1
|
Zúñiga-Bustos M, Galaz-Araya C, Poblete H. Unveiling the potential of RADA16-I peptide-coated silver nanoparticles for biomedical uses: a computational study. Phys Chem Chem Phys 2025; 27:1187-1196. [PMID: 39688593 DOI: 10.1039/d4cp03275f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Nanomaterials, specifically silver nanoparticles (AgNPs), have demonstrated great potential in biomedical applications due to their unique properties, such as antimicrobial activity and conductivity. One promising strategy to improve their biocompatibility and functional specificity is through the functionalization of AgNPs with peptides. By attaching peptides to the surface of AgNPs, their interaction with biological systems can be enhanced and tailored for specific applications. This computational study uses classical molecular dynamics and enhancement sampling techniques to investigate the interaction between AgNPs and RADA16-I peptides, as well as their derivative CLKRADA16-I. It utilizes classical molecular dynamics and enhanced sampling methods to gain insights into the structural information and details of their interaction. Furthermore, this study addresses the need for a better understanding of the interaction between composite materials made of nanoparticles and peptides. Our results demonstrate that the incorporation of the CLK motif significantly augments both structural stability and the binding affinity of peptides to silver nanoparticles. Through computational simulations, we observed that peptides modified with the CLK motif (CLKRADA16-I) exhibit a higher binding affinity toward a silver surface model, with the adsorption energy increasing by up to 4.2 kcal mol-1 relative to unmodified peptides. This calculated interaction energy boosts adsorption and surface coverage, facilitating a packed and more effective peptide coating on the silver nanoparticles. These findings pave the way for the advancement of AgNPs as versatile agents in nanomedicine, particularly necessitating precise molecular recognition and robust bioactive scaffolding. Our study enhances the understanding of nanoparticle-peptide conjugates and their implications for designing next-generation nanomaterials.
Collapse
Affiliation(s)
- Matías Zúñiga-Bustos
- Instituto Universitario de Investigación y Desarrollo Tecnológico, Universidad Tecnológica Metropolitana, Santiago, Chile.
| | - Constanza Galaz-Araya
- Doctorado en Ciencias mención Modelado de Sistemas Químicos y Biológicos, Facultad de Ingeniería, Universidad de Talca, Talca 3465548, Chile
- Departamento de Bioinformática, Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Campus Talca, 1 Poniente No. 1141, Casilla 721, Talca, Chile
| | - Horacio Poblete
- Centro de Nanomedicina, Diagnóstico y Desarrollo de Fármacos (ND3), Universidad de Talca, Campus Talca, 1 Poniente No. 1141, Casilla 721, Talca, Chile.
| |
Collapse
|
2
|
Mohanty S, Roy S. Bioactive Hydrogels Inspired by Laminin: An Emerging Biomaterial for Tissue Engineering Applications. Macromol Biosci 2024; 24:e2400207. [PMID: 39172212 DOI: 10.1002/mabi.202400207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/01/2024] [Indexed: 08/23/2024]
Abstract
Tissue or organ damage due to severe injuries or chronic diseases can adversely affect the quality of life. Current treatments rely on organ or tissue transplantation which has limitations including unavailability of donors, ethical issues, or immune rejection after transplantations. These limitations can be addressed by tissue regeneration which involves the development of bioactive scaffolds closely mimicking the extracellular matrix (ECM). One of the major components of ECM is the laminin protein which supports several tissues associated with important organs. In this direction, peptide-based hydrogels can effectively mimic the essential characteristics of laminin. While several reports have discussed the structure of laminin, the potential of laminin-derived peptide hydrogels as effective biomaterial for tissue engineering applications is yet to be discussed. In this context, the current review focuses on the structure of laminin and its role as an essential ECM protein. Further, the potential of short peptide hydrogels in mimicking the crucial properties of laminin is proposed. The review further highlights the significance of bioactive hydrogels inspired by laminin - in addressing numerous tissue engineering applications including angiogenesis, neural, skeletal muscle, liver, and adipose tissue regeneration along with a brief outlook on the future applications of these laminin-based hydrogels.
Collapse
Affiliation(s)
- Sweta Mohanty
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, Punjab, 140306, India
| | - Sangita Roy
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, Punjab, 140306, India
| |
Collapse
|
3
|
Xie C, Chen Y, Wang L, Liao K, Xue B, Han Y, Li L, Jiang Q. Recent research of peptide-based hydrogel in nervous regeneration. Bioact Mater 2024; 40:503-523. [PMID: 39040568 PMCID: PMC11261279 DOI: 10.1016/j.bioactmat.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 07/24/2024] Open
Abstract
Neurological disorders exert significantly affect the quality of life for patients, necessitating effective strategies for nerve regeneration. Both traditional autologous nerve transplantation and emerging therapeutic approaches encounter scientific challenges due to the complex nature of the nervous system and the unsuitability of the surrounding environment for cell transplantation. Tissue engineering techniques offer a promising path for neurotherapy. Successful neural tissue engineering relies on modulating cell differentiation behavior and tissue repair by developing biomaterials that mimic the natural extracellular matrix (ECM) and establish a three-dimensional microenvironment. Peptide-based hydrogels have emerged as a potent option among these biomaterials due to their ability to replicate the structure and complexity of the ECM. This review aims to explore the diverse range of peptide-based hydrogels used in nerve regeneration with a specific focus on dipeptide hydrogels, tripeptide hydrogels, oligopeptide hydrogels, multidomain peptides (MDPs), and amphiphilic peptide hydrogels (PAs). Peptide-based hydrogels offer numerous advantages, including biocompatibility, structural diversity, adjustable mechanical properties, and degradation without adverse effects. Notably, hydrogels formed from self-assembled polypeptide nanofibers, derived from amino acids, show promising potential in engineering neural tissues, outperforming conventional materials like alginate, poly(ε-caprolactone), and polyaniline. Additionally, the simple design and cost-effectiveness of dipeptide-based hydrogels have enabled the creation of various functional supramolecular structures, with significant implications for nervous system regeneration. These hydrogels are expected to play a crucial role in future neural tissue engineering research. This review aims to highlight the benefits and potential applications of peptide-based hydrogels, contributing to the advancement of neural tissue engineering.
Collapse
Affiliation(s)
- Chunmei Xie
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Yueyang Chen
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Lang Wang
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Kin Liao
- Advanced Digital and Additive Manufacturing Center, Khalifa University of Science and Technology, Po Box 127788, Abu Dhabi, United Arab Emirates
| | - Bin Xue
- National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing, China
| | - Yulong Han
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Lan Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
- Jiangsu Engineering Research Center for 3D Bioprinting, Nanjing, China
- Institute of Medical 3D Printing, Nanjing University, Nanjing, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
- Jiangsu Engineering Research Center for 3D Bioprinting, Nanjing, China
- Institute of Medical 3D Printing, Nanjing University, Nanjing, China
| |
Collapse
|
4
|
Pande S, Pati F, Chakraborty P. Harnessing Peptide-Based Hydrogels for Enhanced Cartilage Tissue Engineering. ACS APPLIED BIO MATERIALS 2024; 7:5885-5905. [PMID: 39159490 DOI: 10.1021/acsabm.4c00879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Cartilage tissue engineering remains a formidable challenge due to its complex, avascular structure and limited regenerative capacity. Traditional approaches, such as microfracture, autografts, and stem cell delivery, often fail to restore functional tissue adequately. Recently, there has been a surge in the exploration of new materials that mimic the extracellular microenvironment necessary to guide tissue regeneration. This review investigates the potential of peptide-based hydrogels as an innovative solution for cartilage regeneration. These hydrogels, formed via supramolecular self-assembly, exhibit excellent properties, including biocompatibility, ECM mimicry, and controlled biodegradation, making them highly suitable for cartilage tissue engineering. This review explains the structure of cartilage and the principles of supramolecular and peptide hydrogels. It also delves into their specific properties relevant to cartilage regeneration. Additionally, this review presents recent examples and a comparative analysis of various peptide-based hydrogels used for cartilage regeneration. The review also addresses the translational challenges of these materials, highlighting regulatory hurdles and the complexities of clinical application. This comprehensive investigation provides valuable insights for biomedical researchers, tissue engineers, and clinical professionals aiming to enhance cartilage repair methodologies.
Collapse
Affiliation(s)
- Shreya Pande
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Priyadarshi Chakraborty
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| |
Collapse
|
5
|
Nogoceke R, Josino R, Robert AW, Stimamiglio MA. Evaluation of a Peptide Hydrogel as a Chondro-Instructive Three-Dimensional Microenvironment. Polymers (Basel) 2023; 15:4630. [PMID: 38139882 PMCID: PMC10747086 DOI: 10.3390/polym15244630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 12/24/2023] Open
Abstract
Articular cartilage injuries are inherently irreversible, even with the advancement in current therapeutic options. Alternative approaches, such as the use of mesenchymal stem/stromal cells (MSCs) and tissue engineering techniques, have gained prominence. MSCs represent an ideal source of cells due to their low immunogenicity, paracrine activity, and ability to differentiate. Among biomaterials, self-assembling peptide hydrogels (SAPH) are interesting given their characteristics such as good biocompatibility and tunable properties. Herein we associate human adipose-derived stem cells (hASCs) with a commercial SAPH, Puramatrix™, to evaluate how this three-dimensional microenvironment affects cell behavior and its ability to undergo chondrogenic differentiation. We demonstrate that the Puramatrix™ hydrogel comprises a highly porous matrix permissible for hASC adhesion and in vitro expansion. The morphology and cell growth dynamics of hASCs were affected when cultured on the hydrogel but had minimal alteration in their immunophenotype. Interestingly, hASCs spontaneously formed cell aggregates throughout culturing. Analysis of glycosaminoglycan production and gene expression revealed a noteworthy and donor-dependent trend suggesting that Puramatrix™ hydrogel may have a natural capacity to support the chondrogenic differentiation of hASCs. Altogether, the results provide a more comprehensive understanding of the potential applications and limitations of the Puramatrix™ hydrogel in developing functional cartilage tissue constructs.
