Affiliation(s)
- Mareike Hoss
- Interdisciplinary Centre for Clinical Research Aachen IZKF Aachen, RWTH Aachen University, Aachen 52074, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wang T, Feng ZQ, Leach MK, Wu J, Jiang Q. Nanoporous fibers of type-I collagen coated poly(l-lactic acid) for enhancing primary hepatocyte growth and function. J Mater Chem B 2013; 1:339-346. [DOI: 10.1039/c2tb00195k] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
33
|
Abstract
BACKGROUND Orthotopic liver transplantation (OLT) is the most effective therapy for liver failure. However, OLT is severely limited by the shortage of liver donors. Bioartificial liver (BAL) shows great potential as an alternative therapy for liver failure. In recent years, progress has been made in BAL regarding genetically engineered cell lines, immortalized human hepatocytes, methods for preserving the phenotype of primary human hepatocytes, and other functional hepatocytes derived from stem cells. DATA SOURCES A systematic search of PubMed and ISI Web of Science was performed to identify relevant studies in English language literature using the key words such as liver failure, bioartificial liver, hepatocyte, stem cells, differentiation, and immortalization. More than 200 articles related to the cell sources of hepatocyte in BAL were systematically reviewed. RESULTS Methods for preserving the phenotype of primary human hepatocytes have been successfully developed. Many genetically engineered cell lines and immortalized human hepatocytes have also been established. Among these cell lines, the incorporation of BAL with GS-HepG2 cells or alginate-encapsulated HepG2 cells could prolong the survival time and improve pathophysiological parameters in an animal model of liver failure. The cBAL111 cells were evaluated using the AMC-BAL bioreactor, which could eliminate ammonia and lidocaine, and produce albumin. Importantly, BAL loading with HepLi-4 cells could significantly improve the blood biochemical parameters, and prolong the survival time in pigs with liver failure. Other functional hepatocytes differentiated from stem cells, such as human liver progenitor cells, have been successfully achieved. CONCLUSIONS Aside from genetically modified liver cell lines and immortalized human hepatocytes, other functional hepatocytes derived from stem cells show great potential as cell sources for BAL. BAL with safe and effective liver cells may be achieved for clinical liver failure in the near future.
Collapse
Affiliation(s)
- Xiao-Ping Pan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | | |
Collapse
|
34
|
Bierwolf J, Lutgehetmann M, Deichmann S, Erbes J, Volz T, Dandri M, Cohen S, Nashan B, Pollok JM. Primary Human Hepatocytes from Metabolic-Disordered Children Recreate Highly Differentiated Liver-Tissue-Like Spheroids on Alginate Scaffolds. Tissue Eng Part A 2012; 18:1443-53. [DOI: 10.1089/ten.tea.2012.0029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Jeanette Bierwolf
- Department of Hepatobiliary and Transplant Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marc Lutgehetmann
- Department of Internal Medicine 1, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Steffen Deichmann
- Department of Hepatobiliary and Transplant Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Erbes
- Department of Hepatobiliary and Transplant Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tassilo Volz
- Department of Internal Medicine 1, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maura Dandri
- Department of Internal Medicine 1, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Smadar Cohen
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Bjoern Nashan
- Department of Hepatobiliary and Transplant Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joerg-Matthias Pollok
- Department of Hepatobiliary and Transplant Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
35
|
Hoffmann SA, Müller-Vieira U, Biemel K, Knobeloch D, Heydel S, Lübberstedt M, Nüssler AK, Andersson TB, Gerlach JC, Zeilinger K. Analysis of drug metabolism activities in a miniaturized liver cell bioreactor for use in pharmacological studies. Biotechnol Bioeng 2012; 109:3172-81. [PMID: 22688505 DOI: 10.1002/bit.24573] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 05/01/2012] [Accepted: 05/30/2012] [Indexed: 11/11/2022]
Abstract
Based on a hollow fiber perfusion technology with internal oxygenation, a miniaturized bioreactor with a volume of 0.5 mL for in vitro studies was recently developed. Here, the suitability of this novel culture system for pharmacological studies was investigated, focusing on the model drug diclofenac. Primary human liver cells were cultivated in bioreactors and in conventional monolayer cultures in parallel over 10 days. From day 3 on, diclofenac was continuously applied at a therapeutic concentration (6.4 µM) for analysis of its metabolism. In addition, the activity and gene expression of the cytochrome P450 (CYP) isoforms CYP1A2, CYP2B6, CYP2C9, CYP2D6, and CYP3A4 were assessed. Diclofenac was metabolized in bioreactor cultures with an initial conversion rate of 230 ± 57 pmol/h/10(6) cells followed by a period of stable conversion of about 100 pmol/h/10(6) cells. All CYP activities tested were maintained until day 10 of bioreactor culture. The expression of corresponding mRNAs correlated well with the degree of preservation. Immunohistochemical characterization showed the formation of neo-tissue with expression of CYP2C9 and CYP3A4 and the drug transporters breast cancer resistance protein (BCRP) and multidrug resistance protein 2 (MRP2) in the bioreactor. In contrast, monolayer cultures showed a rapid decline of diclofenac conversion and cells had largely lost activity and mRNA expression of the assessed CYP isoforms at the end of the culture period. In conclusion, diclofenac metabolism, CYP activities and gene expression levels were considerably more stable in bioreactor cultures, making the novel bioreactor a useful tool for pharmacological or toxicological investigations requiring a highly physiological in vitro representation of the liver.
Collapse
Affiliation(s)
- Stefan A Hoffmann
- Division of Experimental Surgery, Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Hodgson H, Selden C. Liver cell implants: a long road. Liver Transpl 2011; 17:99-101. [PMID: 21280180 DOI: 10.1002/lt.22245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|