1
|
Chandler RJ, Di Pasquale G, Choi EY, Chang D, Smith SN, Sloan JL, Hoffmann V, Li L, Chiorini JA, Venditti CP. Systemic gene therapy using an AAV44.9 vector rescues a neonatal lethal mouse model of propionic acidemia. Mol Ther Methods Clin Dev 2023; 30:181-190. [PMID: 37746248 PMCID: PMC10512014 DOI: 10.1016/j.omtm.2023.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/21/2023] [Indexed: 09/26/2023]
Abstract
Propionic acidemia (PA) is rare autosomal recessive metabolic disorder caused by defects in the mitochondrially localized enzyme propionyl-coenzyme A (CoA) carboxylase. Patients with PA can suffer from lethal metabolic decompensation and cardiomyopathy despite current medical management, which has led to the pursuit of gene therapy as a new treatment option for patients. Here we assess the therapeutic efficacy of a recently described adeno-associated virus (AAV) capsid, AAV44.9, to deliver a therapeutic PCCA transgene in a new mouse model of propionyl-CoA carboxylase α (PCCA) deficiency generated by genome editing. Pcca-/- mice recapitulate the severe neonatal presentation of PA and manifest uniform neonatal lethality, absent PCCA expression, and increased 2-methylcitrate. A single injection of the AAV44.9 PCCA vector in the immediate newborn period, systemically delivered at a dose of 1e11 vector genome (vg)/pup but not 1e10 vg/pup, increased survival, reduced plasma methylcitrate, and resulted in high levels of transgene expression in the liver and heart in treated Pcca-/- mice. Our studies not only establish a versatile and accurate new mouse model of PA but further demonstrate that the AAV44.9 vectors may be suitable for treatment of many metabolic disorders where hepato-cardiac transduction following systemic delivery is desired, such as PA, and, by extension, fatty acid oxidation defects and glycogen storage disorders.
Collapse
Affiliation(s)
| | | | - Eun-Young Choi
- National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - David Chang
- National Human Genome Research Institute, Bethesda, MD 20892, USA
| | | | | | - Victoria Hoffmann
- Office of Research Services, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lina Li
- National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - John A. Chiorini
- National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA
| | | |
Collapse
|
2
|
Marchuk H, Wang Y, Ladd ZA, Chen X, Zhang GF. Pathophysiological mechanisms of complications associated with propionic acidemia. Pharmacol Ther 2023; 249:108501. [PMID: 37482098 PMCID: PMC10529999 DOI: 10.1016/j.pharmthera.2023.108501] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/06/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
Propionic acidemia (PA) is a genetic metabolic disorder caused by mutations in the mitochondrial enzyme, propionyl-CoA carboxylase (PCC), which is responsible for converting propionyl-CoA to methylmalonyl-CoA for further metabolism in the tricarboxylic acid cycle. When this process is disrupted, propionyl-CoA and its metabolites accumulate, leading to a variety of complications including life-threatening cardiac diseases and other metabolic strokes. While the clinical symptoms and diagnosis of PA are well established, the underlying pathophysiological mechanisms of PA-induced diseases are not fully understood. As a result, there are currently few effective therapies for PA beyond dietary restriction. This review focuses on the pathophysiological mechanisms of the various complications associated with PA, drawing on extensive research and clinical reports. Most research suggests that propionyl-CoA and its metabolites can impair mitochondrial energy metabolism and cause cellular damage by inducing oxidative stress. However, direct evidence from in vivo studies is still lacking. Additionally, elevated levels of ammonia can be toxic, although not all PA patients develop hyperammonemia. The discovery of pathophysiological mechanisms underlying various complications associated with PA can aid in the development of more effective therapeutic treatments. The consequences of elevated odd-chain fatty acids in lipid metabolism and potential gene expression changes mediated by histone propionylation also warrant further investigation.
Collapse
Affiliation(s)
- Hannah Marchuk
- Sarah W. Stedman Nutrition and Metabolism Center & Duke Molecular Physiology Institute, Duke University, Durham, NC 27701, USA
| | - You Wang
- Jining Key Laboratory of Pharmacology, Jining Medical University, Shandong 272067, China.; School of Basic Medicine, Jining Medical University, Shandong 272067, China
| | - Zachary Alec Ladd
- Surgical Research Lab, Department of Surgery, Cooper University Healthcare and Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Xiaoxin Chen
- Surgical Research Lab, Department of Surgery, Cooper University Healthcare and Cooper Medical School of Rowan University, Camden, NJ 08103, USA; Coriell Institute for Medical Research, Camden, NJ 08103, USA; MD Anderson Cancer Center at Cooper, Camden, NJ 08103, USA.
| | - Guo-Fang Zhang
- Sarah W. Stedman Nutrition and Metabolism Center & Duke Molecular Physiology Institute, Duke University, Durham, NC 27701, USA; Department of Medicine, Division of Endocrinology, and Metabolism Nutrition, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
3
|
Sen K, Burrage LC, Chapman KA, Ginevic I, Mazariegos GV, Graham BH. Solid organ transplantation in methylmalonic acidemia and propionic acidemia: A points to consider statement of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2023; 25:100337. [PMID: 36534118 DOI: 10.1016/j.gim.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 12/23/2022] Open
Affiliation(s)
- Kuntal Sen
- Division of Neurogenetics and Neurodevelopmental Pediatrics, Center for Neuroscience and Behavioral Medicine, Children's National Hospital, Washington, DC
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital, Houston, TX
| | - Kimberly A Chapman
- Rare Disease Institute, Children's National Hospital, Washington, DC; Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Ilona Ginevic
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - George V Mazariegos
- Hillman Center for Pediatric Transplantation, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA
| | - Brett H Graham
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | -
- American College of Medical Genetics and Genomics, Bethesda, MD
| |
Collapse
|
4
|
Hejazi Y, Hijazi ZM, Al-Saloos H, Omran TB. The re-occurrence of dilated cardiomyopathy in propionic acidemia after liver transplantation requiring heart transplant, first case from Middle East. Cardiol Young 2023; 33:86-89. [PMID: 35170426 DOI: 10.1017/s104795112200035x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Propionic acidemia is a rare autosomal recessive inborn error of metabolism. It is relatively common in Middle East. Dilated cardiomyopathy is one of the leading causes of morbidity and mortality for patients with propionic acidemia. Liver transplantation has been used for patient with frequent metabolic decompensations and was shown to be beneficial in propionic acidemia-related dilated cardiomyopathy. Up to our knowledge, there has been one reported case of recurrent dilated cardiomyopathy 3 years after liver transplantation. We report the first case, from Middle East, of recurrent dilated cardiomyopathy, 6 years after liver transplantation.
Collapse
Affiliation(s)
- Yahia Hejazi
- Division of Cardiology, Department of Pediatrics, Sidra Medicine, Doha, Qatar
| | - Ziyad M Hijazi
- Division of Cardiology, Department of Pediatrics, Sidra Medicine, Doha, Qatar
| | - Hesham Al-Saloos
- Division of Cardiology, Department of Pediatrics, Sidra Medicine, Doha, Qatar
| | - Tawfeg Ben Omran
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, Sidra Medicine, Doha, Qatar
| |
Collapse
|
5
|
Subramanian C, Frank MW, Tangallapally R, Yun MK, White SW, Lee RE, Rock CO, Jackowski S. Relief of CoA sequestration and restoration of mitochondrial function in a mouse model of propionic acidemia. J Inherit Metab Dis 2023; 46:28-42. [PMID: 36251252 PMCID: PMC10092110 DOI: 10.1002/jimd.12570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 01/19/2023]
Abstract
Propionic acidemia (PA, OMIM 606054) is a devastating inborn error of metabolism arising from mutations that reduce the activity of the mitochondrial enzyme propionyl-CoA carboxylase (PCC). The defects in PCC reduce the concentrations of nonesterified coenzyme A (CoASH), thus compromising mitochondrial function and disrupting intermediary metabolism. Here, we use a hypomorphic PA mouse model to test the effectiveness of BBP-671 in correcting the metabolic imbalances in PA. BBP-671 is a high-affinity allosteric pantothenate kinase activator that counteracts feedback inhibition of the enzyme to increase the intracellular concentration of CoA. Liver CoASH and acetyl-CoA are depressed in PA mice and BBP-671 treatment normalizes the cellular concentrations of these two key cofactors. Hepatic propionyl-CoA is also reduced by BBP-671 leading to an improved intracellular C3:C2-CoA ratio. Elevated plasma C3:C2-carnitine ratio and methylcitrate, hallmark biomarkers of PA, are significantly reduced by BBP-671. The large elevations of malate and α-ketoglutarate in the urine of PA mice are biomarkers for compromised tricarboxylic acid cycle activity and BBP-671 therapy reduces the amounts of both metabolites. Furthermore, the low survival of PA mice is restored to normal by BBP-671. These data show that BBP-671 relieves CoA sequestration, improves mitochondrial function, reduces plasma PA biomarkers, and extends the lifespan of PA mice, providing the preclinical foundation for the therapeutic potential of BBP-671.
Collapse
Affiliation(s)
- Chitra Subramanian
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States
| | - Matthew W Frank
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States
| | - Rajendra Tangallapally
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, United States
| | - Mi-Kyung Yun
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States
| | - Stephen W White
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, United States
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Richard E Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, United States
| | - Charles O Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Suzanne Jackowski
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States
| |
Collapse
|
6
|
Córdoba KM, Jericó D, Sampedro A, Jiang L, Iraburu MJ, Martini PGV, Berraondo P, Avila MA, Fontanellas A. Messenger RNA as a personalized therapy: The moment of truth for rare metabolic diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 372:55-96. [PMID: 36064267 DOI: 10.1016/bs.ircmb.2022.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Inborn errors of metabolism (IEM) encompass a group of monogenic diseases affecting both pediatric and adult populations and currently lack effective treatments. Some IEM such as familial hypercholesterolemia or X-linked protoporphyria are caused by gain of function mutations, while others are characterized by an impaired protein function, causing a metabolic pathway blockage. Pathophysiology classification includes intoxication, storage and energy-related metabolic disorders. Factors specific to each disease trigger acute metabolic decompensations. IEM require prompt and effective care, since therapeutic delay has been associated with the development of fatal events including severe metabolic acidosis, hyperammonemia, cerebral edema, and death. Rapid expression of therapeutic proteins can be achieved hours after the administration of messenger RNAs (mRNA), representing an etiological solution for acute decompensations. mRNA-based therapy relies on modified RNAs with enhanced stability and translatability into therapeutic proteins. The proteins produced in the ribosomes can be targeted to specific intracellular compartments, the cell membrane, or be secreted. Non-immunogenic lipid nanoparticle formulations have been optimized to prevent RNA degradation and to allow safe repetitive administrations depending on the disease physiopathology and clinical status of the patients, thus, mRNA could be also an effective chronic treatment for IEM. Given that the liver plays a key role in most of metabolic pathways or can be used as bioreactor for excretable proteins, this review focuses on the preclinical and clinical evidence that supports the implementation of mRNA technology as a promising personalized strategy for liver metabolic disorders such as acute intermittent porphyria, ornithine transcarbamylase deficiency or glycogen storage disease.
