1
|
Jira ER, Shmilovich K, Kale TS, Ferguson A, Tovar JD, Schroeder CM. Effect of Core Oligomer Length on the Phase Behavior and Assembly of π-Conjugated Peptides. ACS APPLIED MATERIALS & INTERFACES 2020; 12:20722-20732. [PMID: 32286786 DOI: 10.1021/acsami.0c02095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Biohybrid molecules are a versatile class of materials for controlling the assembly behavior and functional properties of electronically active organics. In this work, we study the effect of the size of the π-conjugated core on the assembly and phase behavior for a series of π-conjugated peptides consisting of oligothiophene cores of defined lengths flanked by sequence-defined peptides (OTX, where X = 4, 5, 6 is the number of thiophene core units). Interestingly, we find that π-conjugated peptides with relatively short OT4 cores assemble into ordered, high aspect ratio, one-dimensional (1D) structures, whereas π-conjugated peptides with longer OT5 and OT6 cores assemble into disordered structures or lower aspect ratio 1D structures depending on assembly conditions. Phase diagrams for assembled materials are experimentally determined as a function of ionic strength, pH, temperature, and peptide concentration, revealing the impact of molecular sequence and π-conjugated core length on assembled morphologies. Molecular dynamics (MD) simulations are further used to probe the origins of microscale differences in assembly that arise from subtle changes in molecular identity. Broadly, our work elucidates the mechanisms governing the assembly of π-conjugated peptides, which will aid in efficient materials processing for soft electronic applications. Overall, these results highlight the complex phase behavior of biohybrid materials, including the impact of molecular sequence on assembly behavior and morphology.
Collapse
Affiliation(s)
- Edward R Jira
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Kirill Shmilovich
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Tejaswini S Kale
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Andrew Ferguson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - John D Tovar
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Charles M Schroeder
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
2
|
Hanczyc P, Sznitko L. Laser-Induced Population Inversion in Rhodamine 6G for Lysozyme Oligomer Detection. Biochemistry 2017; 56:2762-2765. [PMID: 28517926 DOI: 10.1021/acs.biochem.7b00243] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fluorescence spectroscopy is a common method for detecting amyloid fibrils in which organic fluorophores are used as markers that exhibit an increase in quantum yield upon binding. However, most of the dyes exhibit enhanced emission only when bound to mature fibrils, and significantly weaker signals are obtained in the presence of amyloid oligomers. In the concept of population inversion, a laser is used as an excitation source to keep the major fraction of molecules in the excited state to create the pathways for the occurrence of stimulated emission. In the case of the proteins, the conformational changes lead to the self-ordering and thus different light scattering conditions that can influence the optical signatures of the generated light. Using this methodology, we show it is possible to optically detect amyloid oligomers using commonly available staining dyes in which population inversion can be induced. The results indicate that rhodamine 6G molecules are complexed with oligomers, and using a laser-assisted methodology, weakly emissive states can be detected. Significant spectral red-shifting of rhodamine 6G dispersed with amyloid oligomers and a notable difference determined by comparison of spectra of the fibrils suggest the existence of specific dye aggregates around the oligomer binding sites. This approach can provide new insights into intermediate oligomer states that are believed to be responsible for toxic seeding in neurodegeneration diseases.
Collapse
Affiliation(s)
- Piotr Hanczyc
- Center for Polymers & Organic Solids, University of California, Santa Barbara , 2520A Physical Sciences Building North, Santa Barbara, California 93106, United States
| | - Lech Sznitko
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Technology , 50-370 Wroclaw, Poland
| |
Collapse
|
3
|
Catania C, Thomas AW, Bazan GC. Tuning cell surface charge in E. coli with conjugated oligoelectrolytes. Chem Sci 2015; 7:2023-2029. [PMID: 29899927 PMCID: PMC5968544 DOI: 10.1039/c5sc03046c] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/29/2015] [Indexed: 12/28/2022] Open
Abstract
Conjugated oligoelectrolytes intercalate into and associate with membranes, thereby changing the surface charge of microbes, as determined by zeta potential measurements.
Cationic conjugated oligoelectrolytes (COEs) varying in length and structural features are compared with respect to their association with E. coli and their effect on cell surface charge as determined by zeta potential measurements. Regardless of structural features, at high staining concentrations COEs with longer molecular dimensions associate less, but neutralize the negative surface charge of E. coli to a greater degree than shorter COEs.
