1
|
Bhattacharya S, Prajapati BG, Singh S. A critical review on the dissemination of PH and stimuli-responsive polymeric nanoparticular systems to improve drug delivery in cancer therapy. Crit Rev Oncol Hematol 2023; 185:103961. [PMID: 36921781 DOI: 10.1016/j.critrevonc.2023.103961] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Stimuli-responsive nanocarriers have the potential to revolutionize cancer treatment by allowing precise delivery of drugs to the site of disease. The use of polymeric nanocarriers with surfaces that respond to triggers such as pH, light, temperature, and redox potential enables targeted drug distribution. pH is a particularly useful tool, as the lower pH in tumour microenvironments can trigger changes in drug release. Recent advances in the development of pH-responsive polymer nanoparticles have shown great promise for improved in vivo drug delivery, reduced negative drug responses, and more precise drug distribution. A deeper understanding of these nanocarriers will allow us to overcome the challenges of targeted cancer treatment and create a better drug delivery system.
Collapse
Affiliation(s)
- Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India.
| | - Bhuphendra G Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, 22 Kherva, 384012, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
2
|
Delgado LM, Fuller K, Zeugolis DI. Influence of Cross-Linking Method and Disinfection/Sterilization Treatment on the Structural, Biophysical, Biochemical, and Biological Properties of Collagen-Based Devices. ACS Biomater Sci Eng 2018; 4:2739-2747. [DOI: 10.1021/acsbiomaterials.8b00052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Luis M. Delgado
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Kieran Fuller
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Dimitrios I. Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| |
Collapse
|
3
|
Haase T, Krost A, Sauter T, Kratz K, Peter J, Kamann S, Jung F, Lendlein A, Zohlnhöfer D, Rüder C. In vivo biocompatibility assessment of poly (ether imide) electrospun scaffolds. J Tissue Eng Regen Med 2015; 11:1034-1044. [PMID: 25712330 DOI: 10.1002/term.2002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 11/25/2014] [Accepted: 12/17/2014] [Indexed: 12/18/2022]
Abstract
Poly(ether imide) (PEI), which can be chemically functionalized with biologically active ligands, has emerged as a potential biomaterial for medical implants. Electrospun PEI scaffolds have shown advantageous properties, such as enhanced endothelial cell adherence, proliferation and low platelet adhesion in in vitro experiments. In this study, the in vivo behaviour of electrospun PEI scaffolds and PEI films was examined in a murine subcutaneous implantation model. Electrospun PEI scaffolds and films were surgically implanted subcutaneously in the dorsae of mice. The surrounding subcutaneous tissue response was examined via histopathological examination at 7 and 28 days after implantation. No serious adverse events were observed for both types of PEI implants. The presence of macrophages or foreign body giant cells in the vicinity of the implants and the formation of a fibrous capsule indicated a normal foreign body reaction towards PEI films and scaffolds. Capsule thickness and inflammatory infiltration cells significantly decreased for PEI scaffolds during days 7-28 while remaining unchanged for PEI films. The infiltration of cells into the implant was observed for PEI scaffolds 7 days after implantation and remained stable until 28 days of implantation. Additionally some, but not all, PEI scaffold implants induced the formation of functional blood vessels in the vicinity of the implants. Conclusively, this study demonstrates the in vivo biocompatibility of PEI implants, with favourable properties of electrospun PEI scaffolds regarding tissue integration and wound healing. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Tobias Haase
- Berlin-Brandenburg Centre for Regenerative Therapies, Berlin, Germany.,Department of Cardiology, Campus Virchow Klinikum, Charité, Berlin, Germany
| | - Annalena Krost
- Berlin-Brandenburg Centre for Regenerative Therapies, Berlin, Germany
| | - Tilman Sauter
- Berlin-Brandenburg Centre for Regenerative Therapies, Berlin, Germany.,Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Biochemistry and Biology, University of Potsdam, Germany
| | - Karl Kratz
- Berlin-Brandenburg Centre for Regenerative Therapies, Berlin, Germany.,Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Jan Peter
- Berlin-Brandenburg Centre for Regenerative Therapies, Berlin, Germany
| | - Stefanie Kamann
- Berlin-Brandenburg Centre for Regenerative Therapies, Berlin, Germany.,Department of Cardiology, Campus Virchow Klinikum, Charité, Berlin, Germany
| | - Friedrich Jung
- Berlin-Brandenburg Centre for Regenerative Therapies, Berlin, Germany.,Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Andreas Lendlein
- Berlin-Brandenburg Centre for Regenerative Therapies, Berlin, Germany.,Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Biochemistry and Biology, University of Potsdam, Germany
| | - Dietlind Zohlnhöfer
- Berlin-Brandenburg Centre for Regenerative Therapies, Berlin, Germany.,Department of Cardiology, Campus Virchow Klinikum, Charité, Berlin, Germany
| | - Constantin Rüder
- Berlin-Brandenburg Centre for Regenerative Therapies, Berlin, Germany.,Department of Cardiology, Campus Virchow Klinikum, Charité, Berlin, Germany
| |
Collapse
|
4
|
Ren X, Feng Y, Guo J, Wang H, Li Q, Yang J, Hao X, Lv J, Ma N, Li W. Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications. Chem Soc Rev 2015; 44:5680-742. [DOI: 10.1039/c4cs00483c] [Citation(s) in RCA: 359] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review highlights the recent developments of surface modification and endothelialization of biomaterials in vascular tissue engineering applications.
