1
|
Gasztych M, Malamis A, Musiał W. The Influence of Initiators, Particle Size and Composition on the Electrokinetic Potential of N-(Isopropyl)acrylamide Derivatives. Polymers (Basel) 2024; 16:907. [PMID: 38611165 PMCID: PMC11013650 DOI: 10.3390/polym16070907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
The aim of this study was to characterize and compare the zeta potential of particles sensitive to external thermal stimuli. Poly N-(isopropyl) acrylamide (PNIPA) was selected as the thermosensitive polymer with a volume phase transition temperature (VPTT) between 32 and 33 °C. The hydrodynamic diameter (DH) of the nanoparticles was measured by dynamic light scattering. Zeta potential (ZP) measurements were performed with the same instrument used for DH measurements. ZP measurements allow the prediction of the stability of colloidal systems in aqueous solutions. These measurements were combined with a pH study before and after the purification process of the particles. The ZP was measured to determine the electrostatic interactions between the particles, which can lead to particle aggregation and decrease their colloidal stability. The effect of the composition of the synthesized particles on the ZP was assessed. One of the most important factors influencing ZP is pH, especially in aqueous solutions. The initiator did not significantly affect the DH of the particles, but it did significantly affect the ZP. The synthesized particles were subjected to a visible radiation absorption study in the selected temperature range to determine the VPTT.
Collapse
Affiliation(s)
| | | | - Witold Musiał
- Department of Physical Chemistry and Biophysics, Pharmaceutical Faculty, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (M.G.); (A.M.)
| |
Collapse
|
2
|
Jiang L, Liang X, Jia J, Han H, Tang J, Li Q. Ribonuclease A-polymer conjugates via in situ growth for cancer treatment. J Mater Chem B 2024; 12:2869-2876. [PMID: 38426261 DOI: 10.1039/d3tb02387g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Efficient delivery of therapeutic proteins is a critical aspect for protein-based cancer treatment. Herein, an in situ growth approach was employed to prepare ribonuclease A (RNase A)-polymer conjugates by incorporating a cationic polymer, poly(N,N'-dimethylamino-2-ethyl methacrylate) (P(DMAEMA)), and a hydrophobic polymer, poly(N-isopropylacrylamide) (P(NIPAM)), through atom transfer radical polymerization (ATRP). The synthesized RNase A-polymer conjugates (namely R-P(D-b-N)) could preserve the integrity of RNase A and exhibit a unique combination of cationic and hydrophobic properties, leading to enhanced intracellular delivery efficiency. The successful delivery of RNase A by R-P(D-b-N) conjugates effectively triggered the cell apoptosis through the mitochondria-dependent signaling pathway to achieve the anti-proliferative response. Additionally, the conjugates could inhibit cell migration and thus possess the potential for the suppression of tumor metastasis. Overall, our findings highlight that the introduction of cationic and hydrophobic moieties via ATRP provides a versatile platform for the intracellular delivery of therapeutic proteins, offering a new avenue for treating diverse diseases.
Collapse
Affiliation(s)
- Lin Jiang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Xiao Liang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Jiaxin Jia
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Haobo Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Jun Tang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
- Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
3
|
Zhang Q, Qu X, Liang C, Li H, Du S, Wang C, Xie Y, Zheng Y, Wang L. Effect of oligonucleotide MT01 delivered by N-isopropylacrylamide modified polyethyleneimine for bone regeneration. Front Bioeng Biotechnol 2023; 11:1204571. [PMID: 37404683 PMCID: PMC10315576 DOI: 10.3389/fbioe.2023.1204571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/09/2023] [Indexed: 07/06/2023] Open
Abstract
Objective: This study aimed to investigate the regulatory effect of N-isopropylacrylamide-modified polyethyleneimine (PEN)-delivered oligodeoxynucleotide (ODN) MT01 on bone regeneration in vitro and in vivo. Methods: A polyethylenimine (PEI) derivative, PEN, was constructed through Michael addition and employed as a carrier for ODN MT01 transfection. PEN/MT01 nanocomposites were characterized using agarose gel retardation assay, size distribution, zeta potential and transmission electron microscopy. The Cell Counting Kit-8 (CCK-8) assay was used to detect the effect of PEN on cell viability. Alkaline phosphatase (ALP) staining was used to detect the osteogenic differentiation ability of PEN/MT01 nanocomposite. Real-time quantitative PCR (q RT-PCR) and enzyme-linked immunosorbent assay (ELISA) were used to detect the regulatory effects of PEN/MT01 nanocomposite on osteogenic differentiation gene expression. Rat model was observed using the skull defect method and verified using micro-computed tomography (CT), serum biochemical indices, hematoxylin and eosin (H&E) staining and Immunohistochemistry (IHC). Results: PEN had good biological properties and could deliver MT01 well to achieve efficient transmission of MT01. PEN/MT01 nanocomposites were effectively transfected into MC3T3-E1 cells at a ratio of 6.0. CCK-8 assay displayed that PEN had no cytotoxicity to MC3T3-E1 cells. Additionally, PEN/MT01 nanocomposites could promote the expression of osteogenic genes. In vivo results revealed that PEN/MT01 nanocomposites could promote bone regeneration more effectively than the other groups. Conclusion: PEN has good biocompatibility and low toxicity, which is a good carrier for ODN MT01. PEN-delivered MT01 can be potentially employed as a useful approach to achieving bone regeneration.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Periodontics, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, China