Collapse
Affiliation(s)
| | | | - Anny Waloski Robert
- Stem Cells Basic Biology Laboratory, Instituto Carlos Chagas—ICC-FIOCRUZ/PR, Rua Professor Algacyr Munhoz Mader, 3775, Curitiba 81350-010, Brazil; (R.N.); (R.J.)
| | - Marco Augusto Stimamiglio
- Stem Cells Basic Biology Laboratory, Instituto Carlos Chagas—ICC-FIOCRUZ/PR, Rua Professor Algacyr Munhoz Mader, 3775, Curitiba 81350-010, Brazil; (R.N.); (R.J.)
| |
Collapse
|
6
|
Xu YE, Ao DS, Sun X, Chen W, Luo X, Zhao C, Wang SY, Song H. A Novel Airway-Organoid Model Based on a Nano-Self-Assembling Peptide: Construction and Application in Adenovirus Infection Studies. Int J Nanomedicine 2023; 18:5225-5241. [PMID: 37727651 PMCID: PMC10505585 DOI: 10.2147/ijn.s413743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023] Open
Abstract
Purpose Hydrogels containing the nano-self-assembling peptide RADA16-I (Nanogels) were utilized as scaffolds to establish airway organoids and an adenovirus-infected model. The results support in vitro adenovirus studies, including isolation and culture, pathogenesis research, and antiviral drug screening. Methods HSAEC1-KT, HuLEC-5a and HELF cells were cocultured in RADA16-I hydrogel scaffolds to construct an airway organoid model. Adenovirus was used to infect this model for adenovirus-related studies. The morphological characteristics and the proliferation and activity of airway organoids before and after adenovirus infection were evaluated. The expression of the airway organoid marker proteins CC10, KRT8, AQP5, SPC, VIM and CD31 was detected. TEM and qPCR were used to detect adenovirus proliferation in airway organoids. Results HSAEC1-KT, HuLEC-5a and HELF cells cocultured at 10:7:2 self-assembled into airway organoids and maintained long-term proliferation in a RADA16-I hydrogel 3D culture system. The organoids stably expressed the lumen-forming protein KRT8 and the terminal airway markers AQP5 and SPC. Adenoviruses maintained long-term proliferation in this model. Conclusion An airway-organoid model of adenovirus infection was constructed in vitro from three human lung-derived cell lines on RADA16-I hydrogels. The model has potential as a novel research tool for adenovirus isolation and culture, pathogenesis research, and antiviral drug screening.
Collapse
Affiliation(s)
- Yun-E Xu
- Department of Microbiology, School of Basic Medical Sciences, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
| | - Di-Shu Ao
- Department of Microbiology, School of Basic Medical Sciences, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
| | - Xin Sun
- Department of Microbiology, School of Basic Medical Sciences, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
| | - Wei Chen
- Department of Hepatobiliary Surgery, Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi, 563000, People’s Republic of China
| | - Xue Luo
- Department of Microbiology, School of Basic Medical Sciences, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
| | - Can Zhao
- Department of Microbiology, School of Basic Medical Sciences, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
| | - Sheng-Yu Wang
- Department of Microbiology, School of Basic Medical Sciences, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
| | - Hong Song
- Department of Microbiology, School of Basic Medical Sciences, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
| |
Collapse
|
7
|
Shi T, Niu D, You J, Li S, Li G, Ren K, Yan S, Xu G, Yin J. Injectable macro-porous chitosan/polyethylene glycol-silicotungstic acid double-network hydrogels based on "smashed gels recombination" strategy for cartilage tissue engineering. Int J Biol Macromol 2023; 233:123541. [PMID: 36740115 DOI: 10.1016/j.ijbiomac.2023.123541] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/10/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
The lack of interconnected macro-porous structure of most injectable hydrogels lead to poor cell and tissue infiltration. Herein, we present the fabrication of injectable macro-porous hydrogels based on "smashed gels recombination" strategy. Chitosan/polyethylene glycol-silicotungstic acid (CS/PEG-SiW) double-network hydrogels were prepared via dual dynamic interactions. The bulk CS/PEG-SiW hydrogels were then smashed into micro-hydrogels with average sizes ranging from 47.6 to 63.8 μm by mechanical fragmentation. The CS/PEG-SiW micro-hydrogels could be continuously injected and rapidly recombined into a stable porous hydrogel based on the dual dynamic interactions between micro-hydrogels. The average pore size of the recombined porous CS/PEG-SiW hydrogels ranged from 52 to 184 μm. The storage modulus, compress modulus and maximum compressive strain of the recombined porous CS/PEG-SiW1.0 hydrogels reached about 47.2 %, 28.2 % and 127.6 % of the values for their corresponding bulk hydrogels, respectively. The recombined porous hydrogels were cytocompatible and could effectively support proliferation and chondrogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). In a rat cartilage defect model, recombined porous CS/PEG-SiW hydrogels could promote cartilage regeneration. Hematoxylin and eosin (H&E), Safranin-O/Fast green and immunohistochemical staining confirmed the accumulation of glycosaminoglycans (GAG) and type II collagen (Col II) in regenerated cartilage.
Collapse
Affiliation(s)
- Tuhe Shi
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Dongyang Niu
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Second Military Medical University, Shanghai 200003, PR China
| | - Jiahui You
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Shuang Li
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Guifei Li
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Kaixuan Ren
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Shifeng Yan
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China.
| | - Guohua Xu
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Second Military Medical University, Shanghai 200003, PR China.
| | - Jingbo Yin
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
8
|
Yamaura K, Sather NA, Metlushko A, Nishimura H, Pavlović RZ, Hambright S, Ravuri SK, Philippon MJ, Stupp SI, Bahney CS, Huard J. Sustained-release losartan from peptide nanofibers promotes chondrogenesis. Front Bioeng Biotechnol 2023; 11:1122456. [PMID: 36814717 PMCID: PMC9939695 DOI: 10.3389/fbioe.2023.1122456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/20/2023] [Indexed: 02/09/2023] Open
Abstract
Introduction: The central pathologic feature of osteoarthritis (OA) is the progressive loss of articular cartilage, which has a limited regenerative capacity. The TGF-β1 inhibitor, losartan, can improve cartilage repair by promoting hyaline rather that fibrous cartilage tissue regeneration. However, there are concerns about side effects associated with oral administration and short retention within the joint following intra-articular injections. To facilitate local and sustained intra-articular losartan delivery we have designed an injectable peptide amphiphile (PA) nanofiber that binds losartan. The aims of this study are to characterize the release kinetics of losartan from two different PA nanofiber compositions followed by testing pro-regenerative bioactivity on chondrocytes. Methods: We tested the impact of electrostatic interactions on nanostructure morphology and release kinetics of the negatively charged losartan molecule from either a positively or negatively charged PA nanofiber. Subsequently, cytotoxicity and bioactivity were evaluated in vitro in both normal and an IL-1β-induced OA chondrocyte model using ATDC5. Results: Both nanofiber systems promoted cell proliferation but that the positively-charged nanofibers also significantly increased glycosaminoglycans production. Furthermore, gene expression analysis suggested that losartan-encapsulated nanofibers had significant anti-inflammatory, anti-degenerative, and cartilage regenerative effects by significantly blocking TGF-β1 in this in vitro system. Discussion: The results of this study demonstrated that positively charged losartan sustained-release nanofibers may be a novel and useful treatment for cartilage regeneration and OA by blocking TGF-β1.
Collapse
Affiliation(s)
- Kohei Yamaura
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, United States
| | - Nicholas A. Sather
- Simpson Querrey Institute for Bionanotechnology, Northwestern University, Chicago, IL, United States
| | - Anna Metlushko
- Simpson Querrey Institute for Bionanotechnology, Northwestern University, Chicago, IL, United States
| | - Haruki Nishimura
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, United States
| | - Radoslav Z. Pavlović
- Simpson Querrey Institute for Bionanotechnology, Northwestern University, Chicago, IL, United States
| | - Sealy Hambright
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, United States
| | - Sudheer K. Ravuri
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, United States
| | - Marc J. Philippon
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, United States,The Steadman Clinic, Vail, CO, United States
| | - Samuel I. Stupp
- Simpson Querrey Institute for Bionanotechnology, Northwestern University, Chicago, IL, United States
| | - Chelsea S. Bahney
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, United States,The Orthopaedic Trauma Institute, University of California, San Francisco (UCSF), San Francisco, CA, United States,*Correspondence: Chelsea S. Bahney, ; Johnny Huard,
| | - Johnny Huard
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, United States,*Correspondence: Chelsea S. Bahney, ; Johnny Huard,
| |
Collapse
|
9
|
Haq-Siddiqi NA, Britton D, Kim Montclare J. Protein-engineered biomaterials for cartilage therapeutics and repair. Adv Drug Deliv Rev 2023; 192:114647. [PMID: 36509172 DOI: 10.1016/j.addr.2022.114647] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/17/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Cartilage degeneration and injury are major causes of pain and disability that effect millions, and yet treatment options for conditions like osteoarthritis (OA) continue to be mainly palliative or involve complete replacement of injured joints. Several biomaterial strategies have been explored to address cartilage repair either by the delivery of therapeutics or as support for tissue repair, however the complex structure of cartilage tissue, its mechanical needs, and lack of regenerative capacity have hindered this goal. Recent advances in synthetic biology have opened new possibilities for engineered proteins to address these unique needs. Engineered protein and peptide-based materials benefit from inherent biocompatibility and nearly unlimited tunability as they utilize the body's natural building blocks to fabricate a variety of supramolecular structures. The pathophysiology and needs of OA cartilage are presented here, along with an overview of the current state of the art and next steps for protein-engineered repair strategies for cartilage.
Collapse
Affiliation(s)
- Nada A Haq-Siddiqi
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, United States
| | - Dustin Britton
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, United States
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, United States; Department of Chemistry, New York University, New York 10003, United States; Department of Radiology, New York University Grossman School of Medicine, New York 10016, United States; Department of Biomaterials, NYU College of Dentistry, New York, NY 10010, United States; Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, United States.
| |
Collapse
|
10
|
Chauhan A, Alam MA, Kaur A, Malviya R. Advancements and Utilizations of Scaffolds in Tissue Engineering and Drug Delivery. Curr Drug Targets 2023; 24:13-40. [PMID: 36221880 DOI: 10.2174/1389450123666221011100235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 11/22/2022]
Abstract
The drug development process requires a thorough understanding of the scaffold and its three-dimensional structure. Scaffolding is a technique for tissue engineering and the formation of contemporary functioning tissues. Tissue engineering is sometimes referred to as regenerative medicine. They also ensure that drugs are delivered with precision. Information regarding scaffolding techniques, scaffolding kinds, and other relevant facts, such as 3D nanostructuring, are discussed in depth in this literature. They are specific and demonstrate localized action for a specific reason. Scaffold's acquisition nature and flexibility make it a new drug delivery technology with good availability and structural parameter management.