Collapse
Affiliation(s)
- Xiangkui Ren
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Yakai Feng
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Jintang Guo
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Haixia Wang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Qian Li
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Jing Yang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xuefang Hao
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Juan Lv
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Nan Ma
- Institute of Chemistry and Biochemistry
- Free University of Berlin
- D-14195 Berlin
- Germany
| | - Wenzhong Li
- Department of Cardiac Surgery
- University of Rostock
- D-18057 Rostock
- Germany
| |
Collapse
|
5
|
Chrzanowska O, Struszczyk MH, Krucinska I, Puchalski M, Herczyńska L, Chrzanowski M. Elaboration of small-diameter vascular prostheses-Selection of appropriate sterilisation method. J Appl Polym Sci 2014. [DOI: 10.1002/app.40812] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Olga Chrzanowska
- Department of Material and Commodity Sciences and Textile Metrology; Faculty of Material Technologies and Textile Design; Centre of Advanced Technologies of Human-Friendly Textiles “Pro Humano Tex”; Lodz University of Technology; 90-924 Lodz Poland
| | - Marcin Henryk Struszczyk
- Department of Material and Commodity Sciences and Textile Metrology; Faculty of Material Technologies and Textile Design; Centre of Advanced Technologies of Human-Friendly Textiles “Pro Humano Tex”; Lodz University of Technology; 90-924 Lodz Poland
| | - Izabella Krucinska
- Department of Material and Commodity Sciences and Textile Metrology; Faculty of Material Technologies and Textile Design; Centre of Advanced Technologies of Human-Friendly Textiles “Pro Humano Tex”; Lodz University of Technology; 90-924 Lodz Poland
| | - Michał Puchalski
- Department of Material and Commodity Sciences and Textile Metrology; Faculty of Material Technologies and Textile Design; Centre of Advanced Technologies of Human-Friendly Textiles “Pro Humano Tex”; Lodz University of Technology; 90-924 Lodz Poland
| | - Lucyna Herczyńska
- Department of Material and Commodity Sciences and Textile Metrology; Faculty of Material Technologies and Textile Design; Centre of Advanced Technologies of Human-Friendly Textiles “Pro Humano Tex”; Lodz University of Technology; 90-924 Lodz Poland
| | - Michał Chrzanowski
- Department of Material and Commodity Sciences and Textile Metrology; Faculty of Material Technologies and Textile Design; Centre of Advanced Technologies of Human-Friendly Textiles “Pro Humano Tex”; Lodz University of Technology; 90-924 Lodz Poland
| |
Collapse
|
6
|
Traba C, Chen L, Liang JF. Low power gas discharge plasma mediated inactivation and removal of biofilms formed on biomaterials. CURRENT APPLIED PHYSICS : THE OFFICIAL JOURNAL OF THE KOREAN PHYSICAL SOCIETY 2013; 13:S12-S18. [PMID: 23894232 PMCID: PMC3719881 DOI: 10.1016/j.cap.2012.12.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The antibacterial activity of gas discharge plasma has been studied for quiet some time. However, high biofilm inactivation activity of plasma was only recently reported. Studies indicate that the etching effect associated with plasmas generated represent an undesired effect, which may cause live bacteria relocation and thus contamination spreading. Meanwhile, the strong etching effects from these high power plasmas may also alter the surface chemistry and affect the biocompatibility of biomaterials. In this study, we examined the efficiency and effectiveness of low power gas discharge plasma for biofilm inactivation and removal. Among the three tested gases, oxygen, nitrogen, and argon, discharge oxygen demonstrated the best anti-biofilm activity because of its excellent ability in killing bacteria in biofilms and mild etching effects. Low power discharge oxygen completely killed and then removed the dead bacteria from attached surface but had negligible effects on the biocompatibility of materials. DNA left on the regenerated surface after removal of biofilms did not have any negative impact on tissue cell growth. On the contrary, dramatically increased growth was found for these cells seeded on regenerated surfaces. These results demonstrate the potential applications of low power discharge oxygen in biofilm treatments of biomaterials and indwelling device decontaminations.
Collapse
Affiliation(s)
- Christian Traba
- Department of Chemistry, Chemical Biology, and Biomedical Engineering, Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Long Chen
- Department of Chemistry, Chemical Biology, and Biomedical Engineering, Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Jun F. Liang
- Department of Chemistry, Chemical Biology, and Biomedical Engineering, Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| |
Collapse
|
7
|
Linz LA, Burke LH, Miller LA. Two cross-linked porcine dermal implants in a single patient undergoing hernia repair. BMJ Case Rep 2013; 2013:bcr-2012-007562. [PMID: 23345480 DOI: 10.1136/bcr-2012-007562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A 50-year-old woman with a history of multiple recurrent incisional hernias and multiple comorbidities received two different porcine dermal implants during the same procedure due to the availability of products in stock. At 3.5 months following this procedure, the patient developed a secondary hernia inferior and lateral to the site of previous surgery. Both the implants were biopsied and sent for pathological evaluation. One implant was compliant and well integrated while the other was non-compliant and exhibited extensive foreign body reaction. In this case report, we examine the differences between the two porcine implants that may have caused them to react so differently in the same subject under the same conditions.
