1
|
Zhang WJ, Yan YZ, Nagappan S, He S, Ha CS, Jin YS. Dual (thermo-/pH-) responsive P(NIPAM-co-AA-co-HEMA) nanocapsules for controlled release of 5-fluorouracil. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2021. [DOI: 10.1080/10601325.2021.1964368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Wei-Jin Zhang
- Beijing Key Laboratory of Special Elastomer Composites, School of Materials Science and Engineering, Beijing Institute of Petrochemical Technology, Beijing, P. R. China
- Department of Polymer Science and Engineering, School of Chemical Engineering, Pusan National University, Busan, Republic of Korea
- Department of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Yong-Zhu Yan
- Department of Polymer Science and Engineering, School of Chemical Engineering, Pusan National University, Busan, Republic of Korea
| | - Saravanan Nagappan
- Department of Polymer Science and Engineering, School of Chemical Engineering, Pusan National University, Busan, Republic of Korea
| | - Shanshan He
- Engineering/Precision Manufacturing Systems Division, School of Mechanical Engineering, Pusan National University, Busan, Republic of Korea
| | - Chang-Sik Ha
- Department of Polymer Science and Engineering, School of Chemical Engineering, Pusan National University, Busan, Republic of Korea
| | - Yu-Shun Jin
- Beijing Key Laboratory of Special Elastomer Composites, School of Materials Science and Engineering, Beijing Institute of Petrochemical Technology, Beijing, P. R. China
| |
Collapse
|
2
|
Ahangaran F, Navarchian AH, Picchioni F. Material encapsulation in poly(methyl methacrylate) shell: A review. J Appl Polym Sci 2019. [DOI: 10.1002/app.48039] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Fatemeh Ahangaran
- Department of Chemical Engineering, Faculty of EngineeringUniversity of Isfahan Isfahan 81746‐73441 Iran
- Department of Chemical EngineeringUniversity of Groningen Nijenborgh 4, 9747 AG Groningen The Netherlands
| | - Amir H. Navarchian
- Department of Chemical Engineering, Faculty of EngineeringUniversity of Isfahan Isfahan 81746‐73441 Iran
| | - Francesco Picchioni
- Department of Chemical EngineeringUniversity of Groningen Nijenborgh 4, 9747 AG Groningen The Netherlands
| |
Collapse
|
3
|
Synthesis and characterization of novel biocompatible nanocapsules encapsulated lily fragrance. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Iyisan B, Landfester K. Polymeric Nanocarriers. BIOLOGICAL RESPONSES TO NANOSCALE PARTICLES 2019. [DOI: 10.1007/978-3-030-12461-8_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
5
|
Iyisan B, Landfester K. Modular Approach for the Design of Smart Polymeric Nanocapsules. Macromol Rapid Commun 2018; 40:e1800577. [DOI: 10.1002/marc.201800577] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/14/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Banu Iyisan
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | | |
Collapse
|
6
|
Shchukina EM, Graham M, Zheng Z, Shchukin DG. Nanoencapsulation of phase change materials for advanced thermal energy storage systems. Chem Soc Rev 2018; 47:4156-4175. [PMID: 29658558 PMCID: PMC5987736 DOI: 10.1039/c8cs00099a] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Phase change materials (PCMs) allow the storage of large amounts of latent heat during phase transition. They have the potential to both increase the efficiency of renewable energies such as solar power through storage of excess energy, which can be used at times of peak demand; and to reduce overall energy demand through passive thermal regulation. 198.3 million tons of oil equivalent were used in the EU in 2013 for heating. However, bulk PCMs are not suitable for use without prior encapsulation. Encapsulation in a shell material provides benefits such as protection of the PCM from the external environment and increased specific surface area to improve heat transfer. This review highlights techniques for the encapsulation of both organic and inorganic PCMs, paying particular attention to nanoencapsulation (capsules with sizes <1 μm). We also provide insight on future research, which should focus on (i) the development of multifunctional shell materials to improve lifespan and thermal properties and (ii) advanced mass manufacturing techniques for the economically viable production of PCM capsules, making it possible to utilize waste heat in intelligent passive thermal regulation systems, employing controlled, "on demand" energy release/uptake.