Collapse
Affiliation(s)
- Akash Chauhan
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Md Aftab Alam
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Awaneet Kaur
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
11
|
Cheng C, Sun Q, Wang X, He B, Jiang T. Enzyme-manipulated hydrogelation of small molecules for biomedical applications. Acta Biomater 2022; 151:88-105. [PMID: 35970483 DOI: 10.1016/j.actbio.2022.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 11/26/2022]
Abstract
Enzyme-manipulated hydrogelation based on self-assembly of small molecules is an attractive methodology for development of functional biomaterials. Upon the catalysis of enzymes, small-molecular precursors are converted into assemblable building blocks, which arrange into high-ordered nanofibers via non-covalent interactions at the molecular level, and further trap water to form hydrogels at the macroscopic level. Such approach has numerous advantages of region- and enantioselectivity, and mild reaction conditions for encapsulation of biomedications or cells that are fragile to environmental change. In addition to the common applications as drug reservoirs or cell scaffolds, the utilization of endogenous enzymes as stimuli to initiate self-assembly in the living cells and tissue is considered as an intelligent spatiotemporally controllable hydrogelation strategy for biomedical applications. The enzyme-instructed in situ self-assembly and hydrogelation can modulate the cell behavior, and even present therapeutic bioactivities, which provides a new perspective in the field of disease treatment. In this review, we categorize distinct enzymatic stimuli and elaborate substrate design, catalytic characteristics, and mechanisms of self-assembly and hydrogelation. The biomedical applications in drug delivery, tissue engineering, bioimaging, and in situ gelation-produced bioactivity are outlined. Advantages and limitations regarding the state-of-the-art enzyme-driven hydrogelation technologies and future perspectives are also discussed. STATEMENT OF SIGNIFICANCE: Hydrogel is a semi-solid soft material containing a large amount of water. Due to the features of adjustable flexibility, extremely porous architecture, and the high similarity of structure to natural extracellular matrices, the hydrogel has broad application prospects in biomedicine. In recent 20 years, enzyme-manipulated hydrogelation based on self-assembly of small molecules has developed rapidly as an attractive methodology for the construction of functional biomaterials. Upon the catalysis of enzymes, small-molecular precursors are converted into assemblable building blocks, which arrange into high-ordered nanofibers via non-covalent interactions at the molecular level, and further trap water to form hydrogels at the macroscopic level. This review summarized the characteristics of enzymatic hydrogel, as well as the traditional application and emerging prospect of enzyme-instructed self-assembly and hydrogelation.
Collapse
Affiliation(s)
- Cheng Cheng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Qingyun Sun
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Xiuping Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Bingfang He
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Tianyue Jiang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
12
|
Yi J, Liu Q, Zhang Q, Chew TG, Ouyang H. Modular protein engineering-based biomaterials for skeletal tissue engineering. Biomaterials 2022; 282:121414. [DOI: 10.1016/j.biomaterials.2022.121414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/27/2021] [Accepted: 05/19/2021] [Indexed: 12/24/2022]
|
13
|
Boosted Cross-Linking and Characterization of High-Performing Self-Assembling Peptides. NANOMATERIALS 2022; 12:nano12030320. [PMID: 35159664 PMCID: PMC8838902 DOI: 10.3390/nano12030320] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 12/10/2022]
Abstract
Tissue engineering (TE) strategies require the design and characterization of novel biomaterials capable of mimicking the physiological microenvironments of the tissues to be regenerated. As such, implantable materials should be biomimetic, nanostructured and with mechanical properties approximating those of the target organ/tissue. Self-assembling peptides (SAPs) are biomimetic nanomaterials that can be readily synthesized and customized to match the requirements of some TE applications, but the weak interactions involved in the self-assembling phenomenon make them soft hydrogels unsuited for the regeneration of medium-to-hard tissues. In this work, we moved significant steps forward in the field of chemical cross-linked SAPs towards the goal of stiff peptidic materials suited for the regeneration of several tissues. Novel SAPs were designed and characterized to boost the 4-(N-Maleimidomethyl) cyclohexane-1-carboxylic acid 3-sulpho-N-hydroxysuccinimide ester (Sulfo-SMCC) mediated cross-linking reaction, where they reached G′ values of ~500 kPa. An additional orthogonal cross-linking was also effective and allowed to top remarkable G′ values of 840 kPa. We demonstrated that cross-linking fastened the pre-existing self-aggregated nanostructures, and at the same time, a strong presence of ß-structures is necessary for an effective cross-linking of (LKLK)3-based SAPs. Combining strong SAP design and orthogonal cross-linking reactions, we brought SAP stiffness closer to the MPa threshold, and as such, we opened the door of the regeneration of skin, muscle and lung to biomimetic SAP technology.
Collapse
|
14
|
Xiang Y, Miller K, Guan J, Kiratitanaporn W, Tang M, Chen S. 3D bioprinting of complex tissues in vitro: state-of-the-art and future perspectives. Arch Toxicol 2022; 96:691-710. [PMID: 35006284 PMCID: PMC8850226 DOI: 10.1007/s00204-021-03212-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022]
Abstract
The pharmacology and toxicology of a broad variety of therapies and chemicals have significantly improved with the aid of the increasing in vitro models of complex human tissues. Offering versatile and precise control over the cell population, extracellular matrix (ECM) deposition, dynamic microenvironment, and sophisticated microarchitecture, which is desired for the in vitro modeling of complex tissues, 3D bio-printing is a rapidly growing technology to be employed in the field. In this review, we will discuss the recent advancement of printing techniques and bio-ink sources, which have been spurred on by the increasing demand for modeling tactics and have facilitated the development of the refined tissue models as well as the modeling strategies, followed by a state-of-the-art update on the specialized work on cancer, heart, muscle and liver. In the end, the toxicological modeling strategies, substantial challenges, and future perspectives for 3D printed tissue models were explored.
Collapse
Affiliation(s)
- Yi Xiang
- Department of NanoEngineering, University of California San Diego, La Jolla, USA
| | - Kathleen Miller
- Department of NanoEngineering, University of California San Diego, La Jolla, USA
| | - Jiaao Guan
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, USA
| | | | - Min Tang
- Department of NanoEngineering, University of California San Diego, La Jolla, USA
| | - Shaochen Chen
- Department of NanoEngineering, University of California San Diego, La Jolla, USA.
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, USA.
| |
Collapse
|
15
|
Sankar S, O’Neill K, Bagot D’Arc M, Rebeca F, Buffier M, Aleksi E, Fan M, Matsuda N, Gil ES, Spirio L. Clinical Use of the Self-Assembling Peptide RADA16: A Review of Current and Future Trends in Biomedicine. Front Bioeng Biotechnol 2021; 9:679525. [PMID: 34164387 PMCID: PMC8216384 DOI: 10.3389/fbioe.2021.679525] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/10/2021] [Indexed: 12/18/2022] Open
Abstract
RADA16 is a synthetic peptide that exists as a viscous solution in an acidic formulation. In an acidic aqueous environment, the peptides spontaneously self-assemble into β-sheet nanofibers. Upon exposure and buffering of RADA16 solution to the physiological pH of biological fluids such as blood, interstitial fluid and lymph, the nanofibers begin physically crosslinking within seconds into a stable interwoven transparent hydrogel 3-D matrix. The RADA16 nanofiber hydrogel structure closely resembles the 3-dimensional architecture of native extracellular matrices. These properties make RADA16 formulations ideal topical hemostatic agents for controlling bleeding during surgery and to prevent post-operative rebleeding. A commercial RADA16 formulation is currently used for hemostasis in cardiovascular, gastrointestinal, and otorhinolaryngological surgical procedures, and studies are underway to investigate its use in wound healing and adhesion reduction. Straightforward application of viscous RADA16 into areas that are not easily accessible circumvents technical challenges in difficult-to-reach bleeding sites. The transparent hydrogel allows clear visualization of the surgical field and facilitates suture line assessment and revision. The shear-thinning and thixotropic properties of RADA16 allow its easy application through a narrow nozzle such as an endoscopic catheter. RADA16 hydrogels can fill tissue voids and do not swell so can be safely used in close proximity to pressure-sensitive tissues and in enclosed non-expandable regions. By definition, the synthetic peptide avoids potential microbiological contamination and immune responses that may occur with animal-, plant-, or mineral-derived topical hemostats. In vitro experiments, animal studies, and recent clinical experiences suggest that RADA16 nanofibrous hydrogels can act as surrogate extracellular matrices that support cellular behavior and interactions essential for wound healing and for tissue regenerative applications. In the future, the unique nature of RADA16 may also allow us to use it as a depot for precisely regulated drug and biopharmaceutical delivery.
Collapse
|
16
|
Noblett AD, Baek K, Suggs LJ. Controlling Nucleopeptide Hydrogel Self-Assembly and Formation for Cell-Culture Scaffold Applications. ACS Biomater Sci Eng 2021; 7:2605-2614. [PMID: 33949850 DOI: 10.1021/acsbiomaterials.0c01658] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hydrogels made from self-assembling peptides have significant advantages in tissue engineering, namely a biocompatible nature and large molecular repertoire. Short peptides in particular allow for straightforward synthesis, self-assembly, and reproducibility. Applications are currently limited, however, due to potential toxicity of the chemical modifications that drive self-assembly and harsh gelation conditions. Peptides conjugated to nucleobases present one opportunity for a naturally derived species to minimize cytotoxicity. We have developed a hydrogel-formation environment for nucleopeptide gelation modulated entirely by biological buffers and salts. Self-assembly in this system is dependent on buffer and ion identity mediated by pKa and formulation in the former and by valency and ionicity in the latter. Solutions at physiological pH and osmolarity, and in turn compatible with cell culture, initiate hydrogel formation and analytical and computational methods are used to explore pH and salt effects at the molecular and structural level. The mechanism of nucleopeptide self-assembly enables tuning of mechanical properties through the addition of divalent cations and one order of magnitude increase in hydrogel storage modulus. The stability of these constructs therefore provides an opportunity for long-term cell culture, and we demonstrate survival and proliferation of fibroblasts on hydrogel surfaces. This novel, biological buffer-mediated gelation methodology expands opportunities for tissue engineering applications of short peptides and their derivatives.