Collapse
Affiliation(s)
- Karol M Córdoba
- Hepatology Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Daniel Jericó
- Hepatology Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Ana Sampedro
- Hepatology Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Lei Jiang
- Moderna Inc, Cambridge, MA, United States
| | - María J Iraburu
- Department of Biochemistry and Genetics. School of Sciences, University of Navarra, Pamplona, Spain
| | | | - Pedro Berraondo
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Program of Immunology and Immunotherapy, CIMA-University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Matías A Avila
- Hepatology Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Fontanellas
- Hepatology Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
7
|
Subramanian C, Frank MW, Tangallapally R, Yun MK, Edwards A, White SW, Lee RE, Rock CO, Jackowski S. Pantothenate kinase activation relieves coenzyme A sequestration and improves mitochondrial function in mice with propionic acidemia. Sci Transl Med 2021; 13:eabf5965. [PMID: 34524863 DOI: 10.1126/scitranslmed.abf5965] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Chitra Subramanian
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Matthew W Frank
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Rajendra Tangallapally
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mi-Kyung Yun
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis TN, 38105, USA
| | - Anne Edwards
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stephen W White
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis TN, 38105, USA.,St. Jude Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.,Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Richard E Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.,Center for Pediatric Experimental Therapeutics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Charles O Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.,Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Suzanne Jackowski
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
8
|
Menon J, Vij M, Sachan D, Rammohan A, Shanmugam N, Kaliamoorthy I, Rela M. Pediatric metabolic liver diseases: Evolving role of liver transplantation. World J Transplant 2021; 11:161-179. [PMID: 34164292 PMCID: PMC8218348 DOI: 10.5500/wjt.v11.i6.161] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/13/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
Metabolic liver diseases (MLD) are the second most common indication for liver transplantation (LT) in children. This is based on the fact that the majority of enzymes involved in various metabolic pathways are present within the liver and LT can cure or at least control the disease manifestation. LT is also performed in metabolic disorders for end-stage liver disease, its sequelae including hepatocellular cancer. It is also performed for preventing metabolic crisis’, arresting progression of neurological dysfunction with a potential to reverse symptoms in some cases and for preventing damage to end organs like kidneys as in the case of primary hyperoxalosis and methyl malonic acidemia. Pathological findings in explant liver with patients with metabolic disease include unremarkable liver to steatosis, cholestasis, inflammation, variable amount of fibrosis, and cirrhosis. The outcome of LT in metabolic disorders is excellent except for patients with mitochondrial disorders where significant extrahepatic involvement leads to poor outcomes and hence considered a contraindication for LT. A major advantage of LT is that in the post-operative period most patients can discontinue the special formula which they were having prior to the transplant and this increases their well-being and improves growth parameters. Auxiliary partial orthotopic LT has been described for patients with noncirrhotic MLD where a segmental graft is implanted in an orthotopic position after partial resection of the native liver. The retained native liver can be the potential target for future gene therapy when it becomes a clinical reality.
Collapse
Affiliation(s)
- Jagadeesh Menon
- Institute of Liver Disease and Transplantation, Dr Rela Institute and Medical Center, Chennai 600044, Tamil Nadu, India
| | - Mukul Vij
- Department of Pathology, Dr Rela Institute and Medical Center, Chennai 600044, Tamil Nadu, India
| | - Deepti Sachan
- Department of Transfusion Medicine, Dr Rela Institute and Medical Center, Chennai 600044, Tamil Nadu, India
| | - Ashwin Rammohan
- Institute of Liver Disease and Transplantation, Dr Rela Institute and Medical Center, Chennai 600044, Tamil Nadu, India
| | - Naresh Shanmugam
- Institute of Liver Disease and Transplantation, Dr Rela Institute and Medical Center, Chennai 600044, Tamil Nadu, India
| | - Ilankumaran Kaliamoorthy
- Institute of Liver Disease and Transplantation, Dr Rela Institute and Medical Center, Chennai 600044, Tamil Nadu, India
| | - Mohamed Rela
- Institute of Liver Disease and Transplantation, Dr Rela Institute and Medical Center, Chennai 600044, Tamil Nadu, India
| |
Collapse
|
9
|
Severity modeling of propionic acidemia using clinical and laboratory biomarkers. Genet Med 2021; 23:1534-1542. [PMID: 34007002 PMCID: PMC8354856 DOI: 10.1038/s41436-021-01173-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 01/18/2023] Open
Abstract
Purpose To conduct a proof-of-principle study to identify subtypes of propionic acidemia (PA) and associated biomarkers. Methods Data from a clinically diverse PA patient population (https://clinicaltrials.gov/ct2/show/NCT02890342) were used to train and test machine learning models, identify PA-relevant biomarkers, and perform validation analysis using data from liver-transplanted participants. k-Means clustering was used to test for the existence of PA subtypes. Expert knowledge was used to define PA subtypes (mild and severe). Given expert classification, supervised machine learning (support vector machine with a polynomial kernel, svmPoly) performed dimensional reduction to define relevant features of each PA subtype. Results Forty participants enrolled in the study; five underwent liver transplant. Analysis with k-means clustering indicated that several PA subtypes may exist on the biochemical continuum. The conventional PA biomarkers, plasma total 2-methylctirate and propionylcarnitine, were not statistically significantly different between nontransplanted and transplanted participants motivating us to search for other biomarkers. Unbiased dimensional reduction using svmPoly revealed that plasma transthyretin, alanine:serine ratio, GDF15, FGF21, and in vivo 1-13C-propionate oxidation, play roles in defining PA subtypes. Conclusion Support vector machine prioritized biomarkers that helped classify propionic acidemia patients according to severity subtypes, with important ramifications for future clinical trials and management of PA. Graphical Abstract ![]()
Collapse
|
10
|
Forny P, Hörster F, Ballhausen D, Chakrapani A, Chapman KA, Dionisi‐Vici C, Dixon M, Grünert SC, Grunewald S, Haliloglu G, Hochuli M, Honzik T, Karall D, Martinelli D, Molema F, Sass JO, Scholl‐Bürgi S, Tal G, Williams M, Huemer M, Baumgartner MR. Guidelines for the diagnosis and management of methylmalonic acidaemia and propionic acidaemia: First revision. J Inherit Metab Dis 2021; 44:566-592. [PMID: 33595124 PMCID: PMC8252715 DOI: 10.1002/jimd.12370] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/03/2021] [Accepted: 02/15/2021] [Indexed: 12/13/2022]
Abstract
Isolated methylmalonic acidaemia (MMA) and propionic acidaemia (PA) are rare inherited metabolic diseases. Six years ago, a detailed evaluation of the available evidence on diagnosis and management of these disorders has been published for the first time. The article received considerable attention, illustrating the importance of an expert panel to evaluate and compile recommendations to guide rare disease patient care. Since that time, a growing body of evidence on transplant outcomes in MMA and PA patients and use of precursor free amino acid mixtures allows for updates of the guidelines. In this article, we aim to incorporate this newly published knowledge and provide a revised version of the guidelines. The analysis was performed by a panel of multidisciplinary health care experts, who followed an updated guideline development methodology (GRADE). Hence, the full body of evidence up until autumn 2019 was re-evaluated, analysed and graded. As a result, 21 updated recommendations were compiled in a more concise paper with a focus on the existing evidence to enable well-informed decisions in the context of MMA and PA patient care.
Collapse
Affiliation(s)
- Patrick Forny
- Division of Metabolism and Children's Research CenterUniversity Children's Hospital Zurich, University of ZurichZurichSwitzerland
| | - Friederike Hörster
- Division of Neuropediatrics and Metabolic MedicineUniversity Hospital HeidelbergHeidelbergGermany
| | - Diana Ballhausen
- Paediatric Unit for Metabolic Diseases, Department of Woman‐Mother‐ChildUniversity Hospital LausanneLausanneSwitzerland
| | - Anupam Chakrapani
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust and Institute for Child HealthNIHR Biomedical Research Center (BRC), University College LondonLondonUK
| | - Kimberly A. Chapman
- Rare Disease Institute, Children's National Health SystemWashingtonDistrict of ColumbiaUSA
| | - Carlo Dionisi‐Vici
- Division of Metabolism, Department of Pediatric SpecialtiesBambino Gesù Children's HospitalRomeItaly
| | - Marjorie Dixon
- Dietetics, Great Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| | - Sarah C. Grünert
- Department of General Paediatrics, Adolescent Medicine and Neonatology, Medical Centre‐University of FreiburgFaculty of MedicineFreiburgGermany
| | - Stephanie Grunewald
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust and Institute for Child HealthNIHR Biomedical Research Center (BRC), University College LondonLondonUK
| | - Goknur Haliloglu
- Department of Pediatrics, Division of Pediatric NeurologyHacettepe University Children's HospitalAnkaraTurkey
| | - Michel Hochuli
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, InselspitalBern University Hospital and University of BernBernSwitzerland
| | - Tomas Honzik
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzech Republic
| | - Daniela Karall
- Department of Paediatrics I, Inherited Metabolic DisordersMedical University of InnsbruckInnsbruckAustria
| | - Diego Martinelli
- Division of Metabolism, Department of Pediatric SpecialtiesBambino Gesù Children's HospitalRomeItaly
| | - Femke Molema
- Department of Pediatrics, Center for Lysosomal and Metabolic DiseasesErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Jörn Oliver Sass
- Department of Natural Sciences & Institute for Functional Gene Analytics (IFGA)Bonn‐Rhein Sieg University of Applied SciencesRheinbachGermany
| | - Sabine Scholl‐Bürgi
- Department of Paediatrics I, Inherited Metabolic DisordersMedical University of InnsbruckInnsbruckAustria
| | - Galit Tal
- Metabolic Unit, Ruth Rappaport Children's HospitalRambam Health Care CampusHaifaIsrael
| | - Monique Williams
- Department of Pediatrics, Center for Lysosomal and Metabolic DiseasesErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Martina Huemer
- Division of Metabolism and Children's Research CenterUniversity Children's Hospital Zurich, University of ZurichZurichSwitzerland
- Department of PaediatricsLandeskrankenhaus BregenzBregenzAustria
| | - Matthias R. Baumgartner
- Division of Metabolism and Children's Research CenterUniversity Children's Hospital Zurich, University of ZurichZurichSwitzerland
| |
Collapse
|
11
|
Park KC, Krywawych S, Richard E, Desviat LR, Swietach P. Cardiac Complications of Propionic and Other Inherited Organic Acidemias. Front Cardiovasc Med 2020; 7:617451. [PMID: 33415129 PMCID: PMC7782273 DOI: 10.3389/fcvm.2020.617451] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
Clinical observations and experimental studies have determined that systemic acid-base disturbances can profoundly affect the heart. A wealth of information is available on the effects of altered pH on cardiac function but, by comparison, much less is known about the actions of the organic anions that accumulate alongside H+ ions in acidosis. In the blood and other body fluids, these organic chemical species can collectively reach concentrations of several millimolar in severe metabolic acidoses, as in the case of inherited organic acidemias, and exert powerful biological actions on the heart that are not intuitive to predict. Indeed, cardiac pathologies, such as cardiomyopathy and arrhythmia, are frequently reported in organic acidemia patients, but the underlying pathophysiological mechanisms are not well established. Research efforts in the area of organic anion physiology have increased dramatically in recent years, particularly for propionate, which accumulates in propionic acidemia, one of the commonest organic acidemias characterized by a high incidence of cardiac disease. This Review provides a comprehensive historical overview of all known organic acidemias that feature cardiac complications and a state-of-the-art overview of the cardiac sequelae observed in propionic acidemia. The article identifies the most promising candidates for molecular mechanisms that become aberrantly engaged by propionate anions (and its metabolites), and discusses how these may result in cardiac derangements in propionic acidemia. Key clinical and experimental findings are considered in the context of potential therapies in the near future.
Collapse
Affiliation(s)
- Kyung Chan Park
- Department of Anatomy, Physiology and Genetics, Burdon Sanderson Cardiac Science Centre, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Steve Krywawych
- Department of Chemical Pathology, Great Ormond Street Hospital, London, United Kingdom
| | - Eva Richard
- Centro de Biología Molecular Severo Ochoa, Universidad Autonoma de Madrid-Consejo Superior de Investigaciones Cientificas (UAM-CSIC), Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), IdiPaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Lourdes R Desviat
- Centro de Biología Molecular Severo Ochoa, Universidad Autonoma de Madrid-Consejo Superior de Investigaciones Cientificas (UAM-CSIC), Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), IdiPaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Pawel Swietach
- Department of Anatomy, Physiology and Genetics, Burdon Sanderson Cardiac Science Centre, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
12
|
Piccolo P, Rossi A, Brunetti-Pierri N. Liver-directed gene-based therapies for inborn errors of metabolism. Expert Opin Biol Ther 2020; 21:229-240. [PMID: 32880494 DOI: 10.1080/14712598.2020.1817375] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Inborn errors of metabolism include several genetic disorders due to disruption of cellular biochemical reactions. Although individually rare, collectively they are a large and heterogenous group of diseases affecting a significant proportion of patients. Available treatments are often unsatisfactory. Liver-directed gene therapy has potential for treatment of several inborn errors of metabolism. While lentiviral vectors and lipid nanoparticle-mRNA have shown attractive features in preclinical studies and still have to be investigated in humans, adeno-associated virus (AAV) vectors have shown clinical success in both preclinical and clinical trials for in vivo liver-directed gene therapy. AREAS COVERED In this review, we discussed the most relevant clinical applications and the challenges of liver-directed gene-based approaches for therapy of inborn errors of metabolism. EXPERT OPINION Challenges and prospects of clinical gene therapy trials and preclinical studies that are believed to have the greatest potential for clinical translation are presented.