Collapse
Affiliation(s)
- E M Shchukina
- Stephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool, Crown Street, L69 7ZD, Liverpool, UK.
| | | | | | | |
Collapse
|
7
|
Liu X, Appelhans D, Zhang T, Voit B. Rapid Synthesis of Dual-Responsive Hollow Capsules with Controllable Membrane Thickness by Surface-Initiated SET-LRP Polymerization. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02347] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xiaoling Liu
- Leibniz-Institute
für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
- Organic
Chemistry of Polymers, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Dietmar Appelhans
- Leibniz-Institute
für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
| | - Tao Zhang
- Organic
Chemistry of Polymers, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Brigitte Voit
- Leibniz-Institute
für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
- Organic
Chemistry of Polymers, Technische Universität Dresden, D-01062 Dresden, Germany
| |
Collapse
|
8
|
Tripathi P, Jaiswal AK, Dube A, Mishra PR. Hexadecylphosphocholine (Miltefosine) stabilized chitosan modified Ampholipospheres as prototype co-delivery vehicle for enhanced killing of L. donovani. Int J Biol Macromol 2017; 105:625-637. [PMID: 28716750 DOI: 10.1016/j.ijbiomac.2017.07.076] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/25/2017] [Accepted: 07/12/2017] [Indexed: 12/18/2022]
Abstract
Lipid nanoparticles are stable, biodegradable and biocompatible carriers offering excellent therapeutic efficacy. Here, a novel effort has been made to develop Miltefosine (HePC- hexadecylphosphocholine) stabilized chitosan anchored nanostructured lipid carriers (NLC) of Amphotericin B (AmB) as co-delivery vehicle to enhance killing of L. donovani. The entrapment efficiency of AmB was achieved upto 85.3% for HePC-AmB-CNLCs with mean particle size of 150.8±8.4nm, and zeta potential value of +28.2±1.1mV, respectively. The cumulative amount of AmB released at even after the 24h was less than 65% from HePC-AmB-CNLCs and Tween-80-AmB-CNLCs. Intravenous administration of HePC-AmB-CNLCs revealed the significantly increased localization of AmB in both liver and spleen when estimated. FACS study represented enhanced uptake of FITC-HePC-CNLCs over FITC-HePC-NLCs in J774A.1 cell lines. Highly significant in vitro and in vivo anti-leishmanial activity (p<0.05 compared with Tween 80-AmB-CNLCs) was observed with HePC-AmB-CNLCs when tested against VL in Leishmania donovani-infected hamsters. The haemolysis and cytotoxicity studies showed the safety of HePC-AmB-CNLCs and Tween 80-AmB-CNLCs. The findings suggested that it would be preferable to deliver AmB through HePC stabilized chitosan anchored nanostructured lipid carriers for rapid and effective treatment with decreased adverse effects.
Collapse
Affiliation(s)
- Priyanka Tripathi
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
| | - Anil Kumar Jaiswal
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anuradha Dube
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Prabhat Ranjan Mishra
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India.
| |
Collapse
|
9
|
PLGA nanoparticles as chlorhexidine-delivery carrier to resin-dentin adhesive interface. Dent Mater 2017; 33:830-846. [DOI: 10.1016/j.dental.2017.04.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/17/2017] [Accepted: 04/21/2017] [Indexed: 12/17/2022]
|
10
|
Zhang X, Han L, Liu M, Wang K, Tao L, Wan Q, Wei Y. Recent progress and advances in redox-responsive polymers as controlled delivery nanoplatforms. MATERIALS CHEMISTRY FRONTIERS 2017; 1:807-822. [DOI: 10.1039/c6qm00135a] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Recent advances and progress in redox-responsive polymeric nanosystems for biomedical applications are discussed in this review article.
Collapse
Affiliation(s)
- Xiaoyong Zhang
- Department of Chemistry and Jiangxi Provincial Key Laboratory of New Energy Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Lu Han
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research
- Tsinghua University
- P. R. China
| | - Meiying Liu
- Department of Chemistry and Jiangxi Provincial Key Laboratory of New Energy Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Ke Wang
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research
- Tsinghua University
- P. R. China
| | - Lei Tao
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research
- Tsinghua University
- P. R. China
| | - Qing Wan
- Department of Chemistry and Jiangxi Provincial Key Laboratory of New Energy Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research
- Tsinghua University
- P. R. China
| |
Collapse
|
11
|
Cao Z, Li Q, Wang G. Photodegradable polymer nanocapsules fabricated from dimethyldiethoxysilane emulsion templates for controlled release. Polym Chem 2017. [DOI: 10.1039/c7py01153a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A photodegradable polymer nanocapsule was prepared from dimethyldiethoxysilane emulsion templates and applied for light- and pH-controlled cargo release.
Collapse
Affiliation(s)
- Ziquan Cao
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- P. R. China
| | - Qingwei Li
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- P. R. China
| | - Guojie Wang
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- P. R. China
| |
Collapse
|
12
|
Stabilization of Inverse Miniemulsions by Silyl-Protected Homopolymers. Polymers (Basel) 2016; 8:polym8080303. [PMID: 30974578 PMCID: PMC6431836 DOI: 10.3390/polym8080303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/01/2016] [Accepted: 08/02/2016] [Indexed: 12/24/2022] Open
Abstract
Inverse (water-in-oil) miniemulsions are an important method to encapsulate hydrophilic payloads such as oligonucleotides or peptides. However, the stabilization of inverse miniemulsions usually requires block copolymers that are difficult to synthesize and/or cannot be easily removed after transfer from a hydrophobic continuous phase to an aqueous continuous phase. We describe here a new strategy for the synthesis of a surfactant for inverse miniemulsions by radical addition⁻fragmentation chain transfer (RAFT) polymerization, which consists in a homopolymer with triisopropylsilyl protecting groups. The protecting groups ensure the efficient stabilization of the inverse (water-in-oil, w/o) miniemulsions. Nanocapsules can be formed and the protecting group can be subsequently cleaved for the re-dispersion of nanocapsules in an aqueous medium with a minimal amount of additional surfactant.