Collapse
Affiliation(s)
- Luke A Linz
- College of Osteopathic Medicine, Michigan State University, Lansing, Michigan, USA
| | | | | |
Collapse
|
8
|
Chen M, Zhang Y, Yao X, Li H, Yu Q, Wang Y. Effect of a non-thermal, atmospheric-pressure, plasma brush on conversion of model self-etch adhesive formulations compared to conventional photo-polymerization. Dent Mater 2012; 28:1232-9. [PMID: 23018084 PMCID: PMC3482274 DOI: 10.1016/j.dental.2012.09.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 05/11/2012] [Accepted: 09/07/2012] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To determine the effectiveness and efficiency of non-thermal, atmospheric plasmas for inducing polymerization of model dental self-etch adhesives. METHODS The monomer mixtures used were bis-[2-(methacryloyloxy)ethyl] phosphate (2MP) and 2-hydroxyethyl methacrylate (HEMA), with mass ratios of 70/30, 50/50 and 30/70. Water was added to the above formulations: 10-30wt%. These monomer/water mixtures were treated steadily for 40s under a non-thermal atmospheric plasma brush working at temperatures from 32 to 35°C. For comparison, photo-initiators were added to the above formulations for photo-polymerization studies, which were light-cured for 40s. The degree of conversion (DC) of both the plasma- and light-cured samples was measured using FTIR spectroscopy with an attenuated total reflectance attachment. RESULTS The non-thermal plasma brush was effective in inducing polymerization of the model self-etch adhesives. The presence of water did not negatively affect the DC of plasma-cured samples. Indeed, DC values slightly increased, with increasing water content in adhesives: from 58.3% to 68.7% when the water content increased from 10% to 30% in the adhesives with a 50/50 (2MP/HEMA) mass ratio. Conversion values of the plasma-cured groups were higher than those of light-cured samples with the same mass ratio and water content. Spectral differences between the plasma- and light-cured groups indicate subtle structural distinctions in the resultant polymer networks. SIGNIFICANCE This research if the first to demonstrate that the non-thermal plasma brush induces polymerization of model adhesives under clinical settings by direct/indirect energy transfer. This device shows promise for polymerization of dental composite restorations having enhanced properties and performance.
Collapse
Affiliation(s)
- Mingsheng Chen
- Department of Oral Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Ying Zhang
- Department of Oral Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Xiaomei Yao
- Department of Oral Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Hao Li
- Center for Surface Science and Plasma Technology, Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Qingsong Yu
- Center for Surface Science and Plasma Technology, Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Yong Wang
- Department of Oral Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| |
Collapse
|
9
|
Terriza A, Díaz-Cuenca A, Yubero F, Barranco A, González-Elipe AR, Gonzalez Caballero JL, Vilches J, Salido M. Light induced hydrophilicity and osteoblast adhesion promotion on amorphous TiO2. J Biomed Mater Res A 2012; 101:1026-35. [PMID: 22965473 DOI: 10.1002/jbm.a.34405] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 07/31/2012] [Accepted: 08/01/2012] [Indexed: 01/10/2023]
Abstract
We have studied the effect of the UV induced superhydrophilic wetting of TiO(2) thin films on the osteoblasts cell adhesion and cytoskeletal organization on its surface. To assess any effect of the photo-catalytic removal of adventitious carbon as a factor for the enhancement of the osteoblast development, 100 nm amorphous TiO(2) thin layers were deposited on polyethylene terephthalate (PET), a substrate well known for its poor adhesion and limited wettability and biocompatibility. The TiO(2) /PET materials were characterized by X-ray photoelectron spectroscopy, and atomic force microscopy and their wetting behavior under light illumination studied by the sessile drop method. The amorphous TiO(2) thin films showed a very poor photo-catalytic activity even if becoming superhydrophilic after illumination. The illuminated samples recovered partially its initial hydrophobic state only after their storage in the dark for more than 20 days. Osteoblasts (HOB) were seeded both on bare PET and on TiO(2) /PET samples immediately after illumination and also after four weeks storage in darkness. Cell attachment was much more efficient on the immediately illuminated TiO(2)/PET samples, with development of focal adhesions and cell traction forces. Although we cannot completely discard some photo-catalytic carbon removal as a factor contributing to this cell enhanced attachment, our photodegradation experiments on amorphous TiO(2) are conclusive to dismiss this effect as the major cause for this behavior.
Collapse
Affiliation(s)
- Antonia Terriza
- Instituto de Ciencia de Materiales de Sevilla (CSIC-Universidad Sevilla), Seville, Spain
| | | | | | | | | | | | | | | |
Collapse
|