Collapse
Affiliation(s)
- Pasquale Piccolo
- Telethon Institute of Genetics and Medicine , Pozzuoli, Italy.,Department of Translational Medicine, Federico II University of Naples , Naples, Italy
| | - Alessandro Rossi
- Department of Translational Medicine, Federico II University of Naples , Naples, Italy
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine , Pozzuoli, Italy.,Department of Translational Medicine, Federico II University of Naples , Naples, Italy
| |
Collapse
|
13
|
Berry GT, Blume ED, Wessel A, Singh T, Hecht L, Marsden D, Sahai I, Elisofon S, Ferguson M, Kim HB, Harris DJ, Demirbas D, Almuqbil M, Nyhan WL. The re-occurrence of cardiomyopathy in propionic acidemia after liver transplantation. JIMD Rep 2020; 54:3-8. [PMID: 32685343 PMCID: PMC7358669 DOI: 10.1002/jmd2.12119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/22/2022] Open
Abstract
Cardiomyopathy is a frequent complication of propionic acidemia (PA). It is often fatal, and its occurrence is largely independent of classic metabolic treatment modalities. Liver transplantation (LT) is a treatment option for severe PA as the liver plays a vital role in metabolism of the precursors that accumulate in patients with PA. LT in PA is now considered to be a long-lasting and valid treatment to prevent cardiac disease. The subject of this report had severe cardiomyopathy that largely disappeared prior to undergoing a LT. Three years following the transplant, there was recurrence of cardiomyopathy following a surgery that was complicated with a postoperative aspiration pneumonia. On his last hospital admission, he was presented with pulmonary edema and heart failure. He continued with episodes of intractable hypotension, despite maximum inotropic and diuretic support. He died following redirection of care. We conclude that lethal cardiomyopathy may develop several years after successful LT in patients with PA.
Collapse
Affiliation(s)
- Gerard T. Berry
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Elizabeth D. Blume
- Department of Cardiology, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Ann Wessel
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Tajinder Singh
- Department of Cardiology, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Leah Hecht
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Deborah Marsden
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Inderneel Sahai
- Pediatrics‐Genetics Department, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Scott Elisofon
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Michael Ferguson
- Division of Nephrology, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Heung Bae Kim
- Department of Surgery, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - David J. Harris
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Didem Demirbas
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Mohammed Almuqbil
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - William L. Nyhan
- Department of PediatricsUniversity of California San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
14
|
Santopaolo F, Lenci I, Bosa A, Angelico M, Milana M, Baiocchi L. Domino Liver Transplantation: Where are we Now? Rev Recent Clin Trials 2020; 14:183-188. [PMID: 30894112 DOI: 10.2174/1574887114666190320123824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/04/2019] [Accepted: 03/15/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Domino transplant occurs when a recipient explanted graft is used for a second recipient. INTRODUCTION The first experience came from thoracic surgery by the observation that many patients during heart-lung transplantation actually showed a functional heart that could be employed in other subjects with a good result. RESULTS This concept was then extended to the field of liver transplantation. At present, some patients transplanted for an inborn metabolic disease may be considered as excellent domino liver donors. CONCLUSION The results, limitations, clinical challenges and the donor and recipient features of domino liver transplantation are discussed in this manuscript.
Collapse
Affiliation(s)
- Francesco Santopaolo
- Unita Operativa di Epatologia, Policlinico Universitario di "Tor Vergata"; Viale Oxford 81, 00133 Rome, Italy
| | - Ilaria Lenci
- Unita Operativa di Epatologia, Policlinico Universitario di "Tor Vergata"; Viale Oxford 81, 00133 Rome, Italy
| | - Alessandra Bosa
- Unita Operativa di Epatologia, Policlinico Universitario di "Tor Vergata"; Viale Oxford 81, 00133 Rome, Italy
| | - Mario Angelico
- Unita Operativa di Epatologia, Policlinico Universitario di "Tor Vergata"; Viale Oxford 81, 00133 Rome, Italy
| | - Martina Milana
- Unita Operativa di Epatologia, Policlinico Universitario di "Tor Vergata"; Viale Oxford 81, 00133 Rome, Italy
| | - Leonardo Baiocchi
- Unita Operativa di Epatologia, Policlinico Universitario di "Tor Vergata"; Viale Oxford 81, 00133 Rome, Italy
| |
Collapse
|
15
|
Yap S, Vara R, Morais A. Post-transplantation Outcomes in Patients with PA or MMA: A Review of the Literature. Adv Ther 2020; 37:1866-1896. [PMID: 32270363 PMCID: PMC7141097 DOI: 10.1007/s12325-020-01305-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Indexed: 12/25/2022]
Abstract
Introduction Liver transplantation is recognised as a treatment option for patients with propionic acidemia (PA) and those with methylmalonic acidemia (MMA) without renal impairment. In patients with MMA and moderate-to-severe renal impairment, combined liver–kidney transplantation is indicated. However, clinical experience of these transplantation options in patients with PA and MMA remains limited and fragmented. We undertook an overview of post-transplantation outcomes in patients with PA and MMA using the current available evidence. Methods A literature search identified publications on the use of transplantation in patients with PA and MMA. Publications were considered if they presented adequate demographic and outcome data from patients with PA or MMA. Publications that did not report any specific outcomes for patients or provided insufficient data were excluded. Results Seventy publications were identified of which 38 were full papers. A total of 373 patients underwent liver/kidney/combined liver–kidney transplantation for PA or MMA. The most typical reason for transplantation was recurrent metabolic decompensation. A total of 27 post-transplant deaths were reported in patients with PA [14.0% (27/194)]. For patients with MMA, 18 post-transplant deaths were reported [11% (18/167)]. A total of 62 complications were reported in 115 patients with PA (54%) with cardiomyopathy (n = 12), hepatic arterial thrombosis (HAT; n = 14) and viral infections (n = 12) being the most commonly reported. A total of 52 complications were reported in 106 patients with MMA (49%) with viral infections (n = 14) and renal failure/impairment (n = 10) being the most commonly reported. Conclusions Liver transplantation and combined liver–kidney transplantation appears to benefit some patients with PA or MMA, respectively, but this approach does not provide complete correction of the metabolic defect and some patients remain at risk from disease-related and transplantation-related complications, including death. Thus, all treatment avenues should be exhausted before consideration of organ transplantation and the benefits of this approach must be weighed against the risk of perioperative complications on an individual basis.
Collapse
|
16
|
Curnock R, Heaton ND, Vilca-Melendez H, Dhawan A, Hadzic N, Vara R. Liver Transplantation in Children With Propionic Acidemia: Medium-Term Outcomes. Liver Transpl 2020; 26:419-430. [PMID: 31715057 DOI: 10.1002/lt.25679] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022]
Abstract
Liver transplantation (LT) for patients with propionic acidemia (PA) is an emerging therapeutic option. We present a retrospective review of patients with PA who underwent LT at a tertiary liver center between 1995 and 2015. A total of 14 children were identified (8 males) with median age at initial presentation of 3 days (range, 0-77 days). Pretransplant median protein restriction was 1 g/kg/day (range, 0.63-1.75 g/kg/day), 71% required supportive feeding, and 86% had developmental delay. Frequent metabolic decompensations (MDs) were the main indication for LT with a median age at transplantation of 2.4 years (range, 0.8-7.1 years). Only 1 graft was from a living donor, and 13 were from deceased donors (4 auxiliary). The 2-year patient survival was 86%, and overall study and graft survival was 79% and 69%, respectively. Three patients died after LT: at 43 days (biliary peritonitis), 225 days (acute-on-chronic rejection with multiorgan failure), and 13.5 years (posttransplant lymphoproliferative disease). Plasma glycine and propionylcarnitine remained elevated but reduced after transplant. Of 11 survivors, 5 had at least 1 episode of acute cellular rejection, 2 sustained a metabolic stroke (with full recovery), and 3 developed mild cardiomyopathy after LT. All have liberalized protein intake, and 9 had no further MDs: median episodes before transplant, 4 (range, 1-30); and median episodes after transplant, 0 (range, 0-5). All survivors made some developmental progress after LT, and none worsened at a median follow-up of 5.8 years (range, 2-23 years). LT in PA significantly reduces the frequency of MDs, can liberalize protein intake and improve quality of life, and should continue to be considered in selected cases.
Collapse
Affiliation(s)
- Richard Curnock
- Paediatric Inherited Metabolic Diseases, Evelina Children's Hospital, London, United Kingdom
| | - Nigel D Heaton
- Liver Transplantation Surgery, Institute for Liver Studies, King's College Hospital, London, United Kingdom
| | - Hector Vilca-Melendez
- Liver Transplantation Surgery, Institute for Liver Studies, King's College Hospital, London, United Kingdom
| | - Anil Dhawan
- Paediatric Liver, Gastroenterology and Nutrition Centre, King's College Hospital, London, United Kingdom
| | - Nedim Hadzic
- Paediatric Liver, Gastroenterology and Nutrition Centre, King's College Hospital, London, United Kingdom
| | - Roshni Vara
- Paediatric Inherited Metabolic Diseases, Evelina Children's Hospital, London, United Kingdom
- Paediatric Liver, Gastroenterology and Nutrition Centre, King's College Hospital, London, United Kingdom
| |
Collapse
|
17
|
Abstract
OBJECTIVES Propionic acidemia (PA) is a rare inborn error of metabolism resulting from deficiency in the enzyme necessary for catabolism of branched-chain amino acids, some odd chain fatty acids and cholesterol. Despite optimal medical management, PA often leads to acute and progressive neurological injury. Reports on liver transplantation (LT) as a cellular therapy are limited and varied. The objective of this study was to examine the largest collection of patients who underwent LT for PA. METHODS Examining the Scientific Registry of Transplant Recipients and the Pediatric Health Information System administrative billing databases, we performed a multicenter, retrospective analysis of LT over a 16-year period. During this period, 4849 pediatric LT were performed out of which 23 were done for PA at 10 different centers. RESULTS The majority of recipients were 5 years of age or younger and had status 1b exception points at the time of transplant. The 1-, 3-, and 5-year graft survival for PA LT recipients was 84.6% and the 1-, 3, and 5-year patient survival was 89.5%. There was no significant difference in graft or patient survival between PA and non-PA LT recipients. Despite historical data to the contrary, we did not find an increased incidence of hepatic arterial thrombosis in patients undergoing LT for PA. Patients in the PA LT group, however, had a significantly higher postoperative rate of readmission compared with the non-PA LT group (90.5% vs 72.8%, P = 0.021). CONCLUSION LT for children with PA is a viable treatment option with acceptable outcomes.
Collapse
|
18
|
Pillai NR, Stroup BM, Poliner A, Rossetti L, Rawls B, Shayota BJ, Soler-Alfonso C, Tunuguntala HP, Goss J, Craigen W, Scaglia F, Sutton VR, Himes RW, Burrage LC. Liver transplantation in propionic and methylmalonic acidemia: A single center study with literature review. Mol Genet Metab 2019; 128:431-443. [PMID: 31757659 PMCID: PMC6898966 DOI: 10.1016/j.ymgme.2019.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/04/2019] [Accepted: 11/04/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Organic acidemias, especially propionic acidemia (PA) and methylmalonic acidemia (MMA), may manifest clinically within the first few hours to days of life. The classic presentation in the newborn period includes metabolic acidosis, hyperlactatemia, and hyperammonemia that is precipitated by unrestricted protein intake. Implementation of newborn screening to diagnose and initiate early treatment has facilitated a reduction in neonatal mortality and improved survival. Despite early diagnosis and appropriate management, these individuals are prone to have recurrent episodes of metabolic acidosis and hyperammonemia resulting in frequent hospitalizations. Liver transplantation (LT) has been proposed as a treatment modality to reduce metabolic decompensations which are not controlled by medical management. Published reports on the outcome of LT show heterogeneous results regarding clinical and biochemical features in the post transplantation period. As a result, we evaluated the outcomes of LT in our institution and compared it to the previously published data. STUDY DESIGN/METHODS We performed a retrospective chart review of nine individuals with PA or MMA who underwent LT and two individuals with MMA who underwent LT and kidney transplantation (KT). Data including number of hospitalizations, laboratory measures, cardiac and neurological outcomes, dietary protein intake, and growth parameters were collected. RESULTS The median age of transplantation for subjects with MMA was 7.2 years with a median follow up of 4.3 years. The median age of transplantation for subjects with PA was 1.9 years with a median follow up of 5.4 years. The survival rate at 1 year and 5 years post-LT was 100%. Most of our subjects did not have any episodes of hyperammonemia or pancreatitis post-LT. There was significant reduction in plasma glycine post-LT. One subject developed mild elevation in ammonia post-LT on an unrestricted protein diet, suggesting that protein restriction may be indicated even after LT. CONCLUSION In a large single center study of LT in MMA and PA, we show that LT may reduce the incidence of metabolic decompensation. Moreover, our data suggest that LT may be associated with reduced number of hospitalizations and improved linear growth in individuals with PA and MMA.