Collapse
|
13
|
Ghalamfarsa G, Hojjat-Farsangi M, Mohammadnia-Afrouzi M, Anvari E, Farhadi S, Yousefi M, Jadidi-Niaragh F. Application of nanomedicine for crossing the blood–brain barrier: Theranostic opportunities in multiple sclerosis. J Immunotoxicol 2016; 13:603-19. [DOI: 10.3109/1547691x.2016.1159264] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ghasem Ghalamfarsa
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden
- Department of Immunology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mousa Mohammadnia-Afrouzi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Enayat Anvari
- Department of Physiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Shohreh Farhadi
- Department of Agricultural Engineering, Islamic Azad University, Tehran
| | - Mehdi Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Amgoth C, Dharmapuri G, Kalle AM, Paik P. Nanoporous capsules of block co-polymers of [(MeO-PEG-NH)-b-(L-GluA)]-PCL for the controlled release of anticancer drugs for therapeutic applications. NANOTECHNOLOGY 2016; 27:125101. [PMID: 26891479 DOI: 10.1088/0957-4484/27/12/125101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Herein, new nanoporous capsules of the block co-polymers of MeO-PEG-NH-(L-GluA)10 and polycaprolactone (PCL) have been synthesized through a surfactant-free cost-effective self-assembled soft-templating approach for the controlled release of drugs and for therapeutic applications. The nanoporous polymer capsules are designed to be biocompatible and are capable of encapsulating anticancer drugs (e.g., doxorubicin hydrochloride (DOX) and imatinib mesylate (ITM)) with a high extent (∼279 and ∼480 ng μg(-1), respectively). We have developed a nanoformulation of porous MeO-PEG-NH-(L-GluA)10-PCL capsules with DOX and ITM. The porous polymer nanoformulations have been programmed in terms of the release of anticancer drugs with a desired dose to treat the leukemia (K562) and human carcinoma cells (HepG2) in vitro and show promising IC50 values with a very high mortality of cancer cells (up to ∼96.6%). Our nanoformulation arrests the cell divisions due to 'cellular scenescence' and kills the cancer cells specifically. The present findings could enrich the effectiveness of idiosyncratic nanoporous polymer capsules for use in various other nanomedicinal and biomedical applications, such as for killing cancer cells, immune therapy, and gene delivery.
Collapse
Affiliation(s)
- Chander Amgoth
- School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad-500046, India
| | | | | | | |
Collapse
|
15
|
Gaitzsch J, Huang X, Voit B. Engineering Functional Polymer Capsules toward Smart Nanoreactors. Chem Rev 2015; 116:1053-93. [DOI: 10.1021/acs.chemrev.5b00241] [Citation(s) in RCA: 300] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jens Gaitzsch
- Department
of Chemistry, University College London, London WC1H 0AJ, United Kingdom
- Department
of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Basel-Stadt, Switzerland
| | - Xin Huang
- School
of Chemical Engineering and Technology, Harbin Institute of Technology, 150001 Harbin, Heilongjiang, China
| | - Brigitte Voit
- Leibniz-Institut fuer Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Saxony, Germany
| |
Collapse
|
16
|
Asthana S, Gupta PK, Jaiswal AK, Dube A, Chourasia MK. Overexpressed Macrophage Mannose Receptor Targeted Nanocapsules- Mediated Cargo Delivery Approach for Eradication of Resident Parasite: In Vitro and In Vivo Studies. Pharm Res 2015; 32:2663-77. [PMID: 25715698 DOI: 10.1007/s11095-015-1651-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/04/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE Since, Leishmania protozoans are obligate intracellular parasites of macrophages, an immunopotentiating macrophage-specific Amphotericin B (AB) delivery system would be ideally appropriate to increase its superiority for leishmaniasis treatment and to eliminate undesirable toxicity. Herein, we report AB entrapped mannose grafted chitosan nanocapsules (MnosCNc-AB) that results in effective treatment of visceral leishmaniasis, while also enhancing L. donovani specific T-cell immune responses in infected host. METHODS MnosCNc-AB were prepared via synthesized mannosylated chitosan deposition on interface of oil/water nanoemulsion intermediate and were characterized. J774A.1 macrophage uptake potential, antileishmanial activity and immunomodulatory profile were evaluated in hamster. Tissue localization, biodistribution and toxicity profile were also investigated. RESULTS MnosCNc-AB had nanometric size (197.8 ± 8.84 nm), unimodal distribution (0.115 ± 0.04), positive zeta potential (+31.7 ± 1.03 mV) and 97.5 ± 1.13% cargo encapsulation efficiency. Superior macrophage internalization of mannosylated chitosan nanocapsules compared to unmodified chitosan nanocapsules was observed by fluorescence-based assessment, further confirmed by rapid blood clearance and, greater localization and higher accumulation in macrophage rich liver and spleen. While, MnosCNc-AB mediated cargo distribution to kidney decreased. Augmented in vitro antileishmanial activity and in vivo pro-inflammatory mediator's expression were observed with MnosCNc-AB, led to significant reduction (∼90%) in splenic parasite burden. CONCLUSIONS Results demonstrated that mannose ligand grafted chitosan nanocapsules could improve selective delivery of AB into macrophages via interactions with overexpressed mannose receptors thus reduce undesirable toxicity. Study provides evidence for MnosCNc-AB potential to leishmaniasis therapeutics and presents valuable therapeutic strategies for combating chronic macrophage-resident microbial infections.