Collapse
Affiliation(s)
- Alexander David Noblett
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton Street, Austin, Texas 78712, United States
| | - Kiheon Baek
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton Street, Austin, Texas 78712, United States
| | - Laura J Suggs
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton Street, Austin, Texas 78712, United States
| |
Collapse
|
17
|
Mathur D, Kaur H, Dhall A, Sharma N, Raghava GPS. SAPdb: A database of short peptides and the corresponding nanostructures formed by self-assembly. Comput Biol Med 2021; 133:104391. [PMID: 33892308 DOI: 10.1016/j.compbiomed.2021.104391] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023]
Abstract
Nanostructures generated by self-assembly of peptides yield nanomaterials that have many therapeutic applications, including drug delivery and biomedical engineering, due to their low cytotoxicity and higher uptake by targeted cells owing to their high affinity and specificity towards cell surface receptors. Despite the promising implications of this rapidly expanding field, there is no dedicated resource to study peptide nanostructures. This study endeavours to create a repository of short peptides, which may prove to be the best models to study ordered nanostructures formed by peptide self-assembly. SAPdb has a repertoire of 1049 entries of experimentally validated nanostructures formed by the self-assembly of small peptides. It consists of 328 tripeptides, 701 dipeptides, and 20 single amino acids with some conjugate partners. Each entry encompasses comprehensive information about the peptide, such as chemical modifications, the type of nanostructure formed, experimental conditions like pH, temperature, solvent required for the self-assembly, etc. Our analysis indicates that peptides containing aromatic amino acids favour the formation of self-assembling nanostructures. Additionally, we observed that these peptides form different nanostructures under different experimental conditions. SAPdb provides this comprehensive information in a hassle-free tabulated manner at a glance. User-friendly browsing, searching, and analysis modules have been integrated for easy data retrieval, data comparison, and examination of properties. We anticipate SAPdb to be a valuable repository for researchers engaged in the burgeoning arena of nanobiotechnology. It is freely available at https://webs.iiitd.edu.in/raghava/sapdb.
Collapse
Affiliation(s)
- Deepika Mathur
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh-160036, India.
| | - Harpreet Kaur
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh-160036, India.
| | - Anjali Dhall
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi-110020, India.
| | - Neelam Sharma
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi-110020, India.
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi-110020, India. http://webs.iiitd.edu.in/raghava/
| |
Collapse
|
18
|
Design of RGDS Peptide-Immobilized Self-Assembling β-Strand Peptide from Barnacle Protein. Int J Mol Sci 2021; 22:ijms22031240. [PMID: 33513895 PMCID: PMC7866236 DOI: 10.3390/ijms22031240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 11/17/2022] Open
Abstract
We designed three types of RGD-containing barnacle adhesive proteins using self-assembling peptides. In the present study, three types of RGD-containing peptides were synthesized by solid-phase peptide synthesis, and the secondary structures of these peptides were analyzed by CD and FT-IR spectroscopy. The mechanical properties of peptide hydrogels were characterized by a rheometer. We discuss the correlation between the peptide conformation, and cell attachment and cell spreading activity from the viewpoint of developing effective tissue engineering scaffolds. We created a peptide-coated cell culture substrate by coating peptides on a polystyrene plate. They significantly facilitated cell adhesion and spreading compared to a non-coated substrate. When the RGDS sequence was modified at N- or C-terminal of R-Y, it was found that the self-assembling ability was dependent on the strongly affects hydrogel formation and cell adhesion caused by its secondary structure.
Collapse
|
19
|
Ao DS, Gao LY, Gu JH, Qiao JH, Wang H, Liu YF, Song H. Study on Adenovirus Infection in vitro with Nanoself-Assembling Peptide as Scaffolds for 3D Culture. Int J Nanomedicine 2020; 15:6327-6338. [PMID: 32922004 PMCID: PMC7457861 DOI: 10.2147/ijn.s239395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/30/2020] [Indexed: 01/04/2023] Open
Abstract
Purpose To construct a three-dimensional (3D) culture model of adenovirus in vitro using the nanoself-assembling peptide RADA16-I as a 3D cell culture scaffold combined with virology experimental technology to provide a novel research method for virus isolation and culture, pathogenesis research, antiviral drug screening and vaccine preparation. Methods The nanoself-assembling peptide RADA16-I was used as a 3D scaffold material for 293T cell culture, and adenovirus was cultured in the cells. The growth, morphological characteristics and pathological effects of 3D-cultured 293T cells after adenovirus infection were observed with an inverted microscope and MTS. The proliferation of adenovirus in 293T cells was observed by TEM and detected by qPCR. The levels of TNF-α and IL-8 secreted by adenovirus-infected 293T cells in the RADA16-I 3D culture system were detected by ELISA. Results The 293T cells grew well in the RADA16-I 3D culture system for a prolonged period of time. The adenovirus infection persisted for a long time with multiple proliferation peaks, which closely resembled those of in vivo infections. The adenovirus virions amplified in the 3D system remained infectious. There were multiple secretion peaks of TNF-α and IL-8 secretion levels in adenovirus-infected 293T cells cultured in 3D culture systems. Conclusion The nanoself-assembling peptide RADA16-I can be used as a 3D scaffold for adenovirus isolation, culture and research. The 3D culture system shows more realistic in vivo effects than two-dimensional (2D) culture.
Collapse
Affiliation(s)
- Di-Shu Ao
- Department of Microbiology, School of Basic Medical Sciences, Zunyi Medical University, Zunyi 563000, People's Republic of China
| | - Lu-Yao Gao
- Department of Microbiology, School of Basic Medical Sciences, Zunyi Medical University, Zunyi 563000, People's Republic of China
| | - Jing-Han Gu
- Department of Microbiology, School of Basic Medical Sciences, Zunyi Medical University, Zunyi 563000, People's Republic of China
| | - Jun-Hua Qiao
- Department of Microbiology, School of Basic Medical Sciences, Zunyi Medical University, Zunyi 563000, People's Republic of China
| | - Huan Wang
- Department of Microbiology, School of Basic Medical Sciences, Zunyi Medical University, Zunyi 563000, People's Republic of China
| | - Yan-Fei Liu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, People's Republic of China
| | - Hong Song
- Department of Microbiology, School of Basic Medical Sciences, Zunyi Medical University, Zunyi 563000, People's Republic of China
| |
Collapse
|
20
|
|
21
|
Eftekhari A, Maleki Dizaj S, Sharifi S, Salatin S, Rahbar Saadat Y, Zununi Vahed S, Samiei M, Ardalan M, Rameshrad M, Ahmadian E, Cucchiarini M. The Use of Nanomaterials in Tissue Engineering for Cartilage Regeneration; Current Approaches and Future Perspectives. Int J Mol Sci 2020; 21:E536. [PMID: 31947685 PMCID: PMC7014227 DOI: 10.3390/ijms21020536] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 01/16/2023] Open
Abstract
The repair and regeneration of articular cartilage represent important challenges for orthopedic investigators and surgeons worldwide due to its avascular, aneural structure, cellular arrangement, and dense extracellular structure. Although abundant efforts have been paid to provide tissue-engineered grafts, the use of therapeutically cell-based options for repairing cartilage remains unsolved in the clinic. Merging a clinical perspective with recent progress in nanotechnology can be helpful for developing efficient cartilage replacements. Nanomaterials, < 100 nm structural elements, can control different properties of materials by collecting them at nanometric sizes. The integration of nanomaterials holds promise in developing scaffolds that better simulate the extracellular matrix (ECM) environment of cartilage to enhance the interaction of scaffold with the cells and improve the functionality of the engineered-tissue construct. This technology not only can be used for the healing of focal defects but can also be used for extensive osteoarthritic degenerative alterations in the joint. In this review paper, we will emphasize the recent investigations of articular cartilage repair/regeneration via biomaterials. Also, the application of novel technologies and materials is discussed.
Collapse
Affiliation(s)
- Aziz Eftekhari
- Pharmacology and Toxicology Department, Maragheh University of Medical Sciences, 5515878151 Maragheh, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, 5166614756 Tabriz, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, 5166614756 Tabriz, Iran
| | - Sara Salatin
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Science, 5166614756 Tabriz, Iran
| | - Yalda Rahbar Saadat
- Nutrition Research Center, Tabriz University of Medical Sciences, 5166614756 Tabriz, Iran
| | - Sepideh Zununi Vahed
- Kidney Research Center, Tabriz University of Medical Sciences, 5166614756 Tabriz, Iran
| | - Mohammad Samiei
- Faculty of Dentistry, Tabriz University of Medical Sciences, 5166614756 Tabriz, Iran
| | - Mohammadreza Ardalan
- Kidney Research Center, Tabriz University of Medical Sciences, 5166614756 Tabriz, Iran
| | - Maryam Rameshrad
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, 9414975516 Bojnurd, Iran
| | - Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, 5166614756 Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, 5166614756 Tabriz, Iran
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg/Saar, Germany
| |
Collapse
|
22
|
Rubí-Sans G, Recha-Sancho L, Pérez-Amodio S, Mateos-Timoneda MÁ, Semino CE, Engel E. Development of a Three-Dimensional Bioengineered Platform for Articular Cartilage Regeneration. Biomolecules 2019; 10:E52. [PMID: 31905668 PMCID: PMC7023234 DOI: 10.3390/biom10010052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/19/2019] [Accepted: 12/26/2019] [Indexed: 12/12/2022] Open
Abstract
Degenerative cartilage pathologies are nowadays a major problem for the world population. Factors such as age, genetics or obesity can predispose people to suffer from articular cartilage degeneration, which involves severe pain, loss of mobility and consequently, a loss of quality of life. Current strategies in medicine are focused on the partial or total replacement of affected joints, physiotherapy and analgesics that do not address the underlying pathology. In an attempt to find an alternative therapy to restore or repair articular cartilage functions, the use of bioengineered tissues is proposed. In this study we present a three-dimensional (3D) bioengineered platform combining a 3D printed polycaprolactone (PCL) macrostructure with RAD16-I, a soft nanofibrous self-assembling peptide, as a suitable microenvironment for human mesenchymal stem cells' (hMSC) proliferation and differentiation into chondrocytes. This 3D bioengineered platform allows for long-term hMSC culture resulting in chondrogenic differentiation and has mechanical properties resembling native articular cartilage. These promising results suggest that this approach could be potentially used in articular cartilage repair and regeneration.
Collapse
Affiliation(s)
- Gerard Rubí-Sans
- Biomaterials for Regenerative Therapies group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; (G.R.-S.); (S.P.-A.); (M.Á.M.-T.)
- CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
- Tissue Engineering Laboratory, IQS School of Engineering, Ramon Llull University, 08017 Barcelona, Spain;
| | - Lourdes Recha-Sancho
- Tissue Engineering Laboratory, IQS School of Engineering, Ramon Llull University, 08017 Barcelona, Spain;
| | - Soledad Pérez-Amodio
- Biomaterials for Regenerative Therapies group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; (G.R.-S.); (S.P.-A.); (M.Á.M.-T.)
- CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
- Department of Materials Science and Metallurgical Engineering, EEBE campus, Technical University of Catalonia (UPC), 08019 Barcelona, Spain
| | - Miguel Ángel Mateos-Timoneda
- Biomaterials for Regenerative Therapies group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; (G.R.-S.); (S.P.-A.); (M.Á.M.-T.)
- CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
- Department of Materials Science and Metallurgical Engineering, EEBE campus, Technical University of Catalonia (UPC), 08019 Barcelona, Spain
| | - Carlos Eduardo Semino
- Tissue Engineering Laboratory, IQS School of Engineering, Ramon Llull University, 08017 Barcelona, Spain;
- Hebe Biolab S.L., C/Can Castellvi 27, 08017 Barcelona, Spain
| | - Elisabeth Engel
- Biomaterials for Regenerative Therapies group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; (G.R.-S.); (S.P.-A.); (M.Á.M.-T.)
- CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
- Department of Materials Science and Metallurgical Engineering, EEBE campus, Technical University of Catalonia (UPC), 08019 Barcelona, Spain
| |
Collapse
|
23
|
Stern D, Cui H. Crafting Polymeric and Peptidic Hydrogels for Improved Wound Healing. Adv Healthc Mater 2019; 8:e1900104. [PMID: 30835960 DOI: 10.1002/adhm.201900104] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Indexed: 12/21/2022]
Abstract
Wound healing is a multifaceted biological process involving the replacement of damaged tissues and cellular structures, restoring the skin barrier's function, and maintaining internal homeostasis. Over the past two decades, numerous approaches are undertaken to improve the quality and healing rate of complex acute and chronic wounds, including synthetic and natural polymeric scaffolds, skin grafts, and supramolecular hydrogels. In this context, this review assesses the advantages and drawbacks of various types of supramolecular hydrogels including both polymeric and peptide-based hydrogels for wound healing applications. The molecular design features of natural and synthetic polymers are examined, as well as therapeutic-based and drug-free peptide hydrogels, and the strategies for each system are analyzed to integrate key elements such as biocompatibility, bioactivity, stimuli-responsiveness, site specificity, biodegradability, and clearance.
Collapse
Affiliation(s)
- David Stern
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology The Johns Hopkins University 3400 N. Charles Street Baltimore MD 21218 USA
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology The Johns Hopkins University 3400 N. Charles Street Baltimore MD 21218 USA
- Department of Materials Science and Engineering The Johns Hopkins University 3400 N. Charles Street Baltimore MD 21218 USA
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center Johns Hopkins University School of Medicine Baltimore MD 21205 USA
| |
Collapse
|
24
|
Wang R, Wang Z, Guo Y, Li H, Chen Z. Design of a RADA16-based self-assembling peptide nanofiber scaffold for biomedical applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:713-736. [DOI: 10.1080/09205063.2019.1605868] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Rongrong Wang
- Lab of Tissue Engineering Faculty of Life Science, Northwest University, Xi’an, Shaanxi Province, P.R. China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi’an, Shaanxi Province, P.R. China
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China Ministry of Education, Northwest University, Xi’an, Shaanxi Province, P.R. China
| | - Zhaoyue Wang
- Lab of Tissue Engineering Faculty of Life Science, Northwest University, Xi’an, Shaanxi Province, P.R. China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi’an, Shaanxi Province, P.R. China
| | - Yayuan Guo
- Lab of Tissue Engineering Faculty of Life Science, Northwest University, Xi’an, Shaanxi Province, P.R. China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi’an, Shaanxi Province, P.R. China
| | - Hongmin Li
- Lab of Tissue Engineering Faculty of Life Science, Northwest University, Xi’an, Shaanxi Province, P.R. China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi’an, Shaanxi Province, P.R. China
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China Ministry of Education, Northwest University, Xi’an, Shaanxi Province, P.R. China
| | - Zhuoyue Chen
- Lab of Tissue Engineering Faculty of Life Science, Northwest University, Xi’an, Shaanxi Province, P.R. China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi’an, Shaanxi Province, P.R. China
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China Ministry of Education, Northwest University, Xi’an, Shaanxi Province, P.R. China
| |
Collapse
|
25
|
Xu L, Guo Y, Huang Y, Xu Y, Lu Y, Wang Z. Hydrogel materials for the application of islet transplantation. J Biomater Appl 2019; 33:1252-1264. [PMID: 30791850 DOI: 10.1177/0885328219831391] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Type 1 diabetes mellitus is a serious disease comprising approximately 10% of all diabetes cases, and the global incidence of type 1 diabetes mellitus is steadily rising without any promise of a cure in the near future. Although islet transplantation has proven to be an effective means of treating type 1 diabetes mellitus and promoting insulin independence in patients, its widespread implementation has been severely constrained by instances of post-transplantation islet cell death, rejection, and severe adverse immune responses. Islet encapsulation is an active area of research aimed at shielding implanted islets from immunological rejection and inflammation while still allowing for effective insulin and nutrient exchange with donor cells. Given their promising physical and chemical properties, hydrogels have been a major subject of focus in the field of islet transplantation and encapsulation technology, offering promising advances towards immunologically privileged islet implants. The present review therefore summarizes the current state of research regarding the use of hydrogels in the context of islet transplantation, including both natural molecular hydrogels and artificial polymer hydrogels, with the goal of understanding the current strengths and weaknesses of this treatment strategy.
Collapse
Affiliation(s)
- Liancheng Xu
- Suqian First Hospital, Suqian, Jiangsu, China
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yibing Guo
- Research center of clinical medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yan Huang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Research center of clinical medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yang Xu
- Research center of clinical medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yuhua Lu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Research center of clinical medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Zhiwei Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
26
|
Dufour A, Buffier M, Vertu-Ciolino D, Disant F, Mallein-Gerin F, Perrier-Groult E. Combination of bioactive factors and IEIK13 self-assembling peptide hydrogel promotes cartilage matrix production by human nasal chondrocytes. J Biomed Mater Res A 2019; 107:893-903. [PMID: 30650239 DOI: 10.1002/jbm.a.36612] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/17/2018] [Accepted: 01/09/2019] [Indexed: 02/01/2023]
Abstract
Nasal reconstruction remains a challenge for every reconstructive surgeon. Alloplastic implants are proposed to repair nasal cartilaginous defects but they are often associated with high rates of extrusion and infection and poor biocompatibility. In this context, a porous polymeric scaffold filled with an autologous cartilage gel would be advantageous. In this study, we evaluated the capacity of IEIK13 self-assembling peptide (SAP) to serve as support to form such cartilage gel. Human nasal chondrocytes (HNC) were first amplified with FGF-2 and insulin, and then redifferentiated in IEIK13 with BMP-2, insulin, and T3 (BIT). Our results demonstrate that IEIK13 fosters HNC growth and survival. HNC phenotype was assessed by RT-PCR analysis and neo-synthesized extracellular matrix was characterized by western blotting and immunohistochemistry analysis. BIT-treated cells embedded in IEIK13 displayed round morphology and expressed cartilage-specific markers such as type II and type IX collagens and aggrecan. In addition, we did not detect significant production of type I and type X collagens and gene products of dedifferentiated and hypertrophic chondrocytes that are unwanted in hyaline cartilage. The whole of these results indicates that the SAP IEIK13 represents a suitable support for hydrogel-based tissue engineering of nasal cartilage. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 893-903, 2019.
Collapse
Affiliation(s)
- Alexandre Dufour
- Laboratory of Tissue Biology and Therapeutic Engineering (LBTI), CNRS UMR 5305, Institute for Biology and Chemistry of Proteins, Lyon, France
| | | | - Delphine Vertu-Ciolino
- Department of otolaryngology-head and neck surgery, Édouard-Herriot hospital, Lyon, France
| | - François Disant
- Department of otolaryngology-head and neck surgery, Édouard-Herriot hospital, Lyon, France
| | - Frédéric Mallein-Gerin
- Laboratory of Tissue Biology and Therapeutic Engineering (LBTI), CNRS UMR 5305, Institute for Biology and Chemistry of Proteins, Lyon, France
| | - Emeline Perrier-Groult
- Laboratory of Tissue Biology and Therapeutic Engineering (LBTI), CNRS UMR 5305, Institute for Biology and Chemistry of Proteins, Lyon, France
| |
Collapse
|
27
|
Shi Y, Pei P, Cheng X, Yan Z, Han M, Li Z, Gao C, Rogers JA, Huang Y, Zhang Y. An analytic model of two-level compressive buckling with applications in the assembly of free-standing 3D mesostructures. SOFT MATTER 2018; 14:8828-8837. [PMID: 30349911 DOI: 10.1039/c8sm01753k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Recently developed methods for mechanically-guided assembly exploit stress release in prestretched elastomeric substrates to guide the controlled formation of complex three-dimensional (3D) mesostructures in advanced functional materials and integrated electronic devices. The techniques of interfacial photopolymerization allow for realization of such 3D mesostructures in free-standing forms, separated from their elastomeric substrate, via formation of an integrated base layer. Theoretical models for the complex modes of deformation associated with this scheme are essential in the optimal design of the process parameters. Here, we present an analytic finite-deformation model of an isolated double-ribbon structure to describe the buckling process and morphology change of the assembled mesostructures upon removal of the substrate. As validated by finite element analyses (FEA), this analytic model can accurately predict the profiles of the double-ribbon structure with a range of different design parameters. We further illustrate the extension of this model to the analyses of 3D mesostructures with different geometries. Inspired by analytic results for flexible base structures, combined experimental results and numerical simulations demonstrate that mechanical interactions between the two different layers can be leveraged to achieve hierarchical assembly of 3D mesostructures. These findings could be useful in further advances in designs of free-standing 3D mesostructures based on mechanically-guided assembly.