Collapse
Affiliation(s)
- Nishitha R Pillai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Bridget M Stroup
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Anna Poliner
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Linda Rossetti
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | | | - Brian J Shayota
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Claudia Soler-Alfonso
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Hari Priya Tunuguntala
- Texas Children's Hospital, Houston, TX, USA; Section of Pediatric Cardiology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - John Goss
- Texas Children's Hospital, Houston, TX, USA; Section of Gastroenterology, Hepatology and Nutrition, Baylor College of Medicine, Houston, TX, USA
| | - William Craigen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA; Joint BCM-CUHK Center of Medical Genetics, Prince of Wales Hospital, Hong Kong Special Administrative Region
| | - V Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Ryan Wallace Himes
- Texas Children's Hospital, Houston, TX, USA; Section of Gastroenterology, Hepatology and Nutrition, Baylor College of Medicine, Houston, TX, USA.
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
19
|
Ginocchio VM, Ferla R, Auricchio A, Brunetti-Pierri N. Current Status on Clinical Development of Adeno-Associated Virus-Mediated Liver-Directed Gene Therapy for Inborn Errors of Metabolism. Hum Gene Ther 2019; 30:1204-1210. [PMID: 31517544 DOI: 10.1089/hum.2019.151] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Inborn errors of metabolism (IEM) are disorders affecting human biochemical pathways and represent attractive targets for gene therapy because of their severity, high overall prevalence, lack of effective treatments, and possibility of early diagnosis through newborn screening. The liver is a central organ involved in several metabolic reactions and is a favorite target for gene therapy in many IEM. Adeno-associated virus (AAV) vectors have emerged in the last years as the preferred vectors for in vivo gene delivery. Gene replacement strategies are aimed either at correcting liver disease or providing a source for production and secretion of the lacking enzyme for cross-correction of other tissues. A number of preclinical studies have been conducted in the last years and, for several diseases, gene therapy has reached the clinical stage, with a growing number of ongoing clinical trials. Moreover, recent applications of genome editing to the field of inherited metabolic diseases have further expanded potential therapeutic possibilities. This review describes relevant clinical gene therapy studies for IEM with particular attention to current obstacles and drawbacks.
Collapse
Affiliation(s)
- Virginia Maria Ginocchio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (Naples), Italy.,Department of Translational Medicine, "Federico II" University, Naples, Italy
| | - Rita Ferla
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (Naples), Italy.,Department of Translational Medicine, "Federico II" University, Naples, Italy
| | - Alberto Auricchio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (Naples), Italy.,Department of Advanced Biomedicine, "Federico II" University, Naples, Italy
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (Naples), Italy.,Department of Translational Medicine, "Federico II" University, Naples, Italy
| |
Collapse
|
20
|
Nashabat M, Obaid A, Al Mutairi F, Saleh M, Elamin M, Ahmed H, Ababneh F, Eyaid W, Alswaid A, Alohali L, Faqeih E, Aljeraisy M, Hussein MA, Alasmari A, Alfadhel M. Evaluation of long-term effectiveness of the use of carglumic acid in patients with propionic acidemia (PA) or methylmalonic acidemia (MMA): study protocol for a randomized controlled trial. BMC Pediatr 2019; 19:195. [PMID: 31196016 PMCID: PMC6563377 DOI: 10.1186/s12887-019-1571-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 06/04/2019] [Indexed: 01/20/2023] Open
Abstract
Introduction Propionic acidemia (PA) and methylmalonic acidemia (MMA) are rare autosomal recessive inborn errors of metabolism characterized by hyperammonemia due to N-acetylglutamate synthase (NAGS) dysfunction. Carglumic acid (Carbaglu®; Orphan Europe Ltd.) is approved by the US Food and Drug Administration (USFDA) for the treatment of hyperammonemia due hepatic NAGS deficiency. Here we report the rationale and design of a phase IIIb trial that is aimed at determining the long-term efficacy and safety of carglumic acid in the management of PA and MMA. Methods This prospective, multicenter, open-label, randomized, parallel group phase IIIb study will be conducted in Saudi Arabia. Patients with PA or MMA (≤15 years of age) will be randomized 1:1 to receive twice daily carglumic acid (50 mg/kg/day) plus standard therapy (protein-restricted diet, L-carnitine, and metronidazole) or standard therapy alone for a 2-year treatment period. The primary efficacy outcome is the number of emergency room visits due to hyperammonemia. Safety will be assessed throughout the study and during the 1 month follow-up period after the study. Discussion Current guidelines recommend conservative medical treatment as the main strategy for the management of PA and MMA. Although retrospective studies have suggested that long-term carglumic acid may be beneficial in the management of PA and MMA, current literature lacks evidence for this indication. This clinical trial will determine the long-term safety and efficacy of carglumic acid in the management of PA and MMA. Trial registration King Abdullah International Medical Research Center (KAIMRC): (RC13/116) 09/1/2014. Saudi Food and Drug Authority (SFDA) (33066) 08/14/2014. ClinicalTrials.gov (identifier: NCT02426775) 04/22/2015.
Collapse
Affiliation(s)
- Marwan Nashabat
- Genetics Division, Department of Pediatrics, King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Science, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), PO Box 22490 11426, Riyadh, Saudi Arabia
| | - Abdulrahman Obaid
- Genetics Division, Department of Pediatrics, King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Science, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), PO Box 22490 11426, Riyadh, Saudi Arabia
| | - Fuad Al Mutairi
- Genetics Division, Department of Pediatrics, King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Science, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), PO Box 22490 11426, Riyadh, Saudi Arabia
| | - Mohammed Saleh
- Medical Genetic Section, King Fahad Medical City, Children's Hospital, Riyadh, Saudi Arabia
| | - Mohammed Elamin
- Medical Genetic Section, King Fahad Medical City, Children's Hospital, Riyadh, Saudi Arabia
| | - Hind Ahmed
- Genetics Division, Department of Pediatrics, King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Science, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), PO Box 22490 11426, Riyadh, Saudi Arabia
| | - Faroug Ababneh
- Genetics Division, Department of Pediatrics, King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Science, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), PO Box 22490 11426, Riyadh, Saudi Arabia
| | - Wafaa Eyaid
- Genetics Division, Department of Pediatrics, King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Science, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), PO Box 22490 11426, Riyadh, Saudi Arabia
| | - Abdulrahman Alswaid
- Genetics Division, Department of Pediatrics, King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Science, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), PO Box 22490 11426, Riyadh, Saudi Arabia
| | - Lina Alohali
- Genetics Division, Department of Pediatrics, King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Science, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), PO Box 22490 11426, Riyadh, Saudi Arabia
| | - Eissa Faqeih
- Medical Genetic Section, King Fahad Medical City, Children's Hospital, Riyadh, Saudi Arabia
| | - Majed Aljeraisy
- King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Science, College of Pharmacy, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Mohamed A Hussein
- Department Biostatistics and Bioinformatics, King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Science, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Ali Alasmari
- Medical Genetic Section, King Fahad Medical City, Children's Hospital, Riyadh, Saudi Arabia
| | - Majid Alfadhel
- Genetics Division, Department of Pediatrics, King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Science, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), PO Box 22490 11426, Riyadh, Saudi Arabia.
| |
Collapse
|
21
|
Shankar S, Valamparampil J, Rammohan A, Thiruchunapalli D, Reddy MS, Shanmugam N, Rela M. Minimally Invasive Treatment of Metabolic Decompensation Due to Portal Steal in Auxiliary Liver Transplantation. Liver Transpl 2019; 25:960-963. [PMID: 30938922 DOI: 10.1002/lt.25463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 03/18/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Sadhana Shankar
- The Institute of Liver Disease and Transplantation, Dr. Rela Institute and Medical Centre, Bharat Institute of Higher Education and Research, Chennai, India.,The Institute of Liver Disease and Transplantation, Global Hospitals and Health City, Chennai, India
| | - Joseph Valamparampil
- The Institute of Liver Disease and Transplantation, Dr. Rela Institute and Medical Centre, Bharat Institute of Higher Education and Research, Chennai, India.,The Institute of Liver Disease and Transplantation, Global Hospitals and Health City, Chennai, India
| | - Ashwin Rammohan
- The Institute of Liver Disease and Transplantation, Dr. Rela Institute and Medical Centre, Bharat Institute of Higher Education and Research, Chennai, India.,The Institute of Liver Disease and Transplantation, Global Hospitals and Health City, Chennai, India
| | - Deepashree Thiruchunapalli
- The Institute of Liver Disease and Transplantation, Dr. Rela Institute and Medical Centre, Bharat Institute of Higher Education and Research, Chennai, India.,The Institute of Liver Disease and Transplantation, Global Hospitals and Health City, Chennai, India
| | - Mettu S Reddy
- The Institute of Liver Disease and Transplantation, Dr. Rela Institute and Medical Centre, Bharat Institute of Higher Education and Research, Chennai, India.,The Institute of Liver Disease and Transplantation, Global Hospitals and Health City, Chennai, India
| | - Naresh Shanmugam
- The Institute of Liver Disease and Transplantation, Dr. Rela Institute and Medical Centre, Bharat Institute of Higher Education and Research, Chennai, India
| | - Mohamed Rela
- The Institute of Liver Disease and Transplantation, Dr. Rela Institute and Medical Centre, Bharat Institute of Higher Education and Research, Chennai, India.,The Institute of Liver Disease and Transplantation, Global Hospitals and Health City, Chennai, India.,Institute of Liver Studies, King's College Hospital, London, United Kingdom
| |
Collapse
|
22
|
Noone D, Riedl M, Atkison P, Avitzur Y, Sharma AP, Filler G, Siriwardena K, Prasad C. Kidney disease and organ transplantation in methylmalonic acidaemia. Pediatr Transplant 2019; 23:e13407. [PMID: 30973671 DOI: 10.1111/petr.13407] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/24/2019] [Accepted: 02/05/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVES MMA is associated with chronic tubulointerstitial nephritis and a progressive decline in GFR. Optimal management of these children is uncertain. Our objectives were to document the pre-, peri-, and post-transplant course of all children with MMA who underwent liver or combined liver-kidney transplant in our centers. DESIGN AND METHODS Retrospective chart review of all cases of MMA who underwent organ transplantation over the last 10 years. RESULTS Five children with MMA underwent liver transplant (4/5) and combined liver-kidney transplant (1/5). Three were Mut0 and two had a cobalamin B disorder. Four of five were transplanted between ages 3 and 5 years. Renal dysfunction prior to transplant was seen in 2/5 patients. Post-transplant (one liver transplant and one combined transplant) renal function improved slightly when using creatinine-based GFR formula. We noticed in 2 patients a big discrepancy between creatinine- and cystatin C-based GFR calculations. One patient with no renal disease developed renal failure post-liver transplantation. Serum MMA levels have decreased in all to <300 μmol/L. Four patients remain on low protein diet, carnitine, coenzyme Q, and vitamin E post-transplant. CONCLUSIONS MMA is a complex metabolic disorder. Renal disease can continue to progress post-liver transplant and close follow-up is warranted. More research is needed to clarify best screening GFR method in patients with MMA. Whether liver transplant alone, continued protein restriction, or the addition of antioxidants post-transplant can halt the progression of renal disease remains unclear.