Collapse
Affiliation(s)
- Shalini Asthana
- Pharmaceutics Division, Council of Scientific and Industrial Research-Central Drug Research Institute, B 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, UP, 226 031, India
| | | | | | | | | |
Collapse
|
17
|
Crucho CIC. Stimuli-responsive polymeric nanoparticles for nanomedicine. ChemMedChem 2014; 10:24-38. [PMID: 25319803 DOI: 10.1002/cmdc.201402290] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/17/2014] [Indexed: 12/28/2022]
Abstract
Nature continues to be the ultimate in nanotechnology, where polymeric nanometer-scale architectures play a central role in biological systems. Inspired by the way nature forms functional supramolecular assemblies, researchers are trying to make nanostructures and to incorporate these into macrostructures as nature does. Recent advances and progress in nanoscience have demonstrated the great potential that nanomaterials have for applications in healthcare. In the realm of drug delivery, nanomaterials have been used in vivo to protect the drug entity in the systemic circulation, ensuring reproducible absorption of bioactive molecules that do not naturally penetrate biological barriers, restricting drug access to specific target sites. Several building blocks have been used in the formulation of nanoparticles. Thus, stability, drug release, and targeting can be tailored by surface modification. Herein the state of the art of stimuli-responsive polymeric nanoparticles are reviewed. Such systems are able to control drug release by reacting to naturally occurring or external applied stimuli. Special attention is paid to the design and nanoparticle formulation of these so-called smart drug-delivery systems. Future strategies for further developments of a promising controlled drug delivery responsive system are also outlined.
Collapse
Affiliation(s)
- Carina I C Crucho
- Department of Chemistry REQUIMTE/CQFB, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal).
| |
Collapse
|
18
|
Paiphansiri U, Baier G, Kreyes A, Yiamsawas D, Koynov K, Musyanovych A, Landfester K. Glutathione-Responsive DNA-Based Nanocontainers Through an “Interfacial Click” Reaction in Inverse Miniemulsion. MACROMOL CHEM PHYS 2014. [DOI: 10.1002/macp.201400374] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Umaporn Paiphansiri
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | - Grit Baier
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | - Andreas Kreyes
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | - Doungporn Yiamsawas
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | - Anna Musyanovych
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | | |
Collapse
|
19
|
Hosseinkhani B, Callewaert C, Vanbeveren N, Boon N. Novel biocompatible nanocapsules for slow release of fragrances on the human skin. N Biotechnol 2014; 32:40-6. [PMID: 25224920 DOI: 10.1016/j.nbt.2014.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 09/01/2014] [Accepted: 09/07/2014] [Indexed: 11/16/2022]
Abstract
There is a growing demand for fragranced products, but due to the poor aqueous solubility and instability of fragrance molecules, their use is limited. Nowadays, fragrance encapsulation in biocompatible nanocontainer material is emerging as a novel strategy to overcome the evaporation of volatile molecules and to prolong the sensory characteristics of fragrance molecules and the longevity of perfumes. The objective of this study was to develop an innovative sustained release system of perfume, by entrapping fragrance molecules in a polymeric nanocarrier; the impact of this strategy on the human axillary microbiome was further assessed. Stabilised poly-l-lactic acid nanocapsules (PLA-NCs) with a diameter of approximately 115 nm were prepared through nanoprecipitation. Size and morphology of the capsules were evaluated using Transmission Electron Microscopy (TEM) and Dynamic Light Scattering (DLS). Two model hydrophobic compounds, chlorobenzene and fluorescein, representing two different types of functionalised molecules, were encapsulated in PLA-NCs with an efficiency rate of 50%. Different release behaviours were seen, dependent on hydrophobicity. For hydrophobic compounds, a steady release was observed over 48hours. The polymeric nanocarriers did not impact the human axillary microbiome. Because of the slow and sustained release of fragrances, encapsulation of molecules in biocompatible NCs can represent a revolutionary contribution to the future of toiletries, body deodorant products, and in washing and cleaning sectors.