Collapse
Affiliation(s)
- Yan Shi
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Lu J, Shen X, Sun X, Yin H, Yang S, Lu C, Wang Y, Liu Y, Huang Y, Yang Z, Dong X, Wang C, Guo Q, Zhao L, Sun X, Lu S, Mikos AG, Peng J, Wang X. Increased recruitment of endogenous stem cells and chondrogenic differentiation by a composite scaffold containing bone marrow homing peptide for cartilage regeneration. Theranostics 2018; 8:5039-5058. [PMID: 30429885 PMCID: PMC6217070 DOI: 10.7150/thno.26981] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/27/2018] [Indexed: 01/17/2023] Open
Abstract
Even small cartilage defects could finally degenerate to osteoarthritis if left untreated, owing to the poor self-healing ability of articular cartilage. Stem cell transplantation has been well implemented as a common approach in cartilage tissue engineering but has technical complexity and safety concerns. The stem cell homing-based technique emerged as an alternative promising therapy for cartilage repair to overcome traditional limitations. In this study, we constructed a composite hydrogel scaffold by combining an oriented acellular cartilage matrix (ACM) with a bone marrow homing peptide (BMHP)-functionalized self-assembling peptide (SAP). We hypothesized that increased recruitment of endogenous stem cells by the composite scaffold could enhance cartilage regeneration. Methods: To test our hypothesis, in vitro proliferation, attachment and chondrogenic differentiation of rabbit mesenchymal stem cells (MSCs) were tested to confirm the bioactivities of the functionalized peptide hydrogel. The composite scaffold was then implanted into full-thickness cartilage defects on rabbit knee joints for cartilage repair, in comparison with microfracture or other sample groups. Stem cell recruitment was monitored by dual labeling with CD29 and CD90 under confocal microcopy at 1 week after implantation, followed by chondrogenic differentiation examined by qRT-PCR. Repaired tissue of the cartilage defects was evaluated by histological and immunohistochemistry staining, microcomputed tomography (micro-CT) and magnetic resonance imaging (MRI) at 3 and 6 months post-surgery. Macroscopic and histological scoring was done to evaluate the optimal in vivo repair outcomes of this composite scaffold. Results: The functionalized SAP hydrogels could stimulate rabbit MSC proliferation, attachment and chondrogenic differentiation during in vitro culture. At 7 days after implantation, increased recruitment of MSCs based on CD29+ /CD90+ double-positive cells was found in vivo in the composite hydrogel scaffold, as well as upregulation of cartilage-associated genes (aggrecan, Sox9 and type II collagen). After 3 and 6 months post-surgery, the articular cartilage defect in the composite scaffold-treated group was fully covered with cartilage-like tissue with a smooth surface, which was similar to the surrounding native cartilage, according to the results of histological and immunohistochemistry staining, micro-CT and MRI analysis. Macroscopic and histological scoring confirmed that the quality of cartilage repair was significantly improved with implantation of the composite scaffold at each timepoint, in comparison with microfracture or other sample groups. Conclusion: Our findings demonstrated that the composite scaffold could enhance endogenous stem cell homing and chondrogenic differentiation and significantly improve the therapeutic outcome of chondral defects. The present study provides a promising approach for in vivo cartilage repair without cell transplantation. Optimization of this strategy may offer great potential and benefits for clinical application in the future.
Collapse
Affiliation(s)
- Jiaju Lu
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xuezhen Shen
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Xun Sun
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Heyong Yin
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University, Munich 80336, Germany
| | - Shuhui Yang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Changfeng Lu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Yu Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Yifan Liu
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yingqi Huang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Zijin Yang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xianqi Dong
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Chenhao Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Quanyi Guo
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Lingyun Zhao
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaodan Sun
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Shibi Lu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Antonios G. Mikos
- Department of Bioengineering, Bioscience Research Collaborative, Rice University, Texas 77030, USA
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
29
|
Qiu F, Chen Y, Tang C, Zhao X. Amphiphilic peptides as novel nanomaterials: design, self-assembly and application. Int J Nanomedicine 2018; 13:5003-5022. [PMID: 30214203 PMCID: PMC6128269 DOI: 10.2147/ijn.s166403] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Designer self-assembling peptides are a category of emerging nanobiomaterials which have been widely investigated in the past decades. In this field, amphiphilic peptides have received special attention for their simplicity in design and versatility in application. This review focuses on recent progress in designer amphiphilic peptides, trying to give a comprehensive overview about this special type of self-assembling peptides. By exploring published studies on several typical types of amphiphilic peptides in recent years, herein we discuss in detail the basic design, self-assembling behaviors and the mechanism of amphiphilic peptides, as well as how their nanostructures are affected by the peptide characteristics or environmental parameters. The applications of these peptides as potential nanomaterials for nanomedicine and nanotechnology are also summarized.
Collapse
Affiliation(s)
- Feng Qiu
- Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu 610041, China, .,Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610041, China, ,
| | - Yongzhu Chen
- Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610041, China, , .,Periodical Press of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chengkang Tang
- Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610041, China, , .,Core Facility of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaojun Zhao
- Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610041, China, ,
| |
Collapse
|
30
|
Repair of Damaged Articular Cartilage: Current Approaches and Future Directions. Int J Mol Sci 2018; 19:ijms19082366. [PMID: 30103493 PMCID: PMC6122081 DOI: 10.3390/ijms19082366] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/07/2018] [Accepted: 08/07/2018] [Indexed: 12/28/2022] Open
Abstract
Articular hyaline cartilage is extensively hydrated, but it is neither innervated nor vascularized, and its low cell density allows only extremely limited self-renewal. Most clinical and research efforts currently focus on the restoration of cartilage damaged in connection with osteoarthritis or trauma. Here, we discuss current clinical approaches for repairing cartilage, as well as research approaches which are currently developing, and those under translation into clinical practice. We also describe potential future directions in this area, including tissue engineering based on scaffolding and/or stem cells as well as a combination of gene and cell therapy. Particular focus is placed on cell-based approaches and the potential of recently characterized chondro-progenitors; progress with induced pluripotent stem cells is also discussed. In this context, we also consider the ability of different types of stem cell to restore hyaline cartilage and the importance of mimicking the environment in vivo during cell expansion and differentiation into mature chondrocytes.
Collapse
|
31
|
Sheffield C, Meyers K, Johnson E, Rajachar RM. Application of Composite Hydrogels to Control Physical Properties in Tissue Engineering and Regenerative Medicine. Gels 2018; 4:E51. [PMID: 30674827 PMCID: PMC6209271 DOI: 10.3390/gels4020051] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 12/23/2022] Open
Abstract
The development of biomaterials for the restoration of the normal tissue structure⁻function relationship in pathological conditions as well as acute and chronic injury is an area of intense investigation. More recently, the use of tailored or composite hydrogels for tissue engineering and regenerative medicine has sought to bridge the gap between natural tissues and applied biomaterials more clearly. By applying traditional concepts in engineering composites, these hydrogels represent hierarchical structured materials that translate more closely the key guiding principles required for improved recovery of tissue architecture and functional behavior, including physical, mass transport, and biological properties. For tissue-engineering scaffolds in general, and more specifically in composite hydrogel materials, each of these properties provide unique qualities that are essential for proper augmentation and repair following disease and injury. The broad focus of this review is on physical properties in particular, static and dynamic mechanical properties provided by composite hydrogel materials and their link to native tissue architecture and, ultimately, tissue-specific applications for composite hydrogels.
Collapse
Affiliation(s)
- Cassidy Sheffield
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA.
| | - Kaylee Meyers
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA.
| | - Emil Johnson
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA.
| | - Rupak M Rajachar
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA.
| |
Collapse
|
32
|
Self-Assembling RADA16-I Peptide Hydrogel Scaffold Loaded with Tamoxifen for Breast Reconstruction. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3656193. [PMID: 28691024 PMCID: PMC5485292 DOI: 10.1155/2017/3656193] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/11/2017] [Accepted: 05/03/2017] [Indexed: 12/20/2022]
Abstract
More and more breast cancer patients prefer autologous fat tissue transfer following lumpectomy to maintain perfect female characteristics. However, the outcome was not satisfactory due to the transplanted fat absorption. In this study, we prepared two RADA16-I peptide scaffolds with and without tamoxifen. Both scaffolds were transparent, porous, and hemisphere-shaped. The hADSCs isolated from liposuction were attached to the scaffold. The growth inhibition of the hADSCs induced by TAM in 2-demensional (2D) culture was higher than that in TAM-loaded hydrogel scaffold 3D culture (P < 0.05); however, the same outcomes were not observed in MCF-7 cells. Correspondingly, the apoptosis of the hADSCs induced by TAM was significantly increased in 2D culture compared to that in scaffold 3D culture (P < 0.05). Yet the outcomes of the aoptosis in MCF-7 were contrary. Apoptosis-related protein Bcl-2 was involved in the process. In vivo experiments showed that both scaffolds formed a round mass after subcutaneous implantation and it retained its shape after being pressed slightly. The implantation had no effect on the weight and activity of the animals. The results suggested that TAM-loaded RADA16-I hydrogel scaffolds both provide support for hADSCs cells attachment/proliferation and retain cytotoxic effect on MCF-7 cells, which might be a promising therapeutic breast tissue following lumpectomy.
Collapse
|
33
|
Chuah YJ, Peck Y, Lau JEJ, Hee HT, Wang DA. Hydrogel based cartilaginous tissue regeneration: recent insights and technologies. Biomater Sci 2017; 5:613-631. [DOI: 10.1039/c6bm00863a] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Hydrogel based technologies has been extensively employed in both exploratory research and clinical applications to address numerous existing challenges in the regeneration of articular cartilage and intervertebral disc.
Collapse
Affiliation(s)
- Yon Jin Chuah
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637459
- Singapore
| | - Yvonne Peck
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637459
- Singapore
| | - Jia En Josias Lau
- School of Chemical & Life Sciences
- Singapore Polytechnic
- Singapore 139651
- Singapore
| | - Hwan Tak Hee
- Lee Kong Chian School of Medicine
- Nanyang Technological University
- Singapore 636921
- Singapore
- Pinnacle Spine & Scoliosis Centre
| | - Dong-An Wang
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637459
- Singapore
| |
Collapse
|
34
|
Liu S, Zhang L, Cheng J, Lu Y, Liu J. Sustained release of hepatocyte growth factor by cationic self-assembling peptide/heparin hybrid hydrogel improves β-cell survival and function through modulating inflammatory response. Int J Nanomedicine 2016; 11:4875-4890. [PMID: 27729786 PMCID: PMC5042198 DOI: 10.2147/ijn.s108921] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Inflammatory response is a major cause of grafts dysfunction in islet transplantation. Hepatocyte growth factor (HGF) had shown anti-inflammatory activity in multiple diseases. In this study, we aim to deliver HGF by self-assembling peptide/heparin (SAP/Hep) hybrid gel to protect β-cell from inflammatory injury. The morphological and slow release properties of SAPs were analyzed. Rat INS-1 β-cell line was treated with tumor necrosis factor α in vitro and transplanted into rat kidney capsule in vivo, and the viability, apoptosis, function, and inflammation of β-cells were evaluated. Cationic KLD1R and KLD2R self-assembled to nanofiber hydrogel, which showed higher binding affinity for Hep and HGF because of electrostatic interaction. Slow release of HGF from cationic SAP/Hep gel is a two-step mechanism involving binding affinity with Hep and molecular diffusion. In vitro and in vivo results showed that HGF-loaded KLD2R/Hep gel promoted β-cell survival and insulin secretion, and inhibited cell apoptosis, cytokine release, T-cell infiltration, and activation of NFκB/p38 MAPK pathways in β-cells. This study suggested that SAP/Hep gel is a promising carrier for local delivery of bioactive proteins in islet transplantation.