Collapse
Affiliation(s)
- Damien Noone
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Magdalena Riedl
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Paul Atkison
- Department of Paediatrics, Western University, London, Ontario, Canada
| | - Yaron Avitzur
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada.,Division of Gastroenterology, Hepatology and Nutrition, University of Alberta/Stollery Children's Hospital, Edmonton, Alberta, Canada
| | - Ajay P Sharma
- Department of Paediatrics, Western University, London, Ontario, Canada
| | - Guido Filler
- Department of Paediatrics, Western University, London, Ontario, Canada
| | - Komudi Siriwardena
- Department of Medical Genetics, University of Alberta/Stollery Children's Hospital, Edmonton, Alberta, Canada
| | - Chitra Prasad
- Department of Paediatrics, Western University, London, Ontario, Canada
| |
Collapse
|
23
|
Jurecki E, Ueda K, Frazier D, Rohr F, Thompson A, Hussa C, Obernolte L, Reineking B, Roberts AM, Yannicelli S, Osara Y, Stembridge A, Splett P, Singh RH. Nutrition management guideline for propionic acidemia: An evidence- and consensus-based approach. Mol Genet Metab 2019; 126:341-354. [PMID: 30879957 DOI: 10.1016/j.ymgme.2019.02.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 12/17/2022]
Affiliation(s)
- E Jurecki
- BioMarin Pharmaceutical Inc., Novato, CA, USA.
| | - K Ueda
- British Colombia Children's Hospital, Vancouver, BC, Canada
| | - D Frazier
- University of North Carolina, Chapel Hill, NC, USA
| | - F Rohr
- Boston Children's Hospital, Boston, MA, USA
| | - A Thompson
- Greenwood Genetic Center, Greenwood, SC, USA
| | - C Hussa
- BioMarin Pharmaceutical Inc., Novato, CA, USA
| | - L Obernolte
- Waisman Center, University of Wisconsin, Madison, WI, USA
| | - B Reineking
- BioMarin Pharmaceutical Inc., Novato, CA, USA
| | | | | | - Y Osara
- Emory University, Atlanta, GA, USA
| | | | - P Splett
- University of Minnesota, St. Paul, MN, USA
| | | |
Collapse
|
24
|
Rammohan A, Gunasekaran V, Reddy MS, Rela M. The Role of Liver Transplantation in Propionic Acidemia. Liver Transpl 2019; 25:176-177. [PMID: 30375139 DOI: 10.1002/lt.25373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 10/23/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Ashwin Rammohan
- The Institute of Liver Disease and Transplantation, Gleneagles Global Health City, Chennai, India
| | | | - Mettu S Reddy
- The Institute of Liver Disease and Transplantation, Gleneagles Global Health City, Chennai, India
| | - Mohamed Rela
- The Institute of Liver Disease and Transplantation, Gleneagles Global Health City, Chennai, India.,The Institute of Liver Disease and Transplantation, Dr. Rela Institute and Medical Centre, Chennai, India
| |
Collapse
|
25
|
Quintero J, Molera C, Juamperez J, Redecillas S, Meavilla S, Nuñez R, García-Volpe C, Del Toro M, Garcia-Cazorla Á, Ortega J, Segarra Ó, de Carpi JM, Bilbao I, Charco R. Reply. Liver Transpl 2019; 25:178-179. [PMID: 30472769 DOI: 10.1002/lt.25389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Jesús Quintero
- Pediatric Hepatology and Liver Transplant Department, Hospital Universiatri Vall d'Hebron, Barcelona, Spain
| | - Cristina Molera
- Pediatric Gastroenterology Hepatology and Nutrition Unit, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Javier Juamperez
- Pediatric Hepatology and Liver Transplant Department, Hospital Universiatri Vall d'Hebron, Barcelona, Spain
| | - Susanna Redecillas
- Pediatric Gastroenterology, Hepatology, and Nutrition Unit, Hospital Universiatri Vall d'Hebron, Barcelona, Spain
| | - Silvia Meavilla
- Pediatric Gastroenterology Hepatology and Nutrition Unit, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Raquel Nuñez
- Pediatric Gastroenterology, Hepatology, and Nutrition Unit, Hospital Universiatri Vall d'Hebron, Barcelona, Spain
| | - Camila García-Volpe
- Pediatric Gastroenterology Hepatology and Nutrition Unit, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Mireia Del Toro
- Pediatric Neurology Unit, Hospital Universiatri Vall d'Hebron, Barcelona, Spain
| | | | - Juan Ortega
- Pediatric Intensive Care Unit, Hospital Universiatri Vall d'Hebron, Barcelona, Spain
| | - Óscar Segarra
- Pediatric Gastroenterology, Hepatology, and Nutrition Unit, Hospital Universiatri Vall d'Hebron, Barcelona, Spain
| | - Javier Martin de Carpi
- Pediatric Gastroenterology Hepatology and Nutrition Unit, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Itxarone Bilbao
- HPB Surgery and Transplants Department, Hospital Universiatri Vall d'Hebron, Barcelona, Spain
| | - Ramon Charco
- HPB Surgery and Transplants Department, Hospital Universiatri Vall d'Hebron, Barcelona, Spain
| |
Collapse
|
26
|
Quintero J, Molera C, Juamperez J, Redecillas S, Meavilla S, Nuñez R, García C, Del Toro M, Garcia Á, Ortega J, Segarra Ó, de Carpi JM, Bilbao I, Charco R. The Role of Liver Transplantation in Propionic Acidemia. Liver Transpl 2018; 24:1736-1745. [PMID: 30242960 DOI: 10.1002/lt.25344] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/13/2018] [Indexed: 12/30/2022]
Abstract
Despite optimal medical treatment and strict low-protein diet, the prognosis of propionic acidemia (PA) patients is generally poor. We aim to report our experience with liver transplantation (LT) in the management of PA patients. Six patients with PA received a LT at a mean age of 5.2 years (1.3-7.5 years). The indications for LT were frequent metabolic decompensations in the first 4 patients and preventative in the last 2 patients. Two patients presented hepatic artery thromboses that were solved through an interventional radiologist approach. These patients showed a very high procoagulant state that was observed by thromboelastography. Arterial vasospasm without thrombus was observed in 2 patients during the LT surgery. In order to avoid hepatic artery thrombosis, an arterial conduit from the recipient aorta to the hepatic artery of the donor was used in the fifth patient. After LT, patients presented improvement in propionyl byproducts without complete normalization, but no decompensations have been observed. In conclusion, LT could be a good therapeutic option to improve the metabolic control and the quality of life of PA patients. Improved surgical strategies along with new techniques of interventional radiology allow us to perform the LT minimizing the complications derived from the higher risk of hepatic artery thrombosis.
Collapse
Affiliation(s)
- Jesús Quintero
- Pediatric Hepatology and Liver Transplant Department, Hospital Universiatri Vall d'Hebron, Barcelona, Spain
| | - Cristina Molera
- Pediatric Gastroenterology Hepatology and Nutrition Unit, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Javier Juamperez
- Pediatric Hepatology and Liver Transplant Department, Hospital Universiatri Vall d'Hebron, Barcelona, Spain
| | - Susanna Redecillas
- Pediatric Gastroenterology Hepatology and Nutrition Unit, Hospital Universiatri Vall d'Hebron, Barcelona, Spain
| | - Silvia Meavilla
- Pediatric Gastroenterology Hepatology and Nutrition Unit, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Raquel Nuñez
- Pediatric Gastroenterology Hepatology and Nutrition Unit, Hospital Universiatri Vall d'Hebron, Barcelona, Spain
| | - Camila García
- Pediatric Gastroenterology Hepatology and Nutrition Unit, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Mireia Del Toro
- Pediatric Neurology Unit, Hospital Universiatri Vall d'Hebron, Barcelona, Spain
| | - Ángels Garcia
- Pediatric Neurology Unit, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Juan Ortega
- Pediatric Intensive Care Unit, Hospital Universiatri Vall d'Hebron, Barcelona, Spain
| | - Óscar Segarra
- Pediatric Gastroenterology Hepatology and Nutrition Unit, Hospital Universiatri Vall d'Hebron, Barcelona, Spain
| | - Javier Martin de Carpi
- Pediatric Gastroenterology Hepatology and Nutrition Unit, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Itxarone Bilbao
- HPB Surgery and Transplant Department, Hospital Universiatri Vall d'Hebron, Barcelona, Spain
| | - Ramon Charco
- HPB Surgery and Transplant Department, Hospital Universiatri Vall d'Hebron, Barcelona, Spain
| |
Collapse
|
27
|
Critelli K, McKiernan P, Vockley J, Mazariegos G, Squires RH, Soltys K, Squires JE. Liver Transplantation for Propionic Acidemia and Methylmalonic Acidemia: Perioperative Management and Clinical Outcomes. Liver Transpl 2018; 24:1260-1270. [PMID: 30080956 DOI: 10.1002/lt.25304] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/25/2018] [Indexed: 12/12/2022]
Abstract
Propionic acidemia (PA) and methylmalonic acidemia (MMA) comprise the most common organic acidemias and account for profound morbidity in affected individuals. Although liver transplantation (LT) has emerged as a bulk enzyme-replacement strategy to stabilize metabolically fragile patients, it is not a metabolic cure because patients remain at risk for disease-related complications. We retrospectively studied LT and/or liver-kidney transplant in 9 patients with PA or MMA with additional focus on the optimization of metabolic control and management in the perioperative period. Metabolic crises were common before transplant. By implementing a strategy of carbohydrate minimization with gradual but early lipid and protein introduction, lactate levels significantly improved over the perioperative period (P < 0.001). Posttransplant metabolic improvement is demonstrated by improvements in serum glycine levels (for PA; P < 0.001 × 10-14 ), methylmalonic acid levels (for MMA; P < 0.001), and ammonia levels (for PA and MMA; P < 0.001). Dietary restriction remained after transplant. However, no further metabolic crises have occurred. Other disease-specific comorbidities such as renal dysfunction and cardiomyopathy stabilized and improved. In conclusion, transplant can provide a strategy for altering the natural history of PA and MMA providing stability to a rare but metabolically brittle population. Nutritional management is critical to optimize patient outcomes.
Collapse
Affiliation(s)
- Kristen Critelli
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Patrick McKiernan
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA.,Center for Rare Disease Therapy, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Jerry Vockley
- Center for Rare Disease Therapy, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA.,Division of Medical Genetics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - George Mazariegos
- Center for Rare Disease Therapy, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA.,Thomas E. Starzl Transplantation Institute, Hillman Center for Pediatric Transplantation, Department of Transplant Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Robert H Squires
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA.,Center for Rare Disease Therapy, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Kyle Soltys
- Center for Rare Disease Therapy, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA.,Thomas E. Starzl Transplantation Institute, Hillman Center for Pediatric Transplantation, Department of Transplant Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - James E Squires
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA.,Center for Rare Disease Therapy, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA
| |
Collapse
|
28
|
Tuncel AT, Boy N, Morath MA, Hörster F, Mütze U, Kölker S. Organic acidurias in adults: late complications and management. J Inherit Metab Dis 2018; 41:765-776. [PMID: 29335813 DOI: 10.1007/s10545-017-0135-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/05/2017] [Accepted: 12/28/2017] [Indexed: 12/13/2022]
Abstract
Organic acidurias (synonym, organic acid disorders, OADs) are a heterogenous group of inherited metabolic diseases delineated with the implementation of gas chromatography/mass spectrometry in metabolic laboratories starting in the 1960s and 1970s. Biochemically, OADs are characterized by accumulation of mono-, di- and/or tricarboxylic acids ("organic acids") and corresponding coenzyme A, carnitine and/or glycine esters, some of which are considered toxic at high concentrations. Clinically, disease onset is variable, however, affected individuals may already present during the newborn period with life-threatening acute metabolic crises and acute multi-organ failure. Tandem mass spectrometry-based newborn screening programmes, in particular for isovaleric aciduria and glutaric aciduria type 1, have significantly reduced diagnostic delay. Dietary treatment with low protein intake or reduced intake of the precursor amino acid(s), carnitine supplementation, cofactor treatment (in responsive patients) and nonadsorbable antibiotics is commonly used for maintenance treatment. Emergency treatment options with high carbohydrate/glucose intake, pharmacological and extracorporeal detoxification of accumulating toxic metabolites for intensified therapy during threatening episodes exist. Diagnostic and therapeutic measures have improved survival and overall outcome in individuals with OADs. However, it has become increasingly evident that the manifestation of late disease complications cannot be reliably predicted and prevented. Conventional metabolic treatment often fails to prevent irreversible organ dysfunction with increasing age, even if patients are considered to be "metabolically stable". This has challenged our understanding of OADs and has elicited the discussion on optimized therapy, including (early) organ transplantation, and long-term care.
Collapse
Affiliation(s)
- Ali Tunç Tuncel
- Division of Neuropediatrics and Metabolic Medicine, Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Nikolas Boy
- Division of Neuropediatrics and Metabolic Medicine, Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Marina A Morath
- Division of Neuropediatrics and Metabolic Medicine, Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Friederike Hörster
- Division of Neuropediatrics and Metabolic Medicine, Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Ulrike Mütze
- Division of Neuropediatrics and Metabolic Medicine, Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Stefan Kölker
- Division of Neuropediatrics and Metabolic Medicine, Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany.
| |
Collapse
|
29
|
Vara R, Dhawan A, Deheragoda M, Grünewald S, Pierre G, Heaton ND, Vilca-Melendez H, Hadžić N. Liver transplantation for neonatal-onset citrullinemia. Pediatr Transplant 2018; 22:e13191. [PMID: 29726081 DOI: 10.1111/petr.13191] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/12/2018] [Indexed: 12/27/2022]
Abstract
Citrullinemia or ASS deficiency in its classical form presents in the neonatal period with poor feeding, hyperammonemia, encephalopathy, seizures, and if untreated can be fatal. Despite advances in medical therapy, neurocognitive outcomes remain suboptimal. LT has emerged as a potential management option. A retrospective single-center review identified 7 children with a median age of 1.1 years (range, 0.6-5.8) at referral. Five children presented clinically, and 2 were treated prospectively from birth due to positive family history. All patients received standard medical and dietary therapy prior to LT. The indications for LT were frequent metabolic decompensations in 4, elective in 2, and ALF in 1. The median age at LT was 2.4 years (range, 1.3-6.5). Five patients received 6 left lateral segment grafts, one a live unrelated donor left lateral segment as an APOLT graft, and one a cadaveric whole liver graft as APOLT. One child required retransplantation due to hepatic artery thrombosis. Graft and patient survival were 86% and 100%, respectively. Median follow-up is 3.1 years (range, 0.1-4.1), and the median age at follow-up is 5.5 years (range, 4.0-9.8). There have been no metabolic decompensations in 6 children, while 1 patient (with APOLT) developed asymptomatic hyperammonemia with no clinical or histological signs of liver injury, requiring additional medical therapy. Our medium-term experience following LT in citrullinemia is favorable, demonstrating a positive transformation of the clinical phenotype.
Collapse
Affiliation(s)
- Roshni Vara
- Department of Inherited Metabolic Disease, Evelina London Children's Hospital, London, UK.,Paediatric Liver, GI and Nutrition Centre, King's College Hospital, London, UK
| | - Anil Dhawan
- Paediatric Liver, GI and Nutrition Centre, King's College Hospital, London, UK
| | - Maesha Deheragoda
- Liver Histopathology, Institute of Liver Studies, King's College Hospital, London, UK
| | - Stephanie Grünewald
- Department of Paediatric Inherited Metabolic Disease, Institute of Child Health, Great Ormond Street Hospital for Children, UCL, London, UK
| | - Germaine Pierre
- Department of Paediatric Inherited Metabolic Disease, Bristol Children's Hospital, Bristol, UK
| | - Nigel D Heaton
- Liver Transplantation, Institute of Liver Studies, King's College Hospital, London, UK
| | - Hector Vilca-Melendez
- Liver Transplantation, Institute of Liver Studies, King's College Hospital, London, UK
| | - Nedim Hadžić
- Paediatric Liver, GI and Nutrition Centre, King's College Hospital, London, UK
| |
Collapse
|
30
|
Domino Liver Transplantation from a Child with Propionic Acidemia to a Child with Idiopathic Fulminant Hepatic Failure. Case Rep Transplant 2018; 2018:1897495. [PMID: 29725551 PMCID: PMC5872630 DOI: 10.1155/2018/1897495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/08/2018] [Indexed: 01/30/2023] Open
Abstract
Domino liver transplant has emerged as a viable strategy to increase the number of grafts available for transplantation. In the domino transplant organs explanted from one patient are transplanted into another patient. The first successful domino liver transplant was performed in Portugal in 1995. Since then this innovative concept has been applied to several genetic or biochemical disorders that are treated by liver transplantation. An important consideration during this operation is that such livers can pose a risk of the de novo development of the disease in the recipient. That is why this surgical procedure requires careful planning, proper selection of the patients, and informed consent of both donor and recipient.
Collapse
|
31
|
Kohli R, Cortes M, Heaton ND, Dhawan A. Liver transplantation in children: state of the art and future perspectives. Arch Dis Child 2018; 103:192-198. [PMID: 28918383 DOI: 10.1136/archdischild-2015-310023] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 07/03/2017] [Accepted: 07/06/2017] [Indexed: 12/13/2022]
Abstract
In this review, we provide a state of the art of liver transplantation in children, as the procedure is now carried out for more than 30 years and most of our paediatric colleagues are managing these patients jointly with liver transplant centres. Our goal for this article is to enhance the understanding of the liver transplant process that a child and his family goes through while explaining the surgical advances and the associated complications that could happen in the immediate or long-term follow-up. We have deliberately introduced the theme that 'liver transplant is a disease' and 'not a cure', to emphasise the need for adherence with immunosuppression, a healthy lifestyle and lifelong medical follow-up.
Collapse
Affiliation(s)
- Rohit Kohli
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Miriam Cortes
- Department of Adult and Pediatric Liver Transplant Surgery, Institute of Liver Studies, King's College Hospital, London, UK
| | - N D Heaton
- Department of Adult and Pediatric Liver Transplant Surgery, Institute of Liver Studies, King's College Hospital, London, UK
| | - Anil Dhawan
- Pediatrics Liver GI and Nutrition Centre and MowatLabs, King's College Hospital, London, UK
| |
Collapse
|
32
|
Abstract
Even though auxiliary partial orthotopic liver transplantation (APOLT) as a technique was popularized in the late 80s, its role in metabolic liver disease remains controversial. The slow progress in gene therapy research, high incidence of technical complications, and the problem of long term graft atrophy have been roadblocks to its wider application. Better understanding of reciprocal dynamics of portal flow and regeneration between the graft and native liver along with multiple refinements in surgical technique have improved the outcomes of this operation, making it a safe alternative to orthotopic liver transplantation for patients with a wide range of noncirrhotic metabolic liver diseases (NCMLD). The ability to perform APOLT safely has also opened up a range of exciting indications in the setting of NCMLD. This article reviews the current status of APOLT for NCMLD, technical refinements which have improved outcomes and novel indications, which have rekindled fresh interest in this procedure.
Collapse
|
33
|
|
34
|
Goldstein A, Vockley J. Clinical trials examining treatments for inborn errors of amino acid metabolism. Expert Opin Orphan Drugs 2016. [DOI: 10.1080/21678707.2017.1275565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Amy Goldstein
- Children’s Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jerry Vockley
- Children’s Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
35
|
Finding Treatments for Genetic Metabolic Disease. CURRENT PEDIATRICS REPORTS 2016. [DOI: 10.1007/s40124-016-0113-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Abstract
PURPOSE OF REVIEW Recent clinical studies and management guidelines for the treatment of the organic acidopathies methylmalonic acidemia (MMA) and propionic acidemia address the scope of interventions to maximize health and quality of life. Unfortunately, these disorders continue to cause significant morbidity and mortality due to acute and chronic systemic and end-organ injury. RECENT FINDINGS Dietary management with medical foods has been a mainstay of therapy for decades, yet well controlled patients can manifest growth, development, cardiac, ophthalmological, renal, and neurological complications. Patients with organic acidopathies suffer metabolic brain injury that targets specific regions of the basal ganglia in a distinctive pattern, and these injuries may occur even with optimal management during metabolic stress. Liver transplantation has improved quality of life and metabolic stability, yet transplantation in this population does not entirely prevent brain injury or the development of optic neuropathy and cardiac disease. SUMMARY Management guidelines should identify necessary screening for patients with methylmalonic acidemia and propionic acidemia, and improve anticipatory management of progressive end-organ disease. Liver transplantation improves overall metabolic control, but injury to nonregenerative tissues may not be mitigated. Continued use of medical foods in these patients requires prospective studies to demonstrate evidence of benefit in a controlled manner.
Collapse
|
37
|
Abstract
The three essential branched-chain amino acids (BCAAs), leucine, isoleucine and valine, share the first enzymatic steps in their metabolic pathways, including a reversible transamination followed by an irreversible oxidative decarboxylation to coenzyme-A derivatives. The respective oxidative pathways subsequently diverge and at the final steps yield acetyl- and/or propionyl-CoA that enter the Krebs cycle. Many disorders in these pathways are diagnosed through expanded newborn screening by tandem mass spectrometry. Maple syrup urine disease (MSUD) is the only disorder of the group that is associated with elevated body fluid levels of the BCAAs. Due to the irreversible oxidative decarboxylation step distal enzymatic blocks in the pathways do not result in the accumulation of amino acids, but rather to CoA-activated small carboxylic acids identified by gas chromatography mass spectrometry analysis of urine and are therefore classified as organic acidurias. Disorders in these pathways can present with a neonatal onset severe-, or chronic intermittent- or progressive forms. Metabolic instability and increased morbidity and mortality are shared between inborn errors in the BCAA pathways, while treatment options remain limited, comprised mainly of dietary management and in some cases solid organ transplantation.
Collapse
Affiliation(s)
- I Manoli
- Organic Acid Research Section, Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - C P Venditti
- Organic Acid Research Section, Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
38
|
Honda M, Sakamoto S, Sakamoto R, Matsumoto S, Irie T, Uchida K, Shimata K, Kawabata S, Isono K, Hayashida S, Yamamoto H, Endo F, Inomata Y. Antibody-mediated rejection after ABO-incompatible pediatric living donor liver transplantation for propionic acidemia: A case report. Pediatr Transplant 2016; 20:840-5. [PMID: 27436684 DOI: 10.1111/petr.12722] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2016] [Indexed: 12/21/2022]
Abstract
We herein present the case of a four-yr-old boy with PA who developed AMR after ABO-incompatible LDLT despite undergoing B cell desensitization using rituximab. Although the CD19+ lymphocyte count decreased to 0.1% nine days after the administration of rituximab, he developed a high fever which was accompanied by arthralgia due to a streptococcal infection 13 days after rituximab prophylaxis. After the clearance of the infection, he underwent ABO-incompatible LDLT 36 days after the administration of rituximab. The CD19+ lymphocyte count just prior to LDLT was 1.2%. He developed AMR five days after LDLT, and the antidonor-type IgM and IgG antibody titers increased to 1:1024 and 1:1024, respectively. He was treated by plasma exchange, IVIG, steroid pulse therapy, and rituximab re-administration; however, his liver dysfunction continued. Despite intensive treatment, he died due to complicated abdominal hernia, acute renal failure, and ARDS. This case suggests that a streptococcal infection may induce the activation of innate immune responses; thus, additional desensitization therapy should be considered prior to ABO-incompatible LDLT if B cell reactivation is suspected.
Collapse
Affiliation(s)
- Masaki Honda
- Department of Transplantation and Pediatric Surgery, Postgraduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Seisuke Sakamoto
- Department of Transplantation and Pediatric Surgery, Postgraduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Rieko Sakamoto
- Department of Pediatrics, Postgraduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shirou Matsumoto
- Department of Pediatrics, Postgraduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomoaki Irie
- Department of Pediatric Surgery, Kumamoto City Hospital, Kumamoto, Japan
| | - Koushi Uchida
- Department of Transplantation and Pediatric Surgery, Postgraduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Keita Shimata
- Department of Transplantation and Pediatric Surgery, Postgraduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Seiichi Kawabata
- Department of Transplantation and Pediatric Surgery, Postgraduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kaori Isono
- Department of Transplantation and Pediatric Surgery, Postgraduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shintaro Hayashida
- Department of Transplantation and Pediatric Surgery, Postgraduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hidekazu Yamamoto
- Department of Transplantation and Pediatric Surgery, Postgraduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Fumio Endo
- Department of Pediatrics, Postgraduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukihiro Inomata
- Department of Transplantation and Pediatric Surgery, Postgraduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
39
|
Rajakumar A, Kaliamoorthy I, Reddy MS, Rela M. Anaesthetic considerations for liver transplantation in propionic acidemia. Indian J Anaesth 2016; 60:50-4. [PMID: 26962256 PMCID: PMC4782424 DOI: 10.4103/0019-5049.174799] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Propionic acidemia (PA) is an autosomal recessive disorder of metabolism due to deficiency of the enzyme propionyl-CoA carboxylase (PCC) that converts propionyl-CoA to methylmalonyl-CoA with the help of the cofactor biotin inside the mitochondria. The resultant accumulation of propionyl-CoA causes severe hyperammonaemia and life-threatening metabolic acidosis. Based on the positive outcomes, liver transplantation is now recommended for individuals with recurrent episodes of hyperammonaemia or acidosis that is not adequately controlled with appropriate medical therapies. We report anaesthetic management of two children with PA for liver transplantation at our institution. It is essential for the anaesthesiologist, caring for these individuals to be familiar with the manifestations of the disease, the triggers for decompensation and management of an acute episode.
Collapse
Affiliation(s)
- Akila Rajakumar
- Department of Hepatobiliary and Liver Transplant Anaesthesia and Intensive Care, Institute of Liver Disease and Transplantation, Global Health City, Chennai, Tamil Nadu, India
| | - Ilankumaran Kaliamoorthy
- Department of Hepatobiliary and Liver Transplant Anaesthesia and Intensive Care, Institute of Liver Disease and Transplantation, Global Health City, Chennai, Tamil Nadu, India
| | - Mettu Srinivas Reddy
- Department of Hepatobiliary and Liver Transplant Surgery, Institute of Liver Disease and Transplantation, Global Health City, Chennai, Tamil Nadu, India
| | - Mohamed Rela
- Department of Hepatobiliary and Liver Transplant Surgery, Institute of Liver Disease and Transplantation, Global Health City, Chennai, Tamil Nadu, India; Department of Hepatobiliary and Liver Transplant Surgery, Institute of Liver Studies, King's College, London
| |
Collapse
|
40
|
D'Antiga L, Colledan M. Surgical gene therapy by domino auxiliary liver transplantation. Liver Transpl 2015; 21:1338-9. [PMID: 26335346 DOI: 10.1002/lt.24326] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 08/17/2015] [Indexed: 01/13/2023]
Affiliation(s)
- Lorenzo D'Antiga
- Pediatric Hepatology, Gastroenterology and Transplantation, Ospedale Papa Giovanni XXIII, Bergamo, Italy
| | - Michele Colledan
- Department of Surgery, Ospedale Papa Giovanni XXIII, Bergamo, Italy
| |
Collapse
|
41
|
Arrizza C, De Gottardi A, Foglia E, Baumgartner M, Gautschi M, Nuoffer JM. Reversal of cardiomyopathy in propionic acidemia after liver transplantation: a 10-year follow-up. Transpl Int 2015; 28:1447-50. [PMID: 26358860 DOI: 10.1111/tri.12677] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/23/2015] [Accepted: 08/20/2015] [Indexed: 01/22/2023]
Abstract
Cardiomyopathy is a frequent complication in propionic acidemia. It is mostly rapidly fatal and independent of the metabolic control or medical intervention. Here, we present the reversal of a severe cardiomyopathy after liver transplantation in a patient with propionic acidemia and the long-term stability after ten years. Liver transplantation in patients with propionic acidemia may be considered a valid and long-lasting treatment when cardiomyopathy is progressive and unresponsive to medical therapy.
Collapse
Affiliation(s)
- Chiara Arrizza
- Department of Paediatrics, Inselspital, University Hospital Bern, Bern, Switzerland.,Institute of Clinical Chemistry, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Andrea De Gottardi
- Clinic of Visceral Surgery and Medicine, Hepatology, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Ezio Foglia
- MD Internal Medicine and Cardiology, Massagno, Switzerland
| | - Matthias Baumgartner
- Division of Metabolism and Children's Research Center, University Children's Hospital, Zurich, Switzerland.,radiz - Rare Disease Initiative Zurich, Clinical Research Priority Program for Rare Diseases, University of Zurich, Zurich, Switzerland
| | - Matthias Gautschi
- Department of Paediatrics, Inselspital, University Hospital Bern, Bern, Switzerland.,Institute of Clinical Chemistry, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Jean-Marc Nuoffer
- Department of Paediatrics, Inselspital, University Hospital Bern, Bern, Switzerland.,Institute of Clinical Chemistry, Inselspital, University Hospital Bern, Bern, Switzerland
| |
Collapse
|
42
|
Li M, Dick A, Montenovo M, Horslen S, Hansen R. Cost-effectiveness of liver transplantation in methylmalonic and propionic acidemias. Liver Transpl 2015; 21:1208-18. [PMID: 25990417 DOI: 10.1002/lt.24173] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/14/2015] [Accepted: 05/06/2015] [Indexed: 12/21/2022]
Abstract
Propionic acidemia (PA) and classical methylmalonic acidemia (MMA) are rare inborn errors of metabolism that can cause early mortality and significant morbidity. The mainstay of disease management is lifelong protein restriction. As an alternative, liver transplantation (LT) may improve survival, quality of life, and prevent further neurological deterioration. The aim of our study was to estimate the incremental costs and outcomes of LT versus nutritional support in patients with early-onset MMA or PA. We constructed a Markov model to simulate and compare life expectancies, quality-adjusted life years (QALYs), and lifetime direct and indirect costs for a cohort of newborns with MMA or PA who could either receive LT or be maintained on conventional nutritional support. We conducted a series of 1-way and probabilistic sensitivity analyses. In the base case, LT on average resulted in 1.5 more life years lived, 7.9 more QALYs, and a savings of $582,369 for lifetime societal cost per individual compared to nutritional support. LT remained more effective and less costly in all 1-way sensitivity analyses. In the probabilistic sensitivity analysis, LT was cost-effective at the $100,000/QALY threshold in more than 90% of the simulations and cost-saving in over half of the simulations. LT is likely a dominant treatment strategy compared to nutritional support in newborns with classical MMA or PA.
Collapse
Affiliation(s)
- Meng Li
- Pharmaceutical Outcomes Research and Policy Program, School of Pharmacy, University of Washington, Seattle, WA
| | - Andre Dick
- Department of Surgery, University of Washington, Seattle, WA.,Division of Transplant Surgery, Seattle Children's Hospital, Seattle, WA
| | | | - Simon Horslen
- Department of Pediatrics, University of Washington, Seattle, WA.,Department of Gastroenterology and Hepatology, Seattle Children's Hospital, Seattle, WA.,Department of Transplantation, Seattle Children's Hospital, Seattle, WA
| | - Ryan Hansen
- Pharmaceutical Outcomes Research and Policy Program, School of Pharmacy, University of Washington, Seattle, WA
| |
Collapse
|
43
|
Rela M, Bharathan A, Palaniappan K, Cherian PT, Reddy MS. Portal flow modulation in auxiliary partial orthotopic liver transplantation. Pediatr Transplant 2015; 19:255-60. [PMID: 25692474 DOI: 10.1111/petr.12436] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/09/2015] [Indexed: 12/14/2022]
Abstract
APOLT is a suitable technique of liver transplantation in patients with ALF and some types of MLD. Portal venous steal is a problem with this procedure that leads to graft dysfunction and failure. Modulation of the portal flow to the graft and native liver can help in preventing this problem. We discuss the pathophysiology of this complication, review available literature regarding its management, and describe our results using the technique of graded hemiportal banding to achieve adequate perfusion for the graft and native liver.
Collapse
Affiliation(s)
- Mohamed Rela
- Institute of Liver Disease & Transplantation, Global Hospital & Health City, National Foundation for Liver Research, Chennai, Tamil Nadu, India; Institute of Liver Studies, Kings College Hospital, Denmark Hill, London, UK
| | | | | | | | | |
Collapse
|
44
|
Rafique M. Emerging trends in management of propionic acidemia. ACTA ACUST UNITED AC 2015; 58:237-42. [PMID: 24863085 DOI: 10.1590/0004-2730000002821] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 01/24/2014] [Indexed: 11/22/2022]
Abstract
OBJETIVO To evaluate the therapeutic agents used during metabolic crises and in long-term management of patients with propionic acidemia (PA). MATERIALS AND METHODS The records of PA patients were retrospectively evaluated. RESULTS The study group consisted of 30 patients with 141 admissions. During metabolic crises, hyperammonemia was found in 130 (92%) admissions and almost all patients were managed with normal saline, ≥ 10% dextrose, and restriction of protein intake. In 56 (40%) admissions, management was done in intensive care unit, 31 (22%) with mechanical ventilation, 10 (7%) with haemodialysis, 16 (11%) with vasopressor agents, and 12 (9%) with insulin. In the rescue procedure, L-carnitine was used in 135 (96%) patients, sodium bicarbonate in 116 (82%), sodium benzoate in 76 (54%), and metronidazole in 10 (7%), biotin in about one-quarter, L-arginine in one third, and antibiotics in three-quarter of the admissions. Blood/packed RBCs were used in 28 (20%) patients, platelets in 26 (18%), fresh frozen plasma in 8 (6%), and granulocyte-colony stimulating factors in 10 (7%) admissions. All patients were managed completely/partially with medical nutrition formula plus amino acid mixture, vitamins and minerals. For long-term management 24 (80%) patients were on L-carnitine, 22 (73%) on sodium benzoate, 6 (20%) on biotin, one half on alkaline therapy and 4 (13%) on regular metronidazole use. Almost all patients were on medical formula and regular follow-up. CONCLUSION Aggressive and adequate management of acute metabolic crises with restriction of protein intake, stabilization of patient, reversal of catabolism, and removal of toxic metabolites are essential steps. Concerted efforts to ensure adequate nutrition, to minimize the risk of acute decompensation and additional therapeutic advances are imperative to improve the outcome of PA patients.
Collapse
|
45
|
Charbit-Henrion F, Lacaille F, McKiernan P, Girard M, de Lonlay P, Valayannopoulos V, Ottolenghi C, Chakrapani A, Preece M, Sharif K, Chardot C, Hubert P, Dupic L. Early and late complications after liver transplantation for propionic acidemia in children: a two centers study. Am J Transplant 2015; 15:786-91. [PMID: 25683683 DOI: 10.1111/ajt.13027] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 09/10/2014] [Accepted: 09/14/2014] [Indexed: 01/25/2023]
Abstract
Propionic acidemia (PA) is a severe metabolic disorder with cardiac and neurologic complications and a poor quality of life. Liver transplantation (LT) was thus proposed in PA to increase enzyme activity. We studied retrospectively LT in PA in two European centers. Twelve patients underwent 17 LTs between 1991 and 2013. They developed severe, unusual and unexpected complications, with high mortality (58%). When present, the cardiomyopathy resolved and no acute metabolic decompensation occurred allowing dietary relaxation. Renal failure was present in half of the patients before LT and worsened in all of them. We suggest that cardiac and renal functions should be assessed before LT and monitored closely afterward. A renal sparing immunosuppression should be used. We speculate that some complications may be related to accumulated toxicity of the disease and that earlier LT could prevent some of these consequences. As kidney transplantation has been performed successfully in methylmalonic acidemia, a metabolic disease in the same biochemical pathway, the choice of the organ to transplant could be further discussed.
Collapse
Affiliation(s)
- F Charbit-Henrion
- Laboratory of Intestinal Immunity, Unité INSERM UMR1163, Institut IMAGINE, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Zhang J, Xi J, Dong C, Meng X. Effects of dual arterial blood supply on liver regeneration in the graft and the host following heterotopic auxiliary liver transplantation. Exp Ther Med 2014; 8:1428-1432. [PMID: 25289034 PMCID: PMC4186488 DOI: 10.3892/etm.2014.1976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 08/14/2014] [Indexed: 11/06/2022] Open
Abstract
This study aimed to investigate the effect of the dual arterial blood supply method used in auxiliary liver transplantation on the regeneration of grafted and host liver. A total of 72 male Sprague-Dawley rats were randomly assigned to three experimental groups, namely the 68% hepatectomy group (group A), the 68% hepatectomy with dual arterial blood supply group (group B) and the auxiliary liver transplantation with dual arterial blood supply group (group C). Group C was further divided into the host liver subgroup (group Ca) and the transplanted liver subgroup (group Cb). Six animals from each group were sacrificed at 1, 2 and 7 days after surgery. The calculation of the liver regeneration rate (LRR) was based on measuring liver weight. Liver function was assessed by measuring serum alanine aminotransferase (ALT) levels. Immunohistochemistry was employed to detect the expression of proliferating cell nuclear antigen (PCNA). Apoptotic changes in the grafts and host livers were evaluated using TUNEL staining. The LRR in each group exhibited a tendency to increase over time. At each time point, the LRR of transplanted livers in group C exhibited no significant difference from that of host livers in group C (P>0.05). The ALT levels for each group exhibited a time-dependent decreasing tendency. The ALT level in group C was significantly higher compared to that in groups A and B at each time point (P<0.05). The expression of PCNA in transplanted and host livers in group C was significantly lower compared to that in groups A and B at the same time point (P<0.001). Although the number of apoptotic cells in each group varied at different time points, there was no statistically significant difference (P>0.05). In auxiliary liver transplantation with the dual arterial blood supply method, the capacity of the liver regeneration in the grafts was similar to that of the host livers. Therefore, this technique may reduce the potential risk of graft liver atrophy caused by functional competition.
Collapse
Affiliation(s)
- Junjing Zhang
- Department of General Surgery, Affiliated Hospital of Inner Mongolia Medical University, Huhhot, Inner Mongolia 010050, P.R. China
| | - Junqing Xi
- Department of General Surgery, Affiliated Hospital of Inner Mongolia Medical University, Huhhot, Inner Mongolia 010050, P.R. China
| | - Chaoxuan Dong
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Xingkai Meng
- Department of General Surgery, Affiliated Hospital of Inner Mongolia Medical University, Huhhot, Inner Mongolia 010050, P.R. China
| |
Collapse
|
47
|
Baumgartner MR, Hörster F, Dionisi-Vici C, Haliloglu G, Karall D, Chapman KA, Huemer M, Hochuli M, Assoun M, Ballhausen D, Burlina A, Fowler B, Grünert SC, Grünewald S, Honzik T, Merinero B, Pérez-Cerdá C, Scholl-Bürgi S, Skovby F, Wijburg F, MacDonald A, Martinelli D, Sass JO, Valayannopoulos V, Chakrapani A. Proposed guidelines for the diagnosis and management of methylmalonic and propionic acidemia. Orphanet J Rare Dis 2014; 9:130. [PMID: 25205257 PMCID: PMC4180313 DOI: 10.1186/s13023-014-0130-8] [Citation(s) in RCA: 418] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 08/05/2014] [Indexed: 12/15/2022] Open
Abstract
Methylmalonic and propionic acidemia (MMA/PA) are inborn errors of metabolism characterized by accumulation of propionic acid and/or methylmalonic acid due to deficiency of methylmalonyl-CoA mutase (MUT) or propionyl-CoA carboxylase (PCC). MMA has an estimated incidence of ~ 1: 50,000 and PA of ~ 1:100’000 -150,000. Patients present either shortly after birth with acute deterioration, metabolic acidosis and hyperammonemia or later at any age with a more heterogeneous clinical picture, leading to early death or to severe neurological handicap in many survivors. Mental outcome tends to be worse in PA and late complications include chronic kidney disease almost exclusively in MMA and cardiomyopathy mainly in PA. Except for vitamin B12 responsive forms of MMA the outcome remains poor despite the existence of apparently effective therapy with a low protein diet and carnitine. This may be related to under recognition and delayed diagnosis due to nonspecific clinical presentation and insufficient awareness of health care professionals because of disease rarity. These guidelines aim to provide a trans-European consensus to guide practitioners, set standards of care and to help to raise awareness. To achieve these goals, the guidelines were developed using the SIGN methodology by having professionals on MMA/PA across twelve European countries and the U.S. gather all the existing evidence, score it according to the SIGN evidence level system and make a series of conclusive statements supported by an associated level of evidence. Although the degree of evidence rarely exceeds level C (evidence from non-analytical studies like case reports and series), the guideline should provide a firm and critical basis to guide practice on both acute and chronic presentations, and to address diagnosis, management, monitoring, outcomes, and psychosocial and ethical issues. Furthermore, these guidelines highlight gaps in knowledge that must be filled by future research. We consider that these guidelines will help to harmonize practice, set common standards and spread good practices, with a positive impact on the outcomes of MMA/PA patients.
Collapse
|
48
|
Chiu YH, Liu YN, Liao WL, Chang YC, Lin SP, Hsu CC, Chiu PC, Niu DM, Wang CH, Ke YY, Chien YH, Hsiao KJ, Liu TT. Two frequent mutations associated with the classic form of propionic acidemia in Taiwan. Biochem Genet 2014; 52:415-29. [PMID: 24863100 DOI: 10.1007/s10528-014-9657-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 04/18/2014] [Indexed: 12/15/2022]
Abstract
Propionyl-CoA carboxylase (PCC) is involved in the catabolism of branched chain amino acids, odd-numbered fatty acids, cholesterol, and other metabolites. PCC consists of two subunits, α and β, encoded by the PCCA and PCCB genes, respectively. Mutations in the PCCA or PCCB subunit gene may lead to propionic acidemia. In this study, we performed mutation analysis on ten propionic acidemia patients from eight unrelated and nonconsanguineous families in Taiwan. Two PCCA mutations, c.229C→T (p.R77W) and c.1262A→C (p.Q421P), were identified in a PCCA-deficient patient. Six mutations in the PCCB gene, including c.-4156_183+3713del, c.580T→C (p.S194P), c.838dup (p.L280Pfs 11), c.1301C→T (p.A434V), c.1316A→G (P.Y439C), and c.1534C→T (p.R512C), were identified in seven PCCB-deficient families. The c.-4156_183+3713del mutation is the first known large deletion that affects the PCCB gene functions. Furthermore, the c.1301C→T and c.-4156_183+3713del mutations in the PCCB gene have not been reported previously. Clinical features demonstrated that these two frequent mutations are associated with low enzyme activity and a classic propionic acidemia phenotype.
Collapse
Affiliation(s)
- Yen-Hui Chiu
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Mazariegos G, Shneider B, Burton B, Fox IJ, Hadzic N, Kishnani P, Morton DH, McIntire S, Sokol RJ, Summar M, White D, Chavanon V, Vockley J. Liver transplantation for pediatric metabolic disease. Mol Genet Metab 2014; 111:418-27. [PMID: 24495602 DOI: 10.1016/j.ymgme.2014.01.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/12/2014] [Accepted: 01/12/2014] [Indexed: 12/22/2022]
Abstract
Liver transplantation (LTx) was initially developed as a therapy for liver diseases known to be associated with a high risk of near-term mortality but is based upon a different set of paradigms for inborn metabolic diseases. As overall outcomes for the procedure have improved, LTx has evolved into an attractive approach for a growing number of metabolic diseases in a variety of clinical situations. No longer simply life-saving, the procedure can lead to a better quality of life even if not all symptoms of the primary disorder are eliminated. Juggling the risk-benefit ratio thus has become more complicated as the list of potential disorders amenable to treatment with LTx has increased. This review summarizes presentations from a recent conference on metabolic liver transplantation held at the Children's Hospital of Pittsburgh of UPMC on the role of liver or hepatocyte transplantation in the treatment of metabolic liver disease.
Collapse
Affiliation(s)
- George Mazariegos
- Hillman Center for Pediatric Transplantation, Children's Hospital of Pittsburgh of UPMC, Faculty Pavilion, 4401 Penn Avenue, Pittsburgh, PA 15224, USA; University of Pittsburgh School of Medicine/UPMC Department of Surgery, Thomas E. Starzl Transplantation Institute, E1540 Biomedical Science Tower (BST), 200 Lothrop Street, Pittsburgh, PA 15261, USA.
| | - Benjamin Shneider
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital of Pittsburgh of UPMC, Rangos Research Center, 4401 Penn Avenue, 7th Floor, Pittsburgh, PA 15224, USA.
| | - Barbara Burton
- Department of Pediatrics, Northwestern University Feinberg School of Medicine/Ann & Robert H. Lurie Children's Hospital of Chicago, Box MC 59, 225 E Chicago Avenue, Chicago, IL 60611, USA.
| | - Ira J Fox
- Hillman Center for Pediatric Transplantation, Children's Hospital of Pittsburgh of UPMC, Faculty Pavilion, 4401 Penn Avenue, Pittsburgh, PA 15224, USA; University of Pittsburgh School of Medicine/UPMC Department of Surgery, Thomas E. Starzl Transplantation Institute, E1540 Biomedical Science Tower (BST), 200 Lothrop Street, Pittsburgh, PA 15261, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Nedim Hadzic
- King's College Hospital, Paediatric Liver Center, London, UK.
| | - Priya Kishnani
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, DUMC 103856, 595 Lasalle Street, GSRB 1, 4th Floor, Room 4010, Durham, NC 27710, USA.
| | - D Holmes Morton
- Franklin and Marshall College, Clinic for Special Children, 535 Bunker Hill Road, Strasburg, PA 17579, USA.
| | - Sara McIntire
- Department of Pediatrics, Paul C. Gaffney Diagnostic Referral Service, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Suite Floor 3, Pittsburgh, PA 15224, USA.
| | - Ronald J Sokol
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Section of Gastroenterology, Hepatology and Nutrition, 13123 E. 16th Avenue, B290, Aurora, CO 80045-7106, USA.
| | - Marshall Summar
- Division of Genetics and Metabolism, George Washington University, Children's National Medical Center, Center for Genetic Medicine Research (CGMR), 111 Michigan Avenue, NW, Washington, DC 20010-2970, USA.
| | - Desiree White
- Department of Psychology, Washington University, Psychology Building, Room 221, Campus Box 1125, St. Louis, MO 63130-4899, USA.
| | - Vincent Chavanon
- Division of Plastic and Reconstructive Surgery, Mount Sinai Hospital, 5 East 98th Street, 15th Floor, New York, NY 10029, USA.
| | - Jerry Vockley
- Department of Pediatrics, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA, USA; Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA; Division of Medical Genetics, Children's Hospital of Pittsburgh of UPMC, Rangos Research Center, 4401 Penn Avenue, Pittsburgh, PA 15224, USA.
| |
Collapse
|
50
|
Ryu J, Shin YH, Ko JS, Gwak MS, Kim GS. Intractable metabolic acidosis in a child with propionic acidemia undergoing liver transplantation -a case report-. Korean J Anesthesiol 2013; 65:257-61. [PMID: 24101962 PMCID: PMC3790039 DOI: 10.4097/kjae.2013.65.3.257] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 07/03/2012] [Accepted: 07/03/2012] [Indexed: 11/10/2022] Open
Abstract
Propionic acidemia (PA) is a rare autosomal recessive disorder of metabolism caused by deficient activity of the mitochondrial enzyme propionyl-CoA carboxylase. The clinical manifestations are metabolic acidosis, poor feeding, lethargy, vomiting, osteoporosis, neurological dysfunction, pancytopenia, developmental retardation and cardiomyopathy. Liver transplantation has recently been considered as one of the treatment options for patients with PA. This case report describes several anesthetic considerations for patients with PA undergoing liver transplantation. Understanding the patient's status and avoiding events that may precipitate metabolic acidosis are important for anesthetic management of patients with PA. In conclusion, anesthesia should be focused on minimizing the severity of metabolic acidosis with following considerations: (1) maintaining optimal tissue perfusion by avoiding hypotension, (2) preventing hypoglycemia, and (3) providing bicarbonate to compensate for the acidosis.
Collapse
Affiliation(s)
- Jiyoung Ryu
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|