Collapse
Affiliation(s)
- Chelsea Catania
- Materials Department , University of California , Santa Barbara , CA 93106 , USA
| | - Alexander W Thomas
- Center for Polymers and Organic Solids , Department of Chemistry and Biochemistry , University of California , Santa Barbara , CA 93106 , USA .
| | - Guillermo C Bazan
- Materials Department , University of California , Santa Barbara , CA 93106 , USA.,Center for Polymers and Organic Solids , Department of Chemistry and Biochemistry , University of California , Santa Barbara , CA 93106 , USA .
| |
Collapse
|
4
|
Hevekerl H, Wigenius J, Persson G, Inganäs O, Widengren J. Dark States in Ionic Oligothiophene Bioprobes—Evidence from Fluorescence Correlation Spectroscopy and Dynamic Light Scattering. J Phys Chem B 2014; 118:5924-33. [DOI: 10.1021/jp501324e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Heike Hevekerl
- Experimental
Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Jens Wigenius
- Biomolecular
and Organic Electronics, Department of Applied Physics, IFM, Linköping University, SE-581 83 Linköping, Sweden
| | - Gustav Persson
- Experimental
Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Olle Inganäs
- Biomolecular
and Organic Electronics, Department of Applied Physics, IFM, Linköping University, SE-581 83 Linköping, Sweden
| | - Jerker Widengren
- Experimental
Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| |
Collapse
|
5
|
Fluorescence Investigation of Interactions Between Novel Benzanthrone Dyes and Lysozyme Amyloid Fibrils. J Fluoresc 2013; 24:493-504. [DOI: 10.1007/s10895-013-1318-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 11/07/2013] [Indexed: 10/25/2022]
|
6
|
Abstract
Peptide self-assembly is a powerful method to create functional nanoscale materials such as optoelectronically relevant organic nanostructures. The enormous potential that may come from bringing π-conjugated electronic function into biological environments is poised to impact cell and tissue engineering, biosensors, and related biomedical applications. However, very little synthetic guidance is available with respect to uniting these two different materials sets in a generally applicable manner. In this Account, I describe my group's work to synthesize and assemble peptidic nanostructures built around organic electronic elements. The Account begins with a very brief background to the area of supramolecular electronics, followed by a description of areas where these nanomaterials could be useful in biology. I then discuss the synthetic approaches that we utilized to embed a variety of π-electron units directly within peptide backbones. A key supramolecular challenge with respect to subsequent self-assembly of these new molecules is balancing electrostatic contributions within the resulting nanomaterials, because the suitable geometries for stabilizing peptide assemblies may not necessarily correspond to those suitable for maximizing intermolecular π-electron interactions. Regardless of the respective magnitudes of these two major influences, the assembly paradigm is fairly robust. Variation of the π-electron units and the peptide sequences that make up the "peptide-π-peptide" triblock molecules consistently leads to fairly uniform tape-like nanostructures that maintain strong electronic coupling among the component π-electron units. We explored a diverse range of π-electron units spanning fluorescent oligo(phenylene vinylene)s, electron-accepting rylene diimides, and hole-transporting oligothiophenes. I then describe the characterization of the nanomaterials that form after molecular self-assembly in order to understand their internal structures, electronic interactions, and morphologies as existing within self-supporting hydrogel matrices. I also describe how a facile shearing process provided globally aligned macroscopic collections of one-dimensional electronic fibrils in hydrogel matrices. These general assembly processes influence intermolecular π-stacking among the embedded chromophores, and the assemblies themselves can facilitate the covalent cross-linking and polymerization (for example, of reactive diyne units). The latter offers an exciting possibility to create peptidic nanostructures comprised of single polymer chains. Finally, I discuss electronic properties as manifested in the interactions of transition dipoles within the nanomaterials and electrical properties resulting from field-effect gating. The ability to tune the observable electrical properties of the nanostructures externally will allow for their transition to in vitro or in vivo platforms as a powerful new approach to regulating biological interactions at the nanoscale.
Collapse
Affiliation(s)
- John D. Tovar
- Department of Chemistry, Department of Materials Science and Engineering, and Institute for NanoBioTechnology Johns Hopkins University 3400 North Charles Street (NCB 316), Baltimore, Maryland 21218, United States
| |
Collapse
|
7
|
Zhu C, Liu L, Yang Q, Lv F, Wang S. Water-soluble conjugated polymers for imaging, diagnosis, and therapy. Chem Rev 2012; 112:4687-735. [PMID: 22670807 DOI: 10.1021/cr200263w] [Citation(s) in RCA: 843] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Chunlei Zhu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | | | | | | | | |
Collapse
|