Collapse
Affiliation(s)
- Baharak Hosseinkhani
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, B-9000 Gent, Belgium(4); BIOMED, University of Hasselt, Agoralaan Building C, B-3590 Diepenbeek, Belgium
| | - Chris Callewaert
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, B-9000 Gent, Belgium(4)
| | - Nelleke Vanbeveren
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, B-9000 Gent, Belgium(4)
| | - Nico Boon
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, B-9000 Gent, Belgium(4).
| |
Collapse
|
20
|
Musyanovych A, Landfester K. Polymer Micro- and Nanocapsules as Biological Carriers with Multifunctional Properties. Macromol Biosci 2014; 14:458-77. [DOI: 10.1002/mabi.201300551] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 02/03/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Anna Musyanovych
- Fraunhofer ICT-IMM; Carl-Zeiss-Str. 18-20 55129 Mainz Germany
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | | |
Collapse
|
21
|
Preparation and Drug-Release Kinetics of Porous Poly(L-lactic acid)/Rifampicin Blend Particles. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/128154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Porous polymer spheres are promising materials as carriers for controlled drug release. As a new drug-carrier material, blend particles composed of poly(L-lactic acid) (PLLA) and rifampicin were developed using the freeze-drying technique. The blend particles exhibit high porosity with a specific surface area of 10–40 m2 g−1. Both the size and porosity of the particles depend on the concentration of the original solution and on the method of freezing. With respect to the latter, we used the drop method (pouring the original solution dropwise into liquid nitrogen) and the spray method (freezing a mist of the original solution). The release kinetics of rifampicin from the blend particles into water depends significantly on the morphology of the blend particles. The results show that the release rate can be controlled to a great extent by tuning the size and porosity of the blend particles, both of which are varied by parameters such as the solution concentration and the method of freezing.
Collapse
|
22
|
Kumar VB, Kumar K, Gedanken A, Paik P. Facile synthesis of self-assembled spherical and mesoporous dandelion capsules of ZnO: efficient carrier for DNA and anti-cancer drugs. J Mater Chem B 2014; 2:3956-3964. [DOI: 10.1039/c4tb00416g] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Idiosyncratic self-assembled dandelion mesoporous capsules have been synthesized with ZnO NPs and NRs. The {(ZnO)nδ+–(DOX)m} and {(ZnO)nδ+–(DNA)m} complexes are very useful for delivery of anticancer drugs and genes, respectively.
Collapse
Affiliation(s)
- Vijay Bhooshan Kumar
- School of Engineering Sciences and Technology
- University of Hyderabad
- Hyderabad 500 046, India
| | - Koushi Kumar
- School of Engineering Sciences and Technology
- University of Hyderabad
- Hyderabad 500 046, India
| | - Aharon Gedanken
- Institute for Nanotechnology and Advanced Materials
- Department of Chemistry
- Bar-Ilan University
- Ramat Gan, Israel
- Department of Materials Science and Engineering
| | - Pradip Paik
- School of Engineering Sciences and Technology
- University of Hyderabad
- Hyderabad 500 046, India
| |
Collapse
|
23
|
Aschenbrenner E, Bley K, Koynov K, Makowski M, Kappl M, Landfester K, Weiss CK. Using the polymeric ouzo effect for the preparation of polysaccharide-based nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:8845-8855. [PMID: 23777243 DOI: 10.1021/la4017867] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The polymeric ouzo effect, a nanoprecipitation process, is used for the preparation of polysaccharide-based nanoparticles. Dextran, pullulan, and starch were esterified with hydrophobic carboxylic acid anhydrides to obtain hydrophobic polysaccharides, which are insoluble in water. The additional introduction of methacroyl residues offers the possibility to cross-link the generated nanostructures, which become insoluble in organic solvents. To make use of the ouzo effect for the formation of nanoparticles, the polymer has to be soluble in an organic solvent, which is miscible with water. Here, acetone and THF were used. Immediately after the organic polymer solution is added to water, nanoparticles are generated. The size of the nanoparticles can be adjusted between 50 and 200 nm by changing the concentration of the initial polysaccharide solution. The degree of hydrophobic substitution was shown to have a very minor effect on the particle size. Dispersions with solids contents of up to 2% were obtained. Furthermore, the mechanical properties of the nanoparticles were investigated with force microscopy, and it was shown by fluorescence correlation spectroscopy that a fluorescent dye could be encapsulated in the nanoparticles by the applied nanoprecipitation procedure.