Collapse
Affiliation(s)
- Shuyun Liu
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital
| | - Lanlan Zhang
- Institute for Nanobiomedical Technology and Membrane Biology, Sichuan University, Chengdu, People's Republic of China
| | - Jingqiu Cheng
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital
| | - Jingping Liu
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital
| |
Collapse
|
35
|
He B, Ou Y, Zhou A, Chen S, Zhao W, Zhao J, Li H, Zhu Y, Zhao Z, Jiang D. Functionalized d-form self-assembling peptide hydrogels for bone regeneration. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:1379-88. [PMID: 27114701 PMCID: PMC4833366 DOI: 10.2147/dddt.s97530] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bone defects are very common in orthopedics, and there is great need to develop suitable bone grafts for transplantation in vivo. However, current bone grafts still encounter some limitations, including limited availability, immune rejection, poor osteoinduction and osteoconduction, poor biocompatibility and degradation properties, etc. Self-assembling peptide nanofiber scaffolds have emerged as an important substrate for cell culture and bone regeneration. We report on the structural features (eg, Congo red staining, circular dichroism spectroscopy, transmission electron microscopy, and rheometry assays) and osteogenic ability of d-RADA16-RGD peptide hydrogels (with or without basic fibroblast growth factor) due to the better stability of peptide bonds formed by these peptides compared with those formed by l-form peptides, and use them to fill the femoral condyle defect of Sprague Dawley rat model. The bone morphology change, two-dimensional reconstructions using microcomputed tomography, quantification of the microcomputed tomography analyses as well as histological analyses have demonstrated that RGD-modified d-form peptide scaffolds are able to enhance extensive bone regeneration.
Collapse
Affiliation(s)
- Bin He
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yunsheng Ou
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Ao Zhou
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Shuo Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Weikang Zhao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Jinqiu Zhao
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Hong Li
- School of Physical Science and Technology, Sichuan University, Chengdu, People's Republic of China
| | - Yong Zhu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Zenghui Zhao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Dianming Jiang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
36
|
Jiang L, Xu D, Sellati TJ, Dong H. Self-assembly of cationic multidomain peptide hydrogels: supramolecular nanostructure and rheological properties dictate antimicrobial activity. NANOSCALE 2015; 7:19160-9. [PMID: 26524425 PMCID: PMC4866592 DOI: 10.1039/c5nr05233e] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Hydrogels are an important class of biomaterials that have been widely utilized for a variety of biomedical/medical applications. The biological performance of hydrogels, particularly those used as wound dressing could be greatly advanced if imbued with inherent antimicrobial activity capable of staving off colonization of the wound site by opportunistic bacterial pathogens. Possessing such antimicrobial properties would also protect the hydrogel itself from being adversely affected by microbial attachment to its surface. We have previously demonstrated the broad-spectrum antimicrobial activity of supramolecular assemblies of cationic multi-domain peptides (MDPs) in solution. Here, we extend the 1-D soluble supramolecular assembly to 3-D hydrogels to investigate the effect of the supramolecular nanostructure and its rheological properties on the antimicrobial activity of self-assembled hydrogels. Among designed MDPs, the bactericidal activity of peptide hydrogels was found to follow an opposite trend to that in solution. Improved antimicrobial activity of self-assembled peptide hydrogels is dictated by the combined effect of supramolecular surface chemistry and storage modulus of the bulk materials, rather than the ability of individual peptides/peptide assemblies to penetrate bacterial cell membrane as observed in solution. The structure-property-activity relationship developed through this study will provide important guidelines for designing biocompatible peptide hydrogels with built-in antimicrobial activity for various biomedical applications.
Collapse
Affiliation(s)
- Linhai Jiang
- Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY 13699, USA.
| | | | | | | |
Collapse
|
37
|
Biocompatible Hydrogels for Microarray Cell Printing and Encapsulation. BIOSENSORS-BASEL 2015; 5:647-63. [PMID: 26516921 PMCID: PMC4697138 DOI: 10.3390/bios5040647] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 10/21/2015] [Accepted: 10/22/2015] [Indexed: 12/18/2022]
Abstract
Conventional drug screening processes are a time-consuming and expensive endeavor, but highly rewarding when they are successful. To identify promising lead compounds, millions of compounds are traditionally screened against therapeutic targets on human cells grown on the surface of 96-wells. These two-dimensional (2D) cell monolayers are physiologically irrelevant, thus, often providing false-positive or false-negative results, when compared to cells grown in three-dimensional (3D) structures such as hydrogel droplets. However, 3D cell culture systems are not easily amenable to high-throughput screening (HTS), thus inherently low throughput, and requiring relatively large volume for cell-based assays. In addition, it is difficult to control cellular microenvironments and hard to obtain reliable cell images due to focus position and transparency issues. To overcome these problems, miniaturized 3D cell cultures in hydrogels were developed via cell printing techniques where cell spots in hydrogels can be arrayed on the surface of glass slides or plastic chips by microarray spotters and cultured in growth media to form cells encapsulated 3D droplets for various cell-based assays. These approaches can dramatically reduce assay volume, provide accurate control over cellular microenvironments, and allow us to obtain clear 3D cell images for high-content imaging (HCI). In this review, several hydrogels that are compatible to microarray printing robots are discussed for miniaturized 3D cell cultures.
Collapse
|
38
|
Xu D, Jiang L, Singh A, Dustin D, Yang M, Liu L, Lund R, Sellati TJ, Dong H. Designed supramolecular filamentous peptides: balance of nanostructure, cytotoxicity and antimicrobial activity. Chem Commun (Camb) 2015; 51:1289-92. [PMID: 25476705 DOI: 10.1039/c4cc08808e] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This work demonstrates a design strategy to optimize antimicrobial peptides with an ideal balance of minimal cytotoxicity, enhanced stability, potent cell penetration and effective antimicrobial activity, which hold great promise for the treatment of intracellular microbial infections and potentially systemic anti-infective therapy.
Collapse
Affiliation(s)
- Dawei Xu
- Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY 13699, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Liu J, Liu S, Chen Y, Zhao X, Lu Y, Cheng J. Functionalized self-assembling peptide improves INS-1 β-cell function and proliferation via the integrin/FAK/ERK/cyclin pathway. Int J Nanomedicine 2015; 10:3519-31. [PMID: 25999715 PMCID: PMC4436204 DOI: 10.2147/ijn.s80502] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Islet transplantation is considered to be a curative treatment for type 1 diabetes mellitus. However, disruption of the extracellular matrix (ECM) leads to β-cell destruction and graft dysfunction. In this study, we developed a functionalized self-assembling peptide, KLD-F, with ECM mimic motifs derived from fibronectin and collagen IV, and evaluated its effect on β-cell function and proliferation. Atomic force microscopy and rheological results showed that KLD-F could self-assemble into a nanofibrous scaffold and change into a hydrogel in physiological saline condition. In a three-dimensional cell culture model, KLD-F improved ECM remodeling and cell-cell adhesion of INS-1 β-cells by upregulation of E-cadherin, fibronectin, and collagen IV. KLD-F also enhanced glucose-stimulated insulin secretion and expression of β-cell function genes, including Glut2, Ins1, MafA, and Pdx-1 in INS-1 cells. Moreover, KLD-F promoted proliferation of INS-1 β-cells and upregulated Ki67 expression by mediating cell cycle progression. In addition, KLD-F improved β-cell function and proliferation via an integrin/focal adhesion kinase/extracellular signal-regulated kinase/cyclin D pathway. This study highlights the fact that the β-cell-ECM interaction reestablished with this functionalized self-assembling peptide is a promising method to improve the therapeutic efficacy of islet transplantation.
Collapse
Affiliation(s)
- Jingping Liu
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Sichuan University, Chengdu, People’s Republic of China
| | - Shuyun Liu
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Sichuan University, Chengdu, People’s Republic of China
| | - Younan Chen
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Sichuan University, Chengdu, People’s Republic of China
| | - Xiaojun Zhao
- Laboratory of Nanomedicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Sichuan University, Chengdu, People’s Republic of China
| | - Jingqiu Cheng
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
40
|
Skaalure SC, Chu S, Bryant SJ. An enzyme-sensitive PEG hydrogel based on aggrecan catabolism for cartilage tissue engineering. Adv Healthc Mater 2015; 4:420-31. [PMID: 25296398 PMCID: PMC4516272 DOI: 10.1002/adhm.201400277] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/04/2014] [Indexed: 11/06/2022]
Abstract
A new cartilage-specific degradable hydrogel based on photoclickable thiol-ene poly(ethylene glycol) (PEG) hydrogels is presented. The hydrogel crosslinks are composed of the peptide, CRDTEGE-ARGSVIDRC, derived from the aggrecanase-cleavable site in aggrecan. This new hydrogel is evaluated for use in cartilage tissue engineering by encapsulating bovine chondrocytes from different cell sources (skeletally immature (juvenile) and mature (adult) donors and adult cells stimulated with proinflammatory lipopolysaccharide (LPS)) and culturing for 12 weeks. Regardless of cell source, a twofold decrease in compressive modulus is observed by 12 weeks, but without significant hydrogel swelling indicating limited bulk degradation. For juvenile cells, a connected matrix rich in aggrecan and collagen II, but minimal collagens I and X is observed. For adult cells, less matrix, but similar quality, is deposited. Aggrecanase activity is elevated, although without accelerating bulk hydrogel degradation. LPS further decreases matrix production, but does not affect aggrecanase activity. In contrast, matrix deposition in the nondegradable hydrogels consists of aggrecan and collagens I, II, and X, indicative of hypertrophic cartilage. Lastly, no inflammatory response in chondrocytes is observed by the aggrecanase-sensitive hydrogels. Overall, it is demonstrated that this new aggrecanase-sensitive hydrogel, which is degradable by chondrocytes and promotes a hyaline-like engineered cartilage, is promising for cartilage regeneration.
Collapse
Affiliation(s)
- Stacey C. Skaalure
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309
- BioFrontiers Institute, University of Colorado, Boulder, CO 80309
| | - Stanley Chu
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309
- BioFrontiers Institute, University of Colorado, Boulder, CO 80309
| | - Stephanie J. Bryant
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309
- BioFrontiers Institute, University of Colorado, Boulder, CO 80309
- Materials Science and Engineering Program, University of Colorado, Boulder, CO 80309
| |
Collapse
|
41
|
Yuan X, He B, Lv Z, Luo S. Fabrication of self-assembling peptide nanofiber hydrogels for myocardial repair. RSC Adv 2014. [DOI: 10.1039/c4ra08582e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
42
|
Designer functionalised self-assembling peptide nanofibre scaffolds for cartilage tissue engineering. Expert Rev Mol Med 2014; 16:e12. [PMID: 25089851 DOI: 10.1017/erm.2014.13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Owing to the limited regenerative capacity of cartilage tissue, cartilage repair remains a challenge in clinical treatment. Tissue engineering has emerged as a promising and important approach to repair cartilage defects. It is well known that material scaffolds are regarded as a fundamental element of tissue engineering. Novel biomaterial scaffolds formed by self-assembling peptides consist of nanofibre networks highly resembling natural extracellular matrices, and their fabrication is based on the principle of molecular self-assembly. Indeed, peptide nanofibre scaffolds have obtained much progress in repairing various damaged tissues (e.g. cartilage, bone, nerve, heart and blood vessel). This review outlines the rational design of peptide nanofibre scaffolds and their potential in cartilage tissue engineering.
Collapse
|
43
|
Yishay-Safranchik E, Golan M, David A. Controlled release of doxorubicin and Smac-derived pro-apoptotic peptide from self-assembled KLD-based peptide hydrogels. POLYM ADVAN TECHNOL 2014. [DOI: 10.1002/pat.3300] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Eliya Yishay-Safranchik
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
- Ilse Katz Institute for Nanoscale Science and Technology; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
| | - Moran Golan
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
- Ilse Katz Institute for Nanoscale Science and Technology; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
| | - Ayelet David
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
- Ilse Katz Institute for Nanoscale Science and Technology; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
| |
Collapse
|
44
|
Roy S, Baral A, Banerjee A. An Amino-Acid-Based Self-Healing Hydrogel: Modulation of the Self-Healing Properties by Incorporating Carbon-Based Nanomaterials. Chemistry 2013; 19:14950-7. [DOI: 10.1002/chem.201301655] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Indexed: 12/22/2022]
|
45
|
Lu T, Li Y, Chen T. Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering. Int J Nanomedicine 2013; 8:337-50. [PMID: 23345979 PMCID: PMC3551462 DOI: 10.2147/ijn.s38635] [Citation(s) in RCA: 249] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Three-dimensional biomimetic scaffolds have widespread applications in biomedical tissue engineering because of their nanoscaled architecture, eg, nanofibers and nanopores, similar to the native extracellular matrix. In the conventional “top-down” approach, cells are seeded onto a biocompatible and biodegradable scaffold, in which cells are expected to populate in the scaffold and create their own extracellular matrix. The top-down approach based on these scaffolds has successfully engineered thin tissues, including skin, bladder, and cartilage in vitro. However, it is still a challenge to fabricate complex and functional tissues (eg, liver and kidney) due to the lack of vascularization systems and limited diffusion properties of these large biomimetic scaffolds. The emerging “bottom-up” method may hold great potential to address these challenges, and focuses on fabricating microscale tissue building blocks with a specific microarchitecture and assembling these units to engineer larger tissue constructs from the bottom up. In this review, state-of-the-art methods for fabrication of three-dimensional biomimetic scaffolds are presented, and their advantages and drawbacks are discussed. The bottom-up methods used to assemble microscale building blocks (eg, microscale hydrogels) for tissue engineering are also reviewed. Finally, perspectives on future development of the bottom-up approach for tissue engineering are addressed.
Collapse
Affiliation(s)
- Tingli Lu
- Key Laboratory of Space Bioscience and Biotechnology, School of Life Science, Northwestern Polytechnical University, Xi'an, China.
| | | | | |
Collapse
|
46
|
Giavaresi G, Bondioli E, Melandri D, Giardino R, Tschon M, Torricelli P, Cenacchi G, Rotini R, Castagna A, Veronesi F, Pagani S, Fini M. Response of human chondrocytes and mesenchymal stromal cells to a decellularized human dermis. BMC Musculoskelet Disord 2013; 14:12. [PMID: 23294867 PMCID: PMC3547812 DOI: 10.1186/1471-2474-14-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 12/31/2012] [Indexed: 12/20/2022] Open
Abstract
Background Although progress has been made in the treatment of articular cartilage lesions, they are still a major challenge because current techniques do not provide satisfactory long-term outcomes. Tissue engineering and the use of functional biomaterials might be an alternative regenerative strategy and fulfill clinical needs. Decellularized extracellular matrices have generated interest as functional biologic scaffolds, but there are few studies on cartilage regeneration. The aim of this study was to evaluate in vitro the biological influence of a newly developed decellularized human dermal extracellular matrix on two human primary cultures. Methods Normal human articular chondrocytes (NHAC-kn) and human mesenchymal stromal cells (hMSC) from healthy donors were seeded in polystyrene wells as controls (CTR), and on decellularized human dermis batches (HDM_derm) for 7 and 14 days. Cellular proliferation and differentiation, and anabolic and catabolic synthetic activity were quantified at each experimental time. Histology and scanning electron microscopy were used to evaluate morphology and ultrastructure. Results Both cell cultures had a similar proliferation rate that increased significantly (p < 0.0005) at 14 days. In comparison with CTR, at 14 days NHAC-kn enhanced procollagen type II (CPII, p < 0.05) and aggrecan synthesis (p < 0.0005), whereas hMSC significantly enhanced aggrecan synthesis (p < 0.0005) and transforming growth factor-beta1 release (TGF-β1, p < 0.0005) at both experimental times. Neither inflammatory stimulus nor catabolic activity induction was observed. By comparing data of the two primary cells, NHAC-kn synthesized significantly more CPII than did hMSC at both experimental times (p < 0.005), whereas hMSC synthesized more aggrecan at 7 days (p < 0.005) and TGF-β1 at both experimental times than did NHAC-kn (p < 0.005). Conclusions The results obtained showed that in in vitro conditions HDM_derm behaves as a suitable scaffold for the growth of both well-differentiated chondrocytes and undifferentiated mesenchymal cells, thus ensuring a biocompatible and bioactive substrate. Further studies are mandatory to test the use of HDM_derm with tissue engineering to assess its therapeutic and functional effectiveness in cartilage regeneration.
Collapse
Affiliation(s)
- Gianluca Giavaresi
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute IRCCS, Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Self-assembled octapeptide scaffolds for in vitro chondrocyte culture. Acta Biomater 2013; 9:4609-17. [PMID: 22963851 DOI: 10.1016/j.actbio.2012.08.044] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 08/01/2012] [Accepted: 08/28/2012] [Indexed: 12/24/2022]
Abstract
Nature has evolved a variety of creative approaches to many aspects of materials synthesis and microstructural control. Molecular self-assembly is a simple and efficient way to fabricate complex nanostructures such as hydrogels. We have recently investigated the gelation properties of a series of ionic-complementary peptides based on the alternation of non-polar hydrophobic and polar hydrophilic residues. In this work we focus on one specific octapeptide, FEFEFKFK (F, phenylalanine; E, glutamic acid; K, lysine). This peptide was shown to self-assemble in solution and form β-sheet-rich nanofibres which, above a critical gelation concentration, entangle to form a self-supporting hydrogel. The fibre morphology of the hydrogel was analysed using transmission electron microscopy and cryo-scanning electron microscopy illustrating a dense fibrillar network of nanometer size fibres. Oscillatory rheology results show that the hydrogel possesses visco-elastic properties. Bovine chondrocytes were used to assess the biocompatibility of the scaffolds over 21 days under two-dimensional (2-D) and three-dimensional (3-D) cell culture conditions, particularly looking at cell morphology, proliferation and matrix deposition. 2-D culture resulted in cell viability and collagen type I deposition. In 3-D culture the mechanically stable gel was shown to support the viability of cells, the retention of cell morphology and collagen type II deposition. Subsequently the scaffold may serve as a template for cartilage tissue engineering.
Collapse
|
48
|
Kwon JS, Yoon SM, Kwon DY, Kim DY, Tai GZ, Jin LM, Song B, Lee B, Kim JH, Han DK, Min BH, Kim MS. Injectable in situ-forming hydrogel for cartilage tissue engineering. J Mater Chem B 2013; 1:3314-3321. [DOI: 10.1039/c3tb20105h] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
49
|
Abstract
Ionic self-assembly of the peptide RADARADARADARADA (RADA16-1) may form a well-defined nanofiber and eventually a hydrogel scaffold, with a water content of over 99.5%. This leads to the establishment of a nanofiber barrier that can be used to achieve complete hemostasis in less than 20 s in multiple tissues and in a variety of different wounds. In the present study, the nanofiber scaffolds of RADA16-1 peptide were sonicated into smaller fragments to identify possible molecular mechanisms underlying the rapid cessation of bleeding associated with these materials. Atomic force microscopy (AFM), circular dichroism (CD), and rheometry were also used to evaluate the re-assembly kinetics of this peptide. A bleeding control experiment was performed in animal models to uncover the molecular mechanisms underlying this fast hemostasis. In this way, these sonicated fragments not only quickly reassembled into nanofibers indistinguishable from the original material, but the degree of reassembly was also correlated with an increase in the rigidity of the scaffold and increased as the time required for hemostasis increased.
Collapse
|
50
|
Cho H, Balaji S, Sheikh AQ, Hurley JR, Tian YF, Collier JH, Crombleholme TM, Narmoneva DA. Regulation of endothelial cell activation and angiogenesis by injectable peptide nanofibers. Acta Biomater 2012; 8:154-64. [PMID: 21925628 DOI: 10.1016/j.actbio.2011.08.029] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 08/12/2011] [Accepted: 08/31/2011] [Indexed: 11/17/2022]
Abstract
RAD16-II peptide nanofibers are promising for vascular tissue engineering and were shown to enhance angiogenesis in vitro and in vivo, although the mechanism remains unknown. We hypothesized that the pro-angiogenic effect of RAD16-II results from low-affinity integrin-dependent interactions of microvascular endothelial cells (MVECs) with RAD motifs. Mouse MVECs were cultured on RAD16-II with or without integrin and MAPK/ERK pathway inhibitors, and angiogenic responses were quantified. The results were validated in vivo using a mouse diabetic wound healing model with impaired neovascularization. RAD16-II stimulated spontaneous capillary morphogenesis, and increased β(3) integrin phosphorylation and VEGF expression in MVECs. These responses were abrogated in the presence of β(3) and MAPK/ERK pathway inhibitors or on the control peptide without RAD motifs. Wide-spectrum integrin inhibitor echistatin completely abolished RAD16-II-mediated capillary morphogenesis in vitro and neovascularization and VEGF expression in the wound in vivo. The addition of the RGD motif to RAD16-II did not change nanofiber architecture or mechanical properties, but resulted in significant decrease in capillary morphogenesis. Overall, these results suggest that low-affinity non-specific interactions between cells and RAD motifs can trigger angiogenic responses via phosphorylation of β(3) integrin and MAPK/ERK pathway, indicating that low-affinity sequences can be used to functionalize biocompatible materials for the regulation of cell migration and angiogenesis, thus expanding the current pool of available motifs that can be used for such functionalization. Incorporation of RAD or similar motifs into protein engineered or hybrid peptide scaffolds may represent a novel strategy for vascular tissue engineering and will further enhance design opportunities for new scaffold materials.
Collapse
Affiliation(s)
- Hongkwan Cho
- School of Energy, Environmental, Biological, and Medical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | | | | | | | | | | | | | | |
Collapse
|