| | - Xingyuan Qu
- Department of Periodontics, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, China
| | - Chen Liang
- Department of Periodontics, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, China
| | - Hongyan Li
- Department of Periodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Siyu Du
- Department of Periodontics, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, China
| | - Chang Wang
- Department of Periodontics, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, China
| | - Yuandong Xie
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, China
| | - Yi Zheng
- Department of Periodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Lei Wang
- Department of Periodontics, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
4
|
Shinde SS, Ahmed S, Malik JA, Hani U, Khanam A, Ashraf Bhat F, Ahmad Mir S, Ghazwani M, Wahab S, Haider N, Almehizia AA. Therapeutic Delivery of Tumor Suppressor miRNAs for Breast Cancer Treatment. BIOLOGY 2023; 12:467. [PMID: 36979159 PMCID: PMC10045434 DOI: 10.3390/biology12030467] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023]
Abstract
The death rate from breast cancer (BC) has dropped due to early detection and sophisticated therapeutic options, yet drug resistance and relapse remain barriers to effective, systematic treatment. Multiple mechanisms underlying miRNAs appear crucial in practically every aspect of cancer progression, including carcinogenesis, metastasis, and drug resistance, as evidenced by the elucidation of drug resistance. Non-coding RNAs called microRNAs (miRNAs) attach to complementary messenger RNAs and degrade them to inhibit the expression and translation to proteins. Evidence suggests that miRNAs play a vital role in developing numerous diseases, including cancer. They affect genes critical for cellular differentiation, proliferation, apoptosis, and metabolism. Recently studies have demonstrated that miRNAs serve as valuable biomarkers for BC. The contrast in the expression of miRNAs in normal tissue cells and tumors suggest that miRNAs are involved in breast cancer. The important aspect behind cancer etiology is the deregulation of miRNAs that can specifically influence cellular physiology. The main objective of this review is to emphasize the role and therapeutic capacity of tumor suppressor miRNAs in BC and the advancement in the delivery system that can deliver miRNAs specifically to cancerous cells. Various approaches are used to deliver these miRNAs to the cancer cells with the help of carrier molecules, like nanoparticles, poly D, L-lactic-co-glycolic acid (PLGA) particles, PEI polymers, modified extracellular vesicles, dendrimers, and liposomes. Additionally, we discuss advanced strategies of TS miRNA delivery techniques such as viral delivery, self-assembled RNA-triple-helix hydrogel drug delivery systems, and hyaluronic acid/protamine sulfate inter-polyelectrolyte complexes. Subsequently, we discuss challenges and prospects on TS miRNA therapeutic delivery in BC management so that miRNAs will become a routine technique in developing individualized patient profiles.
Collapse
Affiliation(s)
- Sonali S. Shinde
- Department of Chemical Technology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, India
| | - Sakeel Ahmed
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad 382355, India
| | - Jonaid Ahmad Malik
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, India
- Department of Biomedical Engineering, Indian Institute of Technology, Rupnagar 140001, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Afreen Khanam
- Department of Pharmacognosy and Phytochemistry, Jamia Hamdard, New Delhi 110062, India
| | | | - Suhail Ahmad Mir
- Department of Pharmaceutical Sciences, University of Kashmir, Jammu and Kashmir, Hazratbal, Srinagar 190006, India
| | - Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Nazima Haider
- Department of Pathology, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia
| | - Abdulrahman A. Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Tang X, Liang X, Wen K, Chen Y, Han H, Li Q. Dual ATP/reduction-responsive polyplex to achieve the co-delivery of doxorubicin and miR-23b for the cancer treatment. Colloids Surf B Biointerfaces 2021; 206:111955. [PMID: 34216852 DOI: 10.1016/j.colsurfb.2021.111955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/13/2021] [Accepted: 06/26/2021] [Indexed: 12/17/2022]
Abstract
Combination therapy based on the co-delivery of therapeutic genes and anti-cancer drugs has emerged as a promising approach in the cancer treatment, and stimuli-responsive delivery systems could further improve the therapeutic efficacy. Herein, an ATP aptamer and its complementary DNA were used to form Duplex into which doxorubicin (DOX) was loaded to construct DOX-Duplex, and then the lipoic acid-modified oligoethyleneimine (LA-OEI) was employed as a carrier to realize the co-delivery of DOX-Duplex and miR-23b. The ternary nanocomplex LA-OEI/miR-23b/DOX-Duplex showed excellent anti-proliferative effect by inducing the cell apoptosis via mitochondrial signaling pathway and arresting the cell cycle at S phase. Meanwhile, the co-delivery of DOX-Duplex and miR-23b could efficiently inhibit the metastasis of cancer cells by reducing the expression level of MMP-9. The favorable anti-tumor efficacy of ternary nanocomplex was attributed to the rapid drug release in response to intracellular ATP concentration and reduction conditions and the synergistic effect between DOX-Duplex and miR-23b. Thus, ATP aptamer and reduction-responsive polymer provided a convenient platform to construct dual stimuli-responsive systems for the co-delivery of gene and drug in the cancer treatment.
Collapse
Affiliation(s)
- Xiuhui Tang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xiao Liang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Kai Wen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yingxuan Chen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Haobo Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
6
|
Xing J, Jia J, Cong X, Liu Z, Li Q. N-Isopropylacrylamide-modified polyethylenimine-mediated miR-29a delivery to inhibit the proliferation and migration of lung cancer cells. Colloids Surf B Biointerfaces 2021; 198:111463. [DOI: 10.1016/j.colsurfb.2020.111463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 12/30/2022]
|
7
|
Fischer D, Dusek N, Hotzel K, Heinze T. The Role of Formamidine Groups in Dextran Based Nonviral Vectors for Gene Delivery on Their Physicochemical and Biological Characteristics. Macromol Biosci 2020; 21:e2000220. [PMID: 33025658 DOI: 10.1002/mabi.202000220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/11/2020] [Indexed: 01/04/2023]
Abstract
Dextran-formamidine esters (dextran-N-[(dimethylamino)methylene]-β-alanine ester) with different degrees of substitution (0.45-0.92) are synthesized in an one-pot reaction. Dextran (Mw 60 000 g mol-1 ) is allowed to react with unprotected beta-alanine and iminium chloride and investigated regarding the potential as gene delivery system for the transfer of plasmid DNA. With degrees of substitution ≥ 0.63 improved DNA binding with formation of enzymatically stable complexes of about 130-160 nm with negative surface charges are obtained. These physicochemical characteristics correlated with increasing transfection rates in CHO-K1 cells determined by a luciferase reporter gene assay in dependency of the number of formamidine residues, N/P ratios and amount of DNA. The role of the number of formamidine groups is also highlighted by in vitro cyto- and hemotoxicity tests under the chosen conditions. These results indicate that dextran-formamidine esters are a very promising material for the safe and efficient gene delivery.
Collapse
Affiliation(s)
- Dagmar Fischer
- Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Friedrich Schiller University Jena, Lessingstrasse 8, D-07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743, Jena, Germany
| | - Niels Dusek
- Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Friedrich Schiller University Jena, Lessingstrasse 8, D-07743, Jena, Germany
| | - Konrad Hotzel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Center of Excellence for Polysaccharide Research, Friedrich Schiller University Jena, Humboldtstraße 10, D-07743, Jena, Germany
| | - Thomas Heinze
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743, Jena, Germany.,Laboratory of Organic and Macromolecular Chemistry (IOMC), Center of Excellence for Polysaccharide Research, Friedrich Schiller University Jena, Humboldtstraße 10, D-07743, Jena, Germany
| |
Collapse
|
8
|
Dong M, Chen J, Zhang J, Liang X, Yang J, Li D, Li Q. A chemoenzymatically synthesized cholesterol-g-poly(amine-co-ester)-mediated p53 gene delivery for achieving antitumor efficacy in prostate cancer. Int J Nanomedicine 2019; 14:1149-1161. [PMID: 30863051 PMCID: PMC6391147 DOI: 10.2147/ijn.s191905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND An amphiphilic cationic copolymer cholesterol-g-poly(amine-co-ester), namely Chol-g-PMSC-PPDL synthesized in a chemoenzymatic route has been utilized as a carrier for p53 gene delivery to check its antitumor efficacy, using human prostate cancer cell line PC-3 (p53 null) as a model. MATERIALS AND METHODS The transfection efficiency was measured by quantitative PCR and Western blotting assay. The anti-proliferative effect was detected using MTT method, colony formation assay and Live/Dead staining. The anti-migration effect was evaluated through wound healing and Transwell migration assays. RESULTS The transfection efficiency assay indicated that the carrier-mediated p53 gene transfection could dramatically enhance the intracellular p53 expression level. Through p53 gene delivery, obvious anti-proliferative effect could be detected which was elucidated to be associated with the simultaneous activation of mitochondrial-dependent apoptosis pathway and cell cycle arrest at G1 phase. Meanwhