1
|
Yerramathi BB, Muniraj BA, Kola M, Konidala KK, Arthala PK, Sharma TSK. Alginate biopolymeric structures: Versatile carriers for bioactive compounds in functional foods and nutraceutical formulations: A review. Int J Biol Macromol 2023; 253:127067. [PMID: 37748595 DOI: 10.1016/j.ijbiomac.2023.127067] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Alginate-based biopolymer products have gained attention for protecting and delivering bioactive components in nutraceuticals and functional foods. These naturally abundant anionic, unbranched, and linear copolymers are also produced commercially by microorganisms. Alone or in combination with other copolymers, they efficiently transport bioactive molecules in food and nutraceutical products. This review aims to provide an in-depth understanding of alginate-based products and structures, emphasizing their role in delivering functional molecules in various formulations and delivery systems. These include edible coatings/films, gels/emulsions, beads/droplets, microspheres/particles, and engineered nanostructures where alginates have been used potentially. By exploring these applications, readers gain insights into the benefits of these products. Because, alginate-based biopolymer products have shown promise in delivering bioactive compounds like vitamin C, vitamin D3, curcumin, β-carotene, resveratrol, folic acid, gliadins, caffeic acid, betanin, limonoids, quercetin, several polyphenols and essential oils, etc., which are chief contributors to treating specific/overall nutritional and chronic metabolic disorders. So, this review summarizes the potential of alginate-based structures/products in various forms for delivering a wide range of functional food ingredients and nutraceutical components that offer promising perspectives for future investigations.
Collapse
Affiliation(s)
- Babu Bhagath Yerramathi
- Food Technology Division, College of Sciences, Sri Venkateswara University, Tirupati 517502, Andhra Pradesh, India
| | - Beulah Annem Muniraj
- Integrated Food Technology, Sri Padmavathi Mahila Visvavidyalayam, Tirupati 517502, Andhra Pradesh, India
| | - Manjula Kola
- Food Technology Division, College of Sciences, Sri Venkateswara University, Tirupati 517502, Andhra Pradesh, India.
| | - Kranthi Kumar Konidala
- Bioinformatics, Department of Zoology, College of Sciences, Sri Venkateswara University, Tirupati 517502, Andhra Pradesh, India
| | - Praveen Kumar Arthala
- Department of Microbiology, Vikrama Simhapuri University, Nellore, Andhra Pradesh, India
| | | |
Collapse
|
2
|
Williams TJ, Jeevarathinam AS, Jivan F, Baldock V, Kim P, McShane MJ, Alge DL. Glucose biosensors based on Michael addition crosslinked poly(ethylene glycol) hydrogels with chemo-optical sensing microdomains. J Mater Chem B 2023; 11:1749-1759. [PMID: 36723375 DOI: 10.1039/d2tb02339c] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Continuous glucose monitoring (CGM) devices have the potential to lead to better disease management and improved outcomes in patients with diabetes. Chemo-optical glucose sensors offer a promising, accurate, long-term alternative to the current CGMs that require frequent calibration and replacement. Recently, we have proposed glucose sensor designs using phosphorescence lifetime-based measurement of chemo-optical glucose sensing microdomains embedded within alginate hydrogels. Due to the poor long-term stability of calcium-crosslinked alginate, we propose poly(ethylene glycol) (PEG) hydrogels synthesized via thiol-Michael addition chemistry as an alternative hydrogel carrier. The objective of this study was to evaluate the suitability of Michael addition crosslinked PEG hydrogels compared to calcium crosslinked alginate hydrogels for encapsulating glucose-sensing microdomains. PEG hydrogels crosslinked via thiol-vinyl sulfone addition achieved gelation in under 5 minutes, resulting in an even distribution of sensing microdomains. The shear storage modulus of the PEG hydrogels was tunable from 2.2 ± 0.1 kPa to 9.5 ± 1.8 kPa, which was comparable to the alginate hydrogels (10.5 ± 0.8 kPa), and the inclusion of microdomains did not significantly impact stiffness. The high water content of PEG hydrogels resulted in high glucose permeability that closely corresponded to the glucose permeability of alginate (D = 0.09 and 0.12 cm2 s-1, respectively; p = 0.47), but the PEG hydrogels exhibited superior stability. Both PEG and alginate-embedded sensors exhibited a sensing range up to ∼200 mg dL-1 glucose. The lower limits of detection (LOD) for PEG and alginate-based glucose sensors were 19.8 and 20.6 mg dL-1 with a difference of just 4.2% variation. The small difference between PEG and alginate embedded sensors indicates that their sensing properties are primarily determined by the glucose sensing microdomains rather than the hydrogel matrix. Overall, the results of this study indicate that Michael addition-crosslinked PEG hydrogels are a promising platform for encapsulation of chemo-optical glucose sensing microdomains.
Collapse
Affiliation(s)
- Tyrell J Williams
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA.
| | | | - Faraz Jivan
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA.
| | - Victoria Baldock
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA.
| | - Paul Kim
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA.
| | - Michael J McShane
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA. .,Department of Materials Science and Engineering, Texas A&M University, College Station, Texas, USA
| | - Daniel L Alge
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA. .,Department of Materials Science and Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
3
|
Ferraraccio L, Di Lisa D, Pastorino L, Bertoncello P. Enzymes Encapsulated within Alginate Hydrogels: Bioelectrocatalysis and Electrochemiluminescence Applications. Anal Chem 2022; 94:16122-16131. [PMID: 36346353 PMCID: PMC9685591 DOI: 10.1021/acs.analchem.2c03389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
A simple procedure to incorporate enzymes (horseradish peroxidase, HRP, and lactate oxidase, LOx) within alginate hydrogels is reported with electrochemiluminescence (ECL) used to detect the enzymatic reactions with the corresponding substrates. First, HRP and LOx were successfully immobilized into CaCO3 microspheres, followed by the electrostatic layer-by-layer deposition of a nanoshell onto the microspheres, and finally by their dispersion into alginate solution. The as-prepared dispersion was drop cast onto the glassy carbon electrodes and cross-linked by the external and internal gelation methods using Ca2+ cations. The enzymes encapsulated within the alginate hydrogels were characterized using cyclic voltammetry and kinetic studies performed using ECL. The results showed that the enzymatic activity was significantly maintained as a result of the immobilization, with values of the apparent Michaelis-Menten constants estimated as 7.71 ± 0.62 and 8.41 ± 0.43 μM, for HRP and LOx, respectively. The proposed biosensors showed good stability and repeatability with an estimated limit of detection of 5.38 ± 0.05 and 0.50 ± 0.03 μM for hydrogen peroxide and lactic acid, respectively. The as-prepared enzymes encapsulated within the alginate hydrogels showed good stability up to 28 days from their preparation. The sensitivity and selectivity of the enzymes encapsulated within the alginate hydrogels were tested in real matrices (HRP, hydrogen peroxide, in contact lens solution; LOx, lactic acid in artificial sweat) showing the sensitivity of the ECL detection methods for the detection of hydrogen peroxide and lactic acid in real samples.
Collapse
Affiliation(s)
- Lucia
Simona Ferraraccio
- Department
of Chemical Engineering, Faculty of Science and Engineering, Swansea University, Bay Campus, Crymlyn Burrows, Swansea SA1 8EN, U.K.
- Centre
for NanoHealth, Swansea University, Singleton Campus, Swansea SA2 8PP, U.K.
| | - Donatella Di Lisa
- Department
of Informatics, Bioengineering, Robotics and System Engineering, University of Genova, Via Opera Pia 13, 16145 Genova, Italy
| | - Laura Pastorino
- Department
of Informatics, Bioengineering, Robotics and System Engineering, University of Genova, Via Opera Pia 13, 16145 Genova, Italy
| | - Paolo Bertoncello
- Department
of Chemical Engineering, Faculty of Science and Engineering, Swansea University, Bay Campus, Crymlyn Burrows, Swansea SA1 8EN, U.K.
- Centre
for NanoHealth, Swansea University, Singleton Campus, Swansea SA2 8PP, U.K.
| |
Collapse
|
4
|
Mateos-Maroto A, Fernández-Peña L, Abelenda-Núñez I, Ortega F, Rubio RG, Guzmán E. Polyelectrolyte Multilayered Capsules as Biomedical Tools. Polymers (Basel) 2022; 14:polym14030479. [PMID: 35160468 PMCID: PMC8838751 DOI: 10.3390/polym14030479] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 12/10/2022] Open
Abstract
Polyelectrolyte multilayered capsules (PEMUCs) obtained using the Layer-by-Layer (LbL) method have become powerful tools for different biomedical applications, which include drug delivery, theranosis or biosensing. However, the exploitation of PEMUCs in the biomedical field requires a deep understanding of the most fundamental bases underlying their assembly processes, and the control of their properties to fabricate novel materials with optimized ability for specific targeting and therapeutic capacity. This review presents an updated perspective on the multiple avenues opened for the application of PEMUCs to the biomedical field, aiming to highlight some of the most important advantages offered by the LbL method for the fabrication of platforms for their use in the detection and treatment of different diseases.
Collapse
Affiliation(s)
- Ana Mateos-Maroto
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (A.M.-M.); (L.F.-P.); (I.A.-N.); (F.O.); (R.G.R.)
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Laura Fernández-Peña
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (A.M.-M.); (L.F.-P.); (I.A.-N.); (F.O.); (R.G.R.)
- Centro de Espectroscopía y Correlación, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Irene Abelenda-Núñez
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (A.M.-M.); (L.F.-P.); (I.A.-N.); (F.O.); (R.G.R.)
| | - Francisco Ortega
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (A.M.-M.); (L.F.-P.); (I.A.-N.); (F.O.); (R.G.R.)
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain
| | - Ramón G. Rubio
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (A.M.-M.); (L.F.-P.); (I.A.-N.); (F.O.); (R.G.R.)
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain
| | - Eduardo Guzmán
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (A.M.-M.); (L.F.-P.); (I.A.-N.); (F.O.); (R.G.R.)
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain
- Correspondence:
| |
Collapse
|
5
|
Shin H, Kim HT, Choi MJ, Ko EY. Effects of Bromelain and Double Emulsion on the Physicochemical Properties of Pork Loin. Food Sci Anim Resour 2019; 39:888-902. [PMID: 31950106 PMCID: PMC6949528 DOI: 10.5851/kosfa.2019.e70] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/02/2019] [Accepted: 10/06/2019] [Indexed: 12/20/2022] Open
Abstract
Our aim was to investigate the effects of bromelain embedded in double emulsion
(DE) on physicochemical properties of pork loin. We evaluated DE characteristics
such as size, zeta potential, and microscopy after fabrication. We marinated
meat with distilled water (DW), 1% (w/v) bromelain solution, blank DE,
and 1% (w/v) bromelain loaded in double emulsion (DE E) for 0, 24, 48,
and 72 h at 4°C, and prepared raw meat for control. The marinated samples
were assessed for color, water holding capacity, cooking loss, moisture content,
pH, protein solubility, Warner-Bratzler shear force (WBSF) and gel
electrophoresis. The droplet size of 1% (w/v) bromelain embedded in DE
was increased compared with blank DE (p<0.05) and values of zeta
potential decreased. The increase in lightness and color difference range of the
DE-treated group was lower than that of the DW-treated group (p<0.05).
Moreover, treatment by immersion in 1% (w/v) DE E resulted in the highest
water holding capacity values (p<0.05) and lower cooking loss values than
water base treatment (p<0.05). Results for myofibrillar protein
solubility and WBSF showed a similar trend. 1% (w/v) DE E showed
degradation of myosin heavy chain after 48 h in sodium dodecyl
sulfate-polyacrylamide gel electrophoresis. Thus, bromelain-loaded DE is useful
for controlling and handling enzyme activity in food industry.
Collapse
Affiliation(s)
- Hyerin Shin
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Hyo Tae Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Mi-Jung Choi
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Eun-Young Ko
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
6
|
Zhu C, Itel F, Chandrawati R, Han X, Städler B. Multicompartmentalized Microreactors Containing Nuclei and Catalase-Loaded Liposomes. Biomacromolecules 2018; 19:4379-4385. [PMID: 30231209 DOI: 10.1021/acs.biomac.8b01260] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chuntao Zhu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering. Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Fabian Itel
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering. Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| |
Collapse
|
7
|
Methotrexate loaded alginate microparticles and effect of Ca2+ post-crosslinking: An in vitro physicochemical and biological evaluation. Int J Biol Macromol 2018; 110:294-307. [DOI: 10.1016/j.ijbiomac.2017.10.148] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/28/2017] [Accepted: 10/22/2017] [Indexed: 12/18/2022]
|
8
|
Dhanka M, Shetty C, Srivastava R. Methotrexate loaded gellan gum microparticles for drug delivery. Int J Biol Macromol 2018; 110:346-356. [DOI: 10.1016/j.ijbiomac.2017.12.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/25/2017] [Accepted: 12/05/2017] [Indexed: 12/13/2022]
|
9
|
Tsirigotis-Maniecka M, Lamch Ł, Chojnacka I, Gancarz R, Wilk KA. Microencapsulation of hesperidin in polyelectrolyte complex microbeads: Physico-chemical evaluation and release behavior. J FOOD ENG 2017. [DOI: 10.1016/j.jfoodeng.2017.06.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
10
|
Guzmán E, Mateos-Maroto A, Ruano M, Ortega F, Rubio RG. Layer-by-Layer polyelectrolyte assemblies for encapsulation and release of active compounds. Adv Colloid Interface Sci 2017; 249:290-307. [PMID: 28455094 DOI: 10.1016/j.cis.2017.04.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/18/2017] [Accepted: 04/18/2017] [Indexed: 10/19/2022]
Abstract
Soft assemblies obtained following the Layer-by-Layer (LbL) approach are accounted among the most interesting systems for designing biomaterials and drug delivery platforms. This is due to the extraordinary versatility and flexibility offered by the LbL method, allowing for the fabrication of supramolecular multifunctional materials using a wide range of building blocks through different types of interactions (electrostatic, hydrogen bonds, acid-base or coordination interactions, or even covalent bonds). This provides the bases for the building of materials with different sizes, shapes, compositions and morphologies, gathering important possibilities for tuning and controlling the physico-chemical properties of the assembled materials with precision in the nanometer scale, and consequently creating important perspective for the application of these multifunctional materials as cargo systems in many areas of technological interest. This review studies different physico - chemical aspects associated with the assembly of supramolecular materials by the LbL method, paying special attention to the description of these aspects playing a central role in the application of these materials as cargo platforms for encapsulation and release of active compounds.
Collapse
|
11
|
Zhang Y, Schattling PS, Itel F, Städler B. Planar and Cell Aggregate-Like Assemblies Consisting of Microreactors and HepG2 Cells. ACS OMEGA 2017; 2:7085-7095. [PMID: 30023539 PMCID: PMC6045345 DOI: 10.1021/acsomega.7b01234] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/05/2017] [Indexed: 05/04/2023]
Abstract
The assembly of microreactors has made considerable progress toward the fabrication of artificial cells. However, their characterization remains largely limited to buffer solution-based assays in the absence of their natural role model-the biological cells. Herein, the combination of microreactors with HepG2 cells either in planar cell cultures or in the form of cell aggregates is reported. Alginate (Alg)-based microreactors loaded with catalase are assembled by droplet microfluidics, and their activity is confirmed. The acceptance of polymer-coated ∼40 μm Alg particles by proliferating HepG2 cells is depending on the terminating polymer layer. When these functional microreactors are cocultured with HepG2 cells, they can be employed for detoxification, that is, hydrogen peroxide removal, and by doing so, they assist the cells to survive. This report is among the first successful combination of microreactors with biological cells, that is, HepG2 cells, contributing to the fundamental understanding of integrating synthetic and biological partners toward the maturation of this semisynthetic concept for biomedical applications.
Collapse
Affiliation(s)
- Yan Zhang
- Interdisciplinary Nanoscience (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus 8000, Denmark
| | - Philipp S. Schattling
- Interdisciplinary Nanoscience (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus 8000, Denmark
| | - Fabian Itel
- Interdisciplinary Nanoscience (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus 8000, Denmark
| | - Brigitte Städler
- Interdisciplinary Nanoscience (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus 8000, Denmark
| |
Collapse
|
12
|
Lactase (β-galactosidase) encapsulation in hydrogel beads with controlled internal pH microenvironments: Impact of bead characteristics on enzyme activity. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.01.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
McClements DJ. Designing biopolymer microgels to encapsulate, protect and deliver bioactive components: Physicochemical aspects. Adv Colloid Interface Sci 2017; 240:31-59. [PMID: 28034309 DOI: 10.1016/j.cis.2016.12.005] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 12/12/2022]
Abstract
Biopolymer microgels have considerable potential for their ability to encapsulate, protect, and release bioactive components. Biopolymer microgels are small particles (typically 100nm to 1000μm) whose interior consists of a three-dimensional network of cross-linked biopolymer molecules that traps a considerable amount of solvent. This type of particle is also sometimes referred to as a nanogel, hydrogel bead, biopolymer particles, or microsphere. Biopolymer microgels are typically prepared using a two-step process involving particle formation and particle gelation. This article reviews the major constituents and fabrication methods that can be used to prepare microgels, highlighting their advantages and disadvantages. It then provides an overview of the most important characteristics of microgel particles (such as size, shape, structure, composition, and electrical properties), and describes how these parameters can be manipulated to control the physicochemical properties and functional attributes of microgel suspensions (such as appearance, stability, rheology, and release profiles). Finally, recent examples of the utilization of biopolymer microgels to encapsulate, protect, or release bioactive agents, such as pharmaceuticals, nutraceuticals, enzymes, flavors, and probiotics is given.
Collapse
|
14
|
Zhang Z, Chen F, Zhang R, Deng Z, McClements DJ. Encapsulation of Pancreatic Lipase in Hydrogel Beads with Self-Regulating Internal pH Microenvironments: Retention of Lipase Activity after Exposure to Gastric Conditions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:9616-9623. [PMID: 27966930 DOI: 10.1021/acs.jafc.6b04644] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Oral delivery of lipase is important for individuals with exocrine pancreatic insufficiency; however, lipase loses activity when exposed to the highly acidic gastric environment. In this study, pancreatic lipase was encapsulated in hydrogel beads fabricated from alginate (gel former), calcium chloride (cross-linker), and magnesium hydroxide (buffer). Fluorescence confocal microscopy imaging was used to map the pH microclimate within the hydrogel beads under simulated gastrointestinal tract (GIT) conditions. The pH within buffer-free beads rapidly decreased when they moved from mouth (pH 6.3) to stomach (pH <4), leading to a loss of lipase activity in the small intestine. Conversely, the pH inside buffer-loaded beads remained close to neutral in the mouth (pH 7.33) and stomach (pH 7.39), leading to retention of lipase activity in the small intestine, as shown by pH-stat analysis of lipid digestion. The presence of the encapsulated buffer also reduced bead shrinkage under gastric conditions.
Collapse
Affiliation(s)
- Zipei Zhang
- Department of Food Science, University of Massachusetts-Amherst , Amherst, Massachusetts 01003, United States
| | - Fang Chen
- State Key Laboratory of Food Science and Technology, Nanchang University , No. 8 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - Ruojie Zhang
- Department of Food Science, University of Massachusetts-Amherst , Amherst, Massachusetts 01003, United States
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University , No. 8 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts-Amherst , Amherst, Massachusetts 01003, United States
| |
Collapse
|
15
|
Ayan B, Ozcelik A, Bachman H, Tang SY, Xie Y, Wu M, Li P, Huang TJ. Acoustofluidic coating of particles and cells. LAB ON A CHIP 2016; 16:4366-4372. [PMID: 27754503 PMCID: PMC5465870 DOI: 10.1039/c6lc00951d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
On-chip microparticle and cell coating technologies enable a myriad of applications in chemistry, engineering, and medicine. Current microfluidic coating technologies often rely on magnetic labeling and concurrent deflection of particles across laminar streams of chemicals. Herein, we introduce an acoustofluidic approach for microparticle and cell coating by implementing tilted-angle standing surface acoustic waves (taSSAWs) into microchannels with multiple inlets. The primary acoustic radiation force generated by the taSSAW field was exploited in order to migrate the particles across the microchannel through multiple laminar streams, which contained the buffer and coating chemicals. We demonstrate effective coating of polystyrene microparticles and HeLa cells without the need for magnetic labelling. We characterized the coated particles and HeLa cells with fluorescence microscopy and scanning electron microscopy. Our acoustofluidic-based particle and cell coating method is label-free, biocompatible, and simple. It can be useful in the on-chip manufacturing of many functional particles and cells.
Collapse
Affiliation(s)
- Bugra Ayan
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Adem Ozcelik
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.
| | - Hunter Bachman
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.
| | - Shi-Yang Tang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yuliang Xie
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Mengxi Wu
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.
| | - Peng Li
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Tony Jun Huang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA and Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
16
|
Fisher MB, Belkin NS, Milby AH, Henning EA, Söegaard N, Kim M, Pfeifer C, Saxena V, Dodge GR, Burdick JA, Schaer TP, Steinberg DR, Mauck RL. Effects of Mesenchymal Stem Cell and Growth Factor Delivery on Cartilage Repair in a Mini-Pig Model. Cartilage 2016; 7:174-84. [PMID: 27047640 PMCID: PMC4797244 DOI: 10.1177/1947603515623030] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE We have recently shown that mesenchymal stem cells (MSCs) embedded in a hyaluronic acid (HA) hydrogel and exposed to chondrogenic factors (transforming growth factor-β3 [TGF-β3]) produce a cartilage-like tissue in vitro. The current objective was to determine if these same factors could be combined immediately prior to implantation to induce a superior healing response in vivo relative to the hydrogel alone. DESIGN Trochlear chondral defects were created in Yucatan mini-pigs (6 months old). Treatment groups included an HA hydrogel alone and hydrogels containing allogeneic MSCs, TGF-β3, or both. Six weeks after surgery, micro-computed tomography was used to quantitatively assess defect fill and subchondral bone remodeling. The quality of cartilage repair was assessed using the ICRS-II histological scoring system and immunohistochemistry for type II collagen. RESULTS Treatment with TGF-β3 led to a marked increase in positive staining for collagen type II within defects (P < 0.05), while delivery of MSCs did not (P > 0.05). Neither condition had an impact on other histological semiquantitative scores (P > 0.05), and inclusion of MSCs led to significantly less defect fill (P < 0.05). For all measurements, no synergistic interaction was found between TGF-β3 and MSC treatment when they were delivered together (P > 0.05). CONCLUSIONS At this early healing time point, treatment with TGF-β3 promoted the formation of collagen type II within the defect, while allogeneic MSCs had little benefit. Combination of TGF-β3 and MSCs at the time of surgery did not produce a synergistic effect. An in vitro precultured construct made of these components may be required to enhance in vivo repair in this model system.
Collapse
Affiliation(s)
- Matthew B. Fisher
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA,Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, PA, USA,Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA,North Carolina State University, Raleigh, NC, USA
| | - Nicole S. Belkin
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA,Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, PA, USA
| | - Andrew H. Milby
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA,Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, PA, USA
| | - Elizabeth A. Henning
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA,Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, PA, USA
| | - Nicole Söegaard
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA,Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, PA, USA
| | - Minwook Kim
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA,Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, PA, USA
| | - Christian Pfeifer
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA,Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, PA, USA,Department of Trauma Surgery, Regensburg University Medical Center, Regensburg, Germany
| | - Vishal Saxena
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA,Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, PA, USA
| | - George R. Dodge
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA,Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, PA, USA
| | - Jason A. Burdick
- Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, PA, USA,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas P. Schaer
- Comparative Orthopaedic Research Laboratory, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David R. Steinberg
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA,Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, PA, USA
| | - Robert L. Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA,Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, PA, USA,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA,Robert L. Mauck, Departments of Orthopaedic Surgery and Bioengineering, Perelman School of Medicine, University of Pennsylvania, 424 Stemmler Hall, 36th Street and Hamilton Walk, Philadelphia, PA 19104, USA.
| |
Collapse
|
17
|
On-chip preparation of calcium alginate particles based on droplet templates formed by using a centrifugal microfluidic technique. J Colloid Interface Sci 2016; 466:20-7. [DOI: 10.1016/j.jcis.2015.12.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/29/2015] [Accepted: 12/01/2015] [Indexed: 11/18/2022]
|
18
|
Wanawananon K, Moulton SE, Wallace GG, Liawruangrath S. Fabrication of novel core-shell PLGA and alginate fiber for dual-drug delivery system. POLYM ADVAN TECHNOL 2016. [DOI: 10.1002/pat.3763] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kwanchanok Wanawananon
- Alpha Flow Analysis Group, Department of Chemistry and center of Excellent for Innovation in Chemistry (PERCH-CIC) Together with Materials Science Research Center, Faculty of Science; Chiang Mai University; Chiang Mai 50200 Thailand
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute; University of Wollongong; Wollongong NSW 2522 Australia
| | - Simon E. Moulton
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute; University of Wollongong; Wollongong NSW 2522 Australia
| | - Gordon G. Wallace
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute; University of Wollongong; Wollongong NSW 2522 Australia
| | - Saisunee Liawruangrath
- Alpha Flow Analysis Group, Department of Chemistry and center of Excellent for Innovation in Chemistry (PERCH-CIC) Together with Materials Science Research Center, Faculty of Science; Chiang Mai University; Chiang Mai 50200 Thailand
| |
Collapse
|
19
|
Pellegrini M, Cherukupalli A, Medini M, Falkowski R, Olabisi R. The Effect of Swelling Ratio on the Coulter Underestimation of Hydrogel Microsphere Diameters. Tissue Eng Part C Methods 2015; 21:1246-50. [PMID: 26414785 PMCID: PMC4663640 DOI: 10.1089/ten.tec.2015.0246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It has been demonstrated that the diameters of porous particles are underestimated by Coulter measurements. This phenomenon has also been observed in hydrogel particles, but not characterized. Since the Coulter principle uses the displacement of electrolyte to determine particle size, electrolyte contained within the swelled hydrogel microparticles results in an underestimate of actual particle diameters. The increased use of hydrogel microspheres in biomedical applications has led to the increased application of the Coulter principle to evaluate the size distribution of microparticles. A relationship between the swelling ratio of the particles and their reported Coulter diameters will permit calculation of the actual diameters of these particles. Using polyethylene glycol diacrylate hydrogel microspheres, we determined a correction factor that relates the polymer swelling ratio and the reported Coulter diameters to their actual size.
Collapse
Affiliation(s)
- Michael Pellegrini
- Department of Biomedical Engineering, Rutgers University , Piscataway, New Jersey
| | | | - Michael Medini
- Department of Biomedical Engineering, Rutgers University , Piscataway, New Jersey
| | - Ron Falkowski
- Department of Biomedical Engineering, Rutgers University , Piscataway, New Jersey
| | - Ronke Olabisi
- Department of Biomedical Engineering, Rutgers University , Piscataway, New Jersey
| |
Collapse
|
20
|
Kapishon V, Whitney RA, Champagne P, Cunningham MF, Neufeld RJ. Polymerization Induced Self-Assembly of Alginate Based Amphiphilic Graft Copolymers Synthesized by Single Electron Transfer Living Radical Polymerization. Biomacromolecules 2015; 16:2040-8. [DOI: 10.1021/acs.biomac.5b00470] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Vitaliy Kapishon
- Department of Chemical Engineering, ‡Department of Chemistry, and §Department of
Civil Engineering, Queen’s University, Kingston, Ontario Canada K7L 3N6
| | - Ralph A. Whitney
- Department of Chemical Engineering, ‡Department of Chemistry, and §Department of
Civil Engineering, Queen’s University, Kingston, Ontario Canada K7L 3N6
| | - Pascale Champagne
- Department of Chemical Engineering, ‡Department of Chemistry, and §Department of
Civil Engineering, Queen’s University, Kingston, Ontario Canada K7L 3N6
| | - Michael F. Cunningham
- Department of Chemical Engineering, ‡Department of Chemistry, and §Department of
Civil Engineering, Queen’s University, Kingston, Ontario Canada K7L 3N6
| | - Ronald J. Neufeld
- Department of Chemical Engineering, ‡Department of Chemistry, and §Department of
Civil Engineering, Queen’s University, Kingston, Ontario Canada K7L 3N6
| |
Collapse
|
21
|
Biswas A, Nagaraja AT, McShane MJ. Fabrication of nanocapsule carriers from multilayer-coated vaterite calcium carbonate nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2014; 6:21193-21201. [PMID: 25372304 DOI: 10.1021/am5061195] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Nanosized luminescent sensors were prepared as reagents for optical sensing and imaging of oxygen using ratiometric emission properties of a two-dye system. Polymeric capsules were fabricated utilizing poly(vinylsulfonic acid) (PVSA)-stabilized vaterite CaCO3 nanoparticles (CCNPs) as sacrificial templates. The buffer and polymeric surfactant requirements of the layer-by-layer (LbL) process were evaluated toward deposition of multilayer coatings and, ultimately, formation of hollow capsules using these interesting materials. CCNPs were found to be more stable in alkaline NaHCO3 buffer after repeated cycles of washing under sonication and resuspension. An intermediate PVSA concentration was required to maximize the loading of oxygen-sensitive porphyrin and oxygen-insensitive fluorescent nanoparticles in the CCNPs while maintaining minimal nanoparticle size. The CCNPs were then coated with polyelectrolyte multilayers and subsequent removal of the CaCO3 core yielded nanocapsules containing dye and fluorescent nanoparticles. The resulting nanocapsules with encapsulated luminophores functioned effectively as oxygen sensors with a quenching response of 89.28 ± 2.59%, and O2 (S = 1/2) = 20.91 μM of dissolved oxygen.
Collapse
Affiliation(s)
- Aniket Biswas
- Department of Biomedical Engineering and ‡Department of Materials Science and Engineering, Texas A&M University , College Station, Texas 77843, United States
| | | | | |
Collapse
|
22
|
Pharmacological aspects of release from microcapsules - from polymeric multilayers to lipid membranes. Curr Opin Pharmacol 2014; 18:129-40. [PMID: 25450067 DOI: 10.1016/j.coph.2014.09.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/16/2014] [Accepted: 09/21/2014] [Indexed: 11/24/2022]
Abstract
This review is devoted to pharmacological applications of principles of release from capsules to overcome the membrane barrier. Many of these principles were developed in the context of polymeric multilayer capsule membrane modulation, but they are also pertinent to liposomes, polymersomes, capsosomes, particles, emulsion-based carriers and other carriers. We look at these methods from the physical, chemical or biological driving mechanisms point of view. In addition to applicability for carriers in drug delivery, these release methods are significant for another area directly related to pharmacology - modulation of the permeability of the membranes and thus promoting the action of drugs. Emerging technologies, including ionic current monitoring through a lipid membrane on a nanopore, are also highlighted.
Collapse
|
23
|
Kilan K, Warszyński P. Thickness and permeability of multilayers containing alginate cross-linked by calcium ions. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
24
|
Moon SK, Cheong IW, Choi SW. Effect of flow rates of the continuous phase on droplet size in dripping and jetting regimes in a simple fluidic device for coaxial flow. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2014.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Woo E, Park H, Lee KY. Shear reversible cell/microsphere aggregate as an injectable for tissue regeneration. Macromol Biosci 2014; 14:740-8. [PMID: 24436180 DOI: 10.1002/mabi.201300365] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 11/28/2013] [Indexed: 11/12/2022]
Abstract
Injectable delivery systems have been widely used in tissue engineering as they can deliver cells into the body in a minimally invasive manner. In this study, it is hypothesized that microspheres with a similar size of cells could effectively form a shear reversible aggregate in the presence of cells and the aggregate could be useful to engineer tissues. Alginate microspheres are prepared by an emulsion method, followed by modification with a peptide containing the arginine-glycine-aspartic acid (RGD) sequence. RGD-modified alginate microspheres form an aggregate in the presence of chondrocytes, and the aggregation behavior is shear reversible. This cell/microsphere aggregate is useful to deliver chondrocytes into an animal model using a syringe, and effectively regenerates cartilage tissues in vivo.
Collapse
Affiliation(s)
- Eunkyeong Woo
- Department of Bioengineering, Hanyang University, Seoul, 133-791, Republic of Korea
| | | | | |
Collapse
|
26
|
Ariga K, Yamauchi Y, Rydzek G, Ji Q, Yonamine Y, Wu KCW, Hill JP. Layer-by-layer Nanoarchitectonics: Invention, Innovation, and Evolution. CHEM LETT 2014. [DOI: 10.1246/cl.130987] [Citation(s) in RCA: 763] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Katsuhiko Ariga
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS)
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST)
| | - Yusuke Yamauchi
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS)
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST)
- Faculty of Science and Engineering, Waseda University
| | - Gaulthier Rydzek
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS)
| | - Qingmin Ji
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS)
| | - Yusuke Yonamine
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS)
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST)
| | - Kevin C.-W. Wu
- Department of Chemical Engineering, National Taiwan University
| | - Jonathan P. Hill
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS)
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST)
| |
Collapse
|
27
|
Poojari R, Srivastava R. Composite alginate microspheres as the next-generation egg-box carriers for biomacromolecules delivery. Expert Opin Drug Deliv 2013; 10:1061-76. [DOI: 10.1517/17425247.2013.796361] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
28
|
Bennett MG, Naranja RJ. Getting nano tattoos right - a checklist of legal and ethical hurdles for an emerging nanomedical technology. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 9:729-31. [PMID: 23639680 DOI: 10.1016/j.nano.2013.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 03/19/2013] [Accepted: 04/18/2013] [Indexed: 11/16/2022]
Abstract
UNLABELLED The nano tattoo represents a nascent technology designed to be implanted in the skin to provide continuous and reliable glucose detection for diabetics. Its potential benefits are compelling not only for its ability to prevent diabetic complications and decrease related social costs, but also for its ease of use and relative patient-user comfort. This Note aims to articulate a checklist of fundamental intellectual property, bioethical and system design issues that are appropriately considered in the pre-clinical, pre-commercialization phase of nano tattoo development. Early and regular consideration of these factors can increase the odds of a societally beneficial dissemination of this device by engaging relevant researcher, medical, patient-user and patient-advocate communities concerned with its appropriate application, as well as policymaking communities focused on effectively managing diabetes-related healthcare costs. The checklist of factors includes fundamental issues and is generally applicable to nanomedical inventions. FROM THE CLINICAL EDITOR This paper presents a comprehensive list of fundamental intellectual property, bioethical, and system design issues to be considered in the pre-commercialization phase of nanomedicine development, through the specific example of nano tattoo development. Nano tattoo is designed to be implanted in the skin to provide reliable glucose monitoring for diabetics, enabling enhanced prevention of complications and decreased socioeconomic costs.
Collapse
|
29
|
Balabushevich NG, Izumrudov VA, Larionova NI. Protein microparticles with controlled stability prepared via layer-by-layer adsorption of biopolyelectrolytes. POLYMER SCIENCE SERIES A 2012. [DOI: 10.1134/s0965545x12040098] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Tong W, Song X, Gao C. Layer-by-layer assembly of microcapsules and their biomedical applications. Chem Soc Rev 2012; 41:6103-24. [DOI: 10.1039/c2cs35088b] [Citation(s) in RCA: 357] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Joshi A, Solanki S, Chaudhari R, Bahadur D, Aslam M, Srivastava R. Multifunctional alginate microspheres for biosensing, drug delivery and magnetic resonance imaging. Acta Biomater 2011; 7:3955-63. [PMID: 21784175 DOI: 10.1016/j.actbio.2011.06.053] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 06/17/2011] [Accepted: 06/30/2011] [Indexed: 11/25/2022]
Abstract
This research aims to develop and investigate a multifunctional implantable system capable of biosensing, drug delivery and magnetic resonance imaging (MRI) for continuous monitoring, controlled anti-inflammatory drug delivery and imaging, respectively. A glucose biosensor, diclofenac sodium (Diclo) and magnetic nanoparticles (MNP) were used as the biosensor component, anti-inflammatory agent and MRI contrast agent, respectively. MNP were synthesized by the co-precipitation technique and loaded with the sensor and drug components into alginate microspheres using a commercial droplet generator. The multifunctional system was then characterized using optical microscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, vibrating sample magnetometry (VSM) and MRI. The MNP were found to be in the size range of 5-15 nm. The final system, comprising the biosensor, drug and MNP loaded inside alginate microspheres, was found to be in the size range of 10-60 μm. Biosensing studies indicated an excellent glucose response curve, with a regression coefficient of 0.974 (0-10mM of glucose, response time: 4 min). In vitro Diclo release shows that MNP loading in alginate microspheres increases the burst release percentage by 11-12% in both 60 and 10 μm particles. However, the duration of release for 85% drug release decreases with MNP loading by 7 and 6 days for 39 the 60 and 10 μm particles, respectively. Super-paramagnetism was confirmed by VSM, with 2.09 and 1.368 emu g(-1), respectively, for the 60 and 10 μm particles, with no hysteresis. MRI showed significant contrast for both sizes. The particles showed an excellent biocompatibility (>80%) for all combinations of formulations. The system shows a great potential for biosensing with concurrent drug delivery and visualization for biomedical applications.
Collapse
|
32
|
De Koker S, De Cock LJ, Rivera-Gil P, Parak WJ, Auzély Velty R, Vervaet C, Remon JP, Grooten J, De Geest BG. Polymeric multilayer capsules delivering biotherapeutics. Adv Drug Deliv Rev 2011; 63:748-61. [PMID: 21504772 DOI: 10.1016/j.addr.2011.03.014] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 01/13/2011] [Accepted: 03/30/2011] [Indexed: 12/18/2022]
Abstract
Polymeric multilayer capsules have emerged as a novel drug delivery platform. These capsules are fabricated through layer-by-layer sequential deposition of polymers onto a sacrificial core template followed by the decomposition of this core yielding hollow capsules. The resulting nanometer thin membrane is permselective, allowing diffusion of water and ions but excluding larger molecules. Moreover, the sequential fabrication procedure allows a precise fine-tuning of the capsules' physicochemical and biological properties. These properties have put polymeric multilayer capsules under major attention in the field of drug delivery. In this review we focus on polymeric multilayer capsule mediated delivery of biotechnological macromolecular drugs such as peptides, proteins and nucleic acids.
Collapse
|
33
|
Lapitsky Y. Stimulus-Responsive Polyelectrolyte Particles: From Nanospheres to Macroscopic Beads. J DISPER SCI TECHNOL 2011. [DOI: 10.1080/01932691.2010.497704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Chaudhary A, Harma H, Hanninen P, McShane MJ, Srivastava R. Glucose response of near-infrared alginate-based microsphere sensors under dynamic reversible conditions. Diabetes Technol Ther 2011; 13:827-35. [PMID: 21568749 PMCID: PMC3133682 DOI: 10.1089/dia.2011.0057] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Minimally invasive optical glucose biosensors with increased functional longevity form one of the most promising techniques for continuous glucose monitoring, because of their long-term stability, reversibility, repeatability, specificity, and high sensitivity. They are based on the principle of competitive binding and fluorescence resonance energy transfer. Moving to the near-infrared region of the spectrum has the potential to improve signal throughput for implanted sensors, but requires a change in dye chemistry that could alter response sensitivity, range, and toxicity profiles. METHODS The near-infrared dissolved-core alginate microsphere sensors were fabricated by emulsion followed by surface coating by layer-by-layer self-assembly. The particles were characterized for sensor stability, sensor response, and reversibility in deionized water and simulated interstitial fluid. The sensor response to step changes in bulk glucose concentrations was also evaluated under dynamic conditions using a microflow cell unit. Finally, in vitro cytotoxicity assays were performed with L929 mouse fibroblast cell lines to demonstrate preliminary biocompatibility of the sensors. RESULTS The glucose sensitivity under controlled and dynamic conditions was observed to be 0.86%/mM glucose with an analytical response range of 0-30 mM glucose, covering both the physiological and pathophysiological range. The sensor demonstrated a repeatable, reversible, and reproducible response, with a maximum response time of 120 s. In vitro cytotoxicity assays revealed nearly 95% viability of cells, thereby suggesting that the alginate microsphere sensor system does not exhibit cytotoxicity. CONCLUSIONS The incorporation of near-infrared dyes shows promise in improving sensor response because of their high sensitivity and improved tissue penetration of infrared light. The sensitivity for the sensors was approximately 1.5 times greater than that observed for visible dye sensors, and the new dye chemistry did not significantly alter the biocompatibility of the materials. These findings provide additional support for the potential application of alginate microspheres and similar systems such as "smart-tattoo" glucose sensors.
Collapse
Affiliation(s)
- Ayesha Chaudhary
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India
| | - Harri Harma
- Laboratory of Biophysics and Medicity Research Laboratories, University of Turku, Turku, Finland
| | - Pekka Hanninen
- Laboratory of Biophysics and Medicity Research Laboratories, University of Turku, Turku, Finland
| | - Michael J. McShane
- Biomedical Engineering Department, Texas A & M University, College Station, Texas
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India
| |
Collapse
|
35
|
Bian L, Zhai DY, Tous E, Rai R, Mauck RL, Burdick JA. Enhanced MSC chondrogenesis following delivery of TGF-β3 from alginate microspheres within hyaluronic acid hydrogels in vitro and in vivo. Biomaterials 2011; 32:6425-34. [PMID: 21652067 DOI: 10.1016/j.biomaterials.2011.05.033] [Citation(s) in RCA: 267] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Accepted: 05/10/2011] [Indexed: 12/27/2022]
Abstract
Mesenchymal stem cells (MSCs) are being recognized as a viable cell source for cartilage repair and members of the transforming growth factor-beta (TGF-β) superfamily are a key mediator of MSC chondrogenesis. While TGF-β mediated MSC chondrogenesis is well established in in vitro pellet or hydrogel cultures, clinical translation will require effective delivery of TGF-βs in vivo. Here, we investigated the co-encapsulation of TGF-β3 containing alginate microspheres with human MSCs in hyaluronic acid (HA) hydrogels towards the development of implantable constructs for cartilage repair. TGF-β3 encapsulated in alginate microspheres with nanofilm coatings showed significantly reduced initial burst release compared to uncoated microspheres, with release times extending up to 6 days. HA hydrogel constructs seeded with MSCs and TGF-β3 containing microspheres developed comparable mechanical properties and cartilage matrix content compared to constructs supplemented with TGF-β3 continuously in culture media, whereas constructs with TGF-β3 directly encapsulated in the gels without microspheres had inferior properties. When implanted subcutaneously in nude mice, constructs containing TGF-β3 microspheres resulted in superior cartilage matrix formation when compared to groups without TGF-β3 or with TGF-β3 added directly to the gel. However, calcification was observed in implanted constructs after 8 weeks of subcutaneous implantation. To prevent this, the co-delivery of parathyroid hormone-related protein (PTHrP) with TGF-β3 in alginate microspheres was pursued, resulting in partially reduced calcification. This study demonstrates that the controlled local delivery of TGF-β3 is essential to neocartilage formation by MSCs and that further optimization is needed to avert the differentiation of chondrogenically induced MSCs towards a hypertrophic phenotype.
Collapse
Affiliation(s)
- Liming Bian
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 South 33rd Street, Philadelphia, PA 19104, United States
| | | | | | | | | | | |
Collapse
|
36
|
Prasad J, Joshi A, Jayant RD, Srivastava R. Cholesterol biosensors based on oxygen sensing alginate-silica microspheres. Biotechnol Bioeng 2011; 108:2011-21. [DOI: 10.1002/bit.23143] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 03/07/2011] [Accepted: 03/17/2011] [Indexed: 11/12/2022]
|
37
|
Esposito R, Ventura BD, De Nicola S, Altucci C, Velotta R, Mita DG, Lepore M. Glucose sensing by time-resolved fluorescence of sol-gel immobilized glucose oxidase. SENSORS (BASEL, SWITZERLAND) 2011; 11:3483-97. [PMID: 22163807 PMCID: PMC3231312 DOI: 10.3390/s110403483] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 03/14/2011] [Accepted: 03/16/2011] [Indexed: 11/17/2022]
Abstract
A monolithic silica gel matrix with entrapped glucose oxidase (GOD) was constructed as a bioactive element in an optical biosensor for glucose determination. Intrinsic fluorescence of free and immobilised GOD was investigated in the visible range in presence of different glucose concentrations by time-resolved spectroscopy with time-correlated single-photon counting detector. A three-exponential model was used for analysing the fluorescence transients. Fractional intensities and mean lifetime were shown to be sensitive to the enzymatic reaction and were used for obtaining calibration curve for glucose concentration determination. The sensing system proposed achieved high resolution (up to 0.17 mM) glucose determination with a detection range from 0.4 mM to 5 mM.
Collapse
Affiliation(s)
- Rosario Esposito
- CNISM-Dipartimento Scienze Fisiche, Università di Napoli Federico II, Napoli 80126, Italy; E-Mails: (C.A.); (R.V.)
| | - Bartolomeo Della Ventura
- Dipartimento di Medicina Sperimentale, Seconda Università di Napoli, Napoli 80138, Italy; E-Mails: (B.D.V.); (D.G.M.); (M.L.)
| | - Sergio De Nicola
- Istituto Nazionale di Ottica, CNR, compr. A. Olivetti, Via Campi Flegrei 34, Pozzuoli 80078, Italy; E-Mail:
| | - Carlo Altucci
- CNISM-Dipartimento Scienze Fisiche, Università di Napoli Federico II, Napoli 80126, Italy; E-Mails: (C.A.); (R.V.)
| | - Raffaele Velotta
- CNISM-Dipartimento Scienze Fisiche, Università di Napoli Federico II, Napoli 80126, Italy; E-Mails: (C.A.); (R.V.)
| | - Damiano Gustavo Mita
- Dipartimento di Medicina Sperimentale, Seconda Università di Napoli, Napoli 80138, Italy; E-Mails: (B.D.V.); (D.G.M.); (M.L.)
- Institute of Genetics and Biophysics, CNR, Naples 80131, Italy
| | - Maria Lepore
- Dipartimento di Medicina Sperimentale, Seconda Università di Napoli, Napoli 80138, Italy; E-Mails: (B.D.V.); (D.G.M.); (M.L.)
| |
Collapse
|
38
|
Li M, Green DC, Anderson JLR, Binks BP, Mann S. In vitro gene expression and enzyme catalysis in bio-inorganic protocells. Chem Sci 2011. [DOI: 10.1039/c1sc00183c] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
39
|
Zhang Y, Tang Z, Wang J, Wu H, Lin CT, Lin Y. Apoferritin nanoparticle: a novel and biocompatible carrier for enzyme immobilization with enhanced activity and stability. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm11598g] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Jayant RD, McShane MJ, Srivastava R. In vitro and in vivo evaluation of anti-inflammatory agents using nanoengineered alginate carriers: towards localized implant inflammation suppression. Int J Pharm 2010; 403:268-75. [PMID: 21050881 DOI: 10.1016/j.ijpharm.2010.10.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 10/19/2010] [Accepted: 10/19/2010] [Indexed: 11/27/2022]
Abstract
The aim of this research was to develop nanoengineered alginate microspheres for localized delivery of anti-inflammatory drugs (dexamethasone and diclofenac sodium) for implantable "Smart tattoo" glucose biosensor used for continuous glucose monitoring. The formulation was prepared and characterized for in vitro drug release from uncoated and polyelectrolyte-coated microparticles. Biocompatibility was then tested using L929 cell-line; pilot in vivo studies with Sprague-Dawley (SD) rat subjects were performed to test the suppression of inflammation and fibrosis associated with implantation and was analyzed using standard hematoxylin and eosin staining method. The drug-loaded microspheres were able to deliver the drug for 30 days at a controlled rate with zero-order kinetics. The layer-by-layer self-assembly technique was used to effectively limit the burst release of drug from the matrix. Cell culture studies prove that the material are not cytotoxic and showed acceptable >80% cell viability in all the tested samples. In vivo studies show that both drugs were successful in controlling the implant/tissue interface by suppressing inflammation at the implant site. It was clearly evident that the combined approach of drug loaded carriers along with implanted biosensor shows promise in improving sensor biocompatibility and functionality. Thus, suggesting potential application of alginate microspheres as "smart-tattoo" glucose sensors.
Collapse
Affiliation(s)
- Rahul Dev Jayant
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai 400076, India
| | | | | |
Collapse
|
41
|
Jayant RD, McShane MJ, Srivastava R. Polyelectrolyte-coated alginate microspheres as drug delivery carriers for dexamethasone release. Drug Deliv 2010; 16:331-40. [PMID: 19606947 DOI: 10.1080/10717540903031126] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Alginate microspheres loaded with dexamethasone were prepared by the droplet generator technique. Important parameters affecting drug release, including initial drug content, the type of polyelectrolyte coating, and a combination of different ratios of coated and uncoated microspheres were investigated to achieve in vitro dexamethasone delivery with approximately zero order release kinetics, releasing up to 100% of entrapped drug within 1 month, wherein dexamethasone released at a steady rate of 4.83 microg/day after an initial burst release period. These findings imply that these polyelectrolyte-coated alginate microspheres show promise as release systems to improve biocompatibility and prolong lifetime of implantable glucose sensors.
Collapse
Affiliation(s)
- R D Jayant
- School of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India
| | | | | |
Collapse
|
42
|
Chaudhary A, Raina M, McShane MJ, Srivastava R. Dissolved core alginate microspheres as "smart-tattoo" glucose sensors. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2010; 2009:4098-101. [PMID: 19965020 DOI: 10.1109/iembs.2009.5334597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The feasibility of multilayer thin film coated dissolved-core alginate-templated microsphere sensors based on fluorescence resonance energy transfer and competitive binding, was explored in simulated interstitial fluid, using glucose as a model analyte. The glucose sensitivity was observed to be 0.89%/mM glucose with a linear response in the range of 0-50 mM glucose. The sensor response was observed to be completely reversible in nature with a response time of 120 seconds. The system was further demonstrated to respond similarly using near-infrared dyes (Alexa Fluor-647-labeled dextran as donor and QSY-21-conjugated apo-GOx as acceptor) which exhibited a sensitivity of 0.94%/mM glucose with a linear response in range of 0-50 mM glucose, making the sensor more amenable to in vivo use, when implanted in scattering tissue.
Collapse
Affiliation(s)
- Ayesha Chaudhary
- School of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India.
| | | | | | | |
Collapse
|
43
|
Balabushevich NG, Larionova NI. Protein-loaded microspheres prepared by sequential adsorption of dextran sulphate and protamine on melamine formaldehyde core. J Microencapsul 2010; 26:571-9. [PMID: 19839792 DOI: 10.3109/02652040802518145] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Polyelectrolyte multilayer microspheres were fabricated by layer-by-layer self-assembly of a dextran sulphate and a protamine on melamine formaldehyde cores, followed by the partial decomposition of the core. Effects of pH on the encapsulation of proteins and enzymes with different physico-chemical properties (insulin, aprotinin, peroxidase, glucose oxidase (GOD), catalase (Cat)) in the prepared microspheres were then studied. This method of protein encapsulation demonstrated a high loading capacity and efficiency. The protein incorporation and release was regulated by the pH of the solution. Encapsulated enzymes retained a high specific activity depending on the amount of protein incorporated. Bienzyme system GOD/Cat immobilized in the microspheres was suitable for the glucose content assay.
Collapse
|
44
|
Chaudhary A, Raina M, Harma H, Hanninen P, McShane MJ, Srivastava R. Evaluation of glucose sensitive affinity binding assay entrapped in fluorescent dissolved-core alginate microspheres. Biotechnol Bioeng 2010; 104:1075-85. [PMID: 19655392 DOI: 10.1002/bit.22500] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The feasibility of dissolved-core alginate-templated fluorescent microspheres as "smart tattoo" glucose biosensors was investigated in simulated interstitial fluid (SIF). The sensor works on the principle of competitive binding and fluorescence resonance energy transfer. The sensor consists of multilayer thin film coated alginate microspheres incorporating dye-labeled glucose receptor and competing ligand within the partially dissolved alginate core. In this study, different approaches for the sensing and detection chemistry were studied, and the response of encapsulated reagents was compared with the solution-phase counterparts. The glucose sensitivity of the encapsulated TRITC-Con A/FITC-dextran (500 kDa) assay in DI water was estimated to be 0.26%/mM glucose while that in SIF was observed to be 0.3%/mM glucose. The glucose sensitivity of TRITC-apo-GOx/FITC-dextran (500 kDa) assay was estimated to be 0.33%/mM glucose in DI water and 0.5%/mM glucose in SIF and both demonstrated a response in the range of 0-50 mM glucose. Therefore, it is hypothesized that the calcium ion concentration outside the microsphere (in the SIF) does not interfere with the response sensitivity. The sensor response was observed to exhibit a maximum response time of 120 s. The system further exhibited a sensitivity of 0.94%/mM glucose with a response in range of 0-50 mM glucose, using near-infrared dyes (Alexa Fluor-647-labeled dextran as donor and QSY-21-conjugated apo-GOx as acceptor), thereby making the sensor more amenable to in vivo use, when implanted in scattering tissue.
Collapse
|
45
|
Chaudhary A, McShane MJ, Srivastava R. Glucose response of dissolved-core alginate microspheres: towards a continuous glucose biosensor. Analyst 2010; 135:2620-8. [DOI: 10.1039/c0an00109k] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Städler B, Price AD, Chandrawati R, Hosta-Rigau L, Zelikin AN, Caruso F. Polymer hydrogel capsules: en route toward synthetic cellular systems. NANOSCALE 2009; 1:68-73. [PMID: 20644862 DOI: 10.1039/b9nr00143c] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Engineered synthetic cellular systems are expected to become a powerful biomedical platform for the development of next-generation therapeutic carrier vehicles. In this mini-review, we discuss the potential of polymer capsules derived by the layer-by-layer assembly as a platform system for the construction of artificial cells and organelles. We outline the characteristics of polymer capsules that make them unique for these applications, and we describe several successful examples of microencapsulated catalysis, including biologically relevant enzymatic reactions. We also provide examples of subcompartmentalized polymer capsules, which represent a major step toward the creation of synthetic cells.
Collapse
Affiliation(s)
- Brigitte Städler
- Centre for Nanoscience and Nanotechnology, Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Australia
| | | | | | | | | | | |
Collapse
|
47
|
Liu J, Zhang Y, Yang T, Ge Y, Zhang S, Chen Z, Gu N. Synthesis, characterization, and application of composite alginate microspheres with magnetic and fluorescent functionalities. J Appl Polym Sci 2009. [DOI: 10.1002/app.30487] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
Wong EHM, Rondeau E, Schuetz P, Cooper-White J. A microfluidic-based method for the transfer of biopolymer particles from an oil phase to an aqueous phase. LAB ON A CHIP 2009; 9:2582-90. [PMID: 19680582 DOI: 10.1039/b903774h] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Biopolymer microgels produced in microfluidic devices via the formation of a water-in-oil emulsion are usually collected at the outlet of the device and thoroughly washed from the oil phase in an additional, lengthy processing step. This paper reports a microfluidic-based method which allows for continuous on-chip manufacture of aqueous-based biopolymer microparticles in an oily continuous phase and thereafter the transfer of these particles from the oily carrier phase to a second aqueous continuous phase. This was achieved by surface patterning the PDMS channel walls using UV polymerization of poly(acrylic acid) (PAA) in order to obtain a hybrid device with distinct hydrophilic and hydrophobic sections. The surface patterning was stable for at least 4 months. This selective surface patterning of the channel was shown to initiate and assist the transfer of the biopolymer particles from the oil phase into the aqueous phase. The flow conditions required for a stable biphasic flow in the transfer section of the device were evaluated based on the theoretical shear stress at the interface of the two fluids. Experimental outcomes were found to be in good agreement with the prediction. After the particles cross the liquid-liquid interface and are transferred into the aqueous phase, they are collected and characterized. The resulting suspension was found to be stable for several weeks and no aggregation was observed.
Collapse
Affiliation(s)
- Edeline Huei-mei Wong
- Department of Chemical Engineering, University of Queensland, St Lucia, Queensland 4072, Australia
| | | | | | | |
Collapse
|
49
|
Abu-Rabeah K, Niţă I, Tencaliec A, Marks R. New approach of constructing biosensing matrices by physical and chemical crosslinking of biotin-alginate with alginate-pyrrole. Electrochim Acta 2009. [DOI: 10.1016/j.electacta.2009.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
50
|
Facile synthesis of high-magnetization γ-Fe2O3/alginate/silica microspheres for isolation of plasma DNA. Colloids Surf A Physicochem Eng Asp 2009. [DOI: 10.1016/j.colsurfa.2009.03.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|