Collapse
|
24
|
Hamberger A, Ziener U, Landfester K. Encapsulation of In Situ Nanoprecipitated Inorganic Materials in Confined Geometries Into a Polymer Shell Using Inverse Miniemulsion. MACROMOL CHEM PHYS 2013. [DOI: 10.1002/macp.201200471] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Immunoadjuvant chemotherapy of visceral leishmaniasis in hamsters using amphotericin B-encapsulated nanoemulsion template-based chitosan nanocapsules. Antimicrob Agents Chemother 2013; 57:1714-22. [PMID: 23357762 DOI: 10.1128/aac.01984-12] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The accessible treatment options for life-threatening neglected visceral leishmaniasis (VL) disease have problems with efficacy, stability, adverse effects, and cost, making treatment a complex issue. Here we formulated nanometric amphotericin B (AmB)-encapsulated chitosan nanocapsules (CNC-AmB) using a polymer deposition technique mediated by nanoemulsion template fabrication. CNC-AmB exhibited good steric stability in vitro, where the chitosan content was found to be efficient at preventing destabilization in the presence of protein and Ca(2+). A toxicity study on the model cell line J774A and erythrocytes revealed that CNC-AmB was less toxic than commercialized AmB formulations such as Fungizone and AmBisome. The results of in vitro (macrophage-amastigote system; 50% inhibitory concentration [IC(50)], 0.19 ± 0.04 μg AmB/ml) and in vivo (Leishmania donovani-infected hamsters; 86.1% ± 2.08% parasite inhibition) experiments in conjunction with effective internalization by macrophages illustrated the efficacy of CNC-AmB at augmenting antileishmanial properties. Quantitative mRNA analysis by real-time PCR (RT-PCR) showed that the improved effect was synergized with the upregulation of tumor necrosis factor alpha (TNF-α), interleukin-12 (IL-12), and inducible nitric oxide synthase and with the downregulation of transforming growth factor β (TGF-β), IL-10, and IL-4. These research findings suggest that a cost-effective CNC-AmB immunoadjuvant chemotherapeutic delivery system could be a viable alternative to the current high-cost commercial lipid-based formulations.
Collapse
|
26
|
Gaudin F, Sintes-Zydowicz N. Correlation between the polymerization kinetics and the chemical structure of poly(urethane–urea) nanocapsule membrane obtained by interfacial step polymerization in miniemulsion. Colloids Surf A Physicochem Eng Asp 2012. [DOI: 10.1016/j.colsurfa.2012.09.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Koroleva MY, Yurtov EV. Nanoemulsions: the properties, methods of preparation and promising applications. RUSSIAN CHEMICAL REVIEWS 2012. [DOI: 10.1070/rc2012v081n01abeh004219] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Performing Encapsulation of dsDNA and a Polymerase Chain Reaction (PCR) inside Nanocontainers Using the Inverse Miniemulsion Process. Int J Artif Organs 2012; 35:77-83. [DOI: 10.5301/ijao.5000076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2011] [Indexed: 11/20/2022]
Abstract
We report the encapsulation of dsDNA molecules with a defined number of base pairs (476 bp and 790 bp) and their subsequent amplification by polymerase chain reaction (PCR) inside nanosized polymeric capsules/droplets. In the first set of experiments, the dsDNA template and PCR reagents were encapsulated in crosslinked potato starch using the inverse (water-in-oil) miniemulsion technique. After redispersion of the capsules in a water-surfactant mixture, PCR was performed inside the crosslinked starch nanocapsules. In the second set of experiments, the PCR was performed inside the aqueous nanodroplets before capsule formation, and then each miniemulsion droplet was covered with a polybutylcyanoacrylate (PBCA) shell which was formed through anionic polymerization directly at the droplet interface. The PCR efficiency was quantitatively evaluated by fluorescence spectroscopy, using a DNA-specific dye called SYBR® Green which intercalates between the base pairs of the dsDNA.
Collapse
|
29
|
Bettencourt A, Almeida AJ. Poly(methyl methacrylate) particulate carriers in drug delivery. J Microencapsul 2012; 29:353-67. [PMID: 22251239 DOI: 10.3109/02652048.2011.651500] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Poly(methyl methacrylate) (PMMA) is one of the most widely explored biomedical materials because of its biocompatibility, and recent publications have shown an increasing interest in its applications as a drug carrier. PMMA-based particulate carriers (PMMA(P)) can be prepared either by polymerization methods or from pre-formed polymer-based techniques. Potential biomedical application of these particles includes their use as adjuvant for vaccines and carrier of many drugs as antibiotics and antioxidants via different routes of administration. Release of drugs from PMMA(P) occurs typically in a biphasic way with an incomplete drug release. To improve release profiles, recent strategies are focusing on increasing polymer hydrophilicity by synthesizing functionalized PMMA microspheres or by formulating PMMA composites with hydrophilic polymers. This review examines the current status of preparation techniques, drug release kinetics, biomedical applications and toxicity of these nano/micro PMMA-based particulate carriers.
Collapse
Affiliation(s)
- Ana Bettencourt
- Faculty of Pharmacy, Research Institute for Medicines and Pharmaceutical Sciences-iMed.UL, University of Lisbon , Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
| | | |
Collapse
|
30
|
Strategies for the nanoencapsulation of hydrophilic molecules in polymer-based nanoparticles. Biomaterials 2011; 32:8593-604. [DOI: 10.1016/j.biomaterials.2011.07.057] [Citation(s) in RCA: 207] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 07/17/2011] [Indexed: 11/20/2022]
|
31
|
Huang X, Appelhans D, Formanek P, Simon F, Voit B. Synthesis of Well-Defined Photo-Cross-Linked Polymeric Nanocapsules by Surface-Initiated RAFT Polymerization. Macromolecules 2011. [DOI: 10.1021/ma201982f] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xin Huang
- Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| | - Dietmar Appelhans
- Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| | - Petr Formanek
- Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| | - Frank Simon
- Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| | - Brigitte Voit
- Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| |
Collapse
|
32
|
Siebert JM, Baier G, Landfester K. Thermal and acid labile polyurethanes as a new class of responsive materials in polymeric nanoparticles and nanocapsules. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/pola.24983] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Paik P, Zhang Y. Synthesis of hollow and mesoporous polycaprolactone nanocapsules. NANOSCALE 2011; 3:2215-2219. [PMID: 21455517 DOI: 10.1039/c1nr10134j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
New polycaprolactone (PCL) nanocapsules with a hollow core and mesoporous shell have been synthesized. The PCL nanocapsules have an average size of about 100 nm and a mesopores shell of about 20 nm. The size of the mesopores on the shell is about 4 nm. Fluorescent dye Rhodamin 6G was loaded into the nanocapsules to demonstrate the mesoporous structure of the capsules and their ability to load small molecules. The nanocapsules with such a structure can be used in many areas for various applications such as drug and gene delivery.
Collapse
Affiliation(s)
- Pradip Paik
- Division of Bioengineering, Faculty of Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576
| | | |
Collapse
|
34
|
Chen H, Luo Y. Facile Synthesis of Nanocapsules and Hollow Nanoparticles Consisting of Fluorinated Polymer Shells by Interfacial RAFT Miniemulsion Polymerization. MACROMOL CHEM PHYS 2011. [DOI: 10.1002/macp.201000664] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
35
|
Sasaki T, Tanaka K, Morino D, Sakurai K. Morphology and release kinetics of protein-loaded porous poly(l-lactic Acid) spheres prepared by freeze-drying technique. ISRN PHARMACEUTICS 2011; 2011:490567. [PMID: 22389850 PMCID: PMC3263714 DOI: 10.5402/2011/490567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 06/26/2011] [Indexed: 11/25/2022]
Abstract
Freeze-drying a biodegradable polymer, poly(L-lactic acid) (PLLA), from 1,4-dioxane solutions provided very porous spherical particles of ca. 3 mm in radius with specific surface area of 8–13 m2 g−1. The surface of the particle was found to be less porous compared with its interior. To apply the freeze-dried PLLA (FDPLLA) to drug delivery system, its morphology and drug releasing kinetics were investigated, bovine serum albumin (BSA) being used as a model drug compound. Immersion of FDPLLA into a BSA aqueous solution gave BSA-loaded FDPLLA, where mass fraction of the adsorbed BSA reached up to 79%. Time-dependent release profile of BSA in water suggested a two-step mechanism: (1) very rapid release of BSA deposited on and near the particle surface, which results in an initial burst, and (2) leaching of BSA from the interior of the particle by the diffusion process. It was suggested that the latter process is largely governed by the surface porosity. The porosity of both the interior and surface was found to decrease remarkably as the concentration of the original PLLA/1,4-dioxane solution increases, C0. Thus, C0 is a key parameter that controls the loading and releasing of BSA.
Collapse
Affiliation(s)
- Takashi Sasaki
- Department of Materials Science and Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910 8507, Japan
| | | | | | | |
Collapse
|
36
|
Kaewsaneha C, Opaprakasit P, Polpanich D, Smanmoo S, Tangboriboonrat P. Composite Particles of Disinfectant Nanocapsules-Skim Rubber Latex. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2010. [DOI: 10.1080/1023666x.2010.521294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Preparation of core-shell particle of disinfectant agent nanocapsules-skim rubber particles by the heterocoagulation technique. Macromol Res 2010. [DOI: 10.1007/s13233-010-0906-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Baier G, Musyanovych A, Dass M, Theisinger S, Landfester K. Cross-Linked Starch Capsules Containing dsDNA Prepared in Inverse Miniemulsion as “Nanoreactors” for Polymerase Chain Reaction. Biomacromolecules 2010; 11:960-8. [DOI: 10.1021/bm901414k] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Grit Baier
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany, and Institute of Organic Chemistry III - Macromolecular Chemistry and Organic Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Anna Musyanovych
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany, and Institute of Organic Chemistry III - Macromolecular Chemistry and Organic Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Martin Dass
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany, and Institute of Organic Chemistry III - Macromolecular Chemistry and Organic Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Sonja Theisinger
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany, and Institute of Organic Chemistry III - Macromolecular Chemistry and Organic Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany, and Institute of Organic Chemistry III - Macromolecular Chemistry and Organic Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
39
|
Landfester K, Musyanovych A, Mailänder V. From polymeric particles to multifunctional nanocapsules for biomedical applications using the miniemulsion process. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/pola.23786] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
40
|
Boyer C, Whittaker MR, Nouvel C, Davis TP. Synthesis of Hollow Polymer Nanocapsules Exploiting Gold Nanoparticles as Sacrificial Templates. Macromolecules 2010. [DOI: 10.1021/ma902663n] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Sciences and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Michael R. Whittaker
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Sciences and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Cecile Nouvel
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Sciences and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
- Laboratoire de Chimie Physique Macromoléculaire, UMR 7568 CNRS-Nancy University, ENSIC, BP 20451, 54001 Nancy cedex, France
| | - Thomas P. Davis
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Sciences and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
41
|
Tanpantree S, Opaprakasit P, Loykulnant S, Kangwansupamonkon W, Tangboriboonrat P. Nanocapsules embedded in natural rubber latex gloves. J Appl Polym Sci 2010. [DOI: 10.1002/app.32132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Weiss CK, Landfester K. Miniemulsion Polymerization as a Means to Encapsulate Organic and Inorganic Materials. HYBRID LATEX PARTICLES 2010. [DOI: 10.1007/12_2010_61] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
43
|
|
44
|
Encapsulation by Miniemulsion Polymerization. MODERN TECHNIQUES FOR NANO- AND MICROREACTORS/-REACTIONS 2010. [DOI: 10.1007/12_2009_43] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
45
|
Rosenbauer EM, Landfester K, Musyanovych A. Surface-active monomer as a stabilizer for polyurea nanocapsules synthesized via interfacial polyaddition in inverse miniemulsion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:12084-12091. [PMID: 19618925 DOI: 10.1021/la9017097] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A surface-active monomer, polyisobutylene-succinimide pentamine (Lubrizol U), was used as a stabilizer for synthesizing polyurea nanocapsules with aqueous core via polyaddition at inverse miniemulsion droplet interface. Because of the presence of amine groups in the Lubrizol molecule, it is covalently incorporated into the polymeric interfacial layer after reaction, resulting in more compact (less permeable) capsule shell. The influence of the stabilizer and the monomer concentration on the shell thickness, colloidal stability, average capsule size, and capsule size polydispersity were examined in detail. Different materials, such as a water-soluble fluorescent dye and aqueous dispersion of magnetite nanoparticles with 10 nm in size, were used as inner phase of the polyurea capsules. The encapsulation efficiency was studied using fluorescein as a marker. As an example for biomedical application, the fluorescein-containing capsules were utilized in cell uptake experiments and visualized using fluorescence microscopy.
Collapse
Affiliation(s)
- Eva-Maria Rosenbauer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | | | | |
Collapse
|
46
|
Landfester K. Miniemulsion polymerization and the structure of polymer and hybrid nanoparticles. Angew Chem Int Ed Engl 2009; 48:4488-507. [PMID: 19455531 DOI: 10.1002/anie.200900723] [Citation(s) in RCA: 481] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The miniemulsion process allows the formation of complex structured polymeric nanoparticles and the encapsulation of a solid or liquid, an inorganic or organic, or a hydrophobic or hydrophilic material into a polymer shell. Many different materials, ranging from organic and inorganic pigments, magnetite, or other solid nanoparticles, to hydrophobic and hydrophilic liquids, such as fragrances, drugs, or photoinitators, can be encapsulated. Functionalization of the nanoparticles can also be easily obtained. Compared to polymerization processes in organic solvents, polymerization to obtain polymeric nanoparticles can be performed in environmentally friendly solvents, usually water.
Collapse
Affiliation(s)
- Katharina Landfester
- Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany.
| |
Collapse
|
47
|
Paiphansiri U, Dausend J, Musyanovych A, Mailänder V, Landfester K. Fluorescent Polyurethane Nanocapsules Prepared via Inverse Miniemulsion: Surface Functionalization for Use as Biocarriers. Macromol Biosci 2009; 9:575-84. [DOI: 10.1002/mabi.200800293] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
Landfester K. Miniemulsionspolymerisation und Struktur von Polymer- und Hybridnanopartikeln. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200900723] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
49
|
Paiphansiri U, Tangboriboonrat P. Deposition of disinfectant poly(methyl acrylate) nanocapsules onto natural rubber film via the layer-by-layer technique. J Appl Polym Sci 2009. [DOI: 10.1002/app.29464] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
50
|
Crespy D, Landfester K. Synthesis of polyvinylpyrrolidone/silver nanoparticles hybrid latex in non-aqueous miniemulsion at high temperature. POLYMER 2009. [DOI: 10.1016/j.polymer.2009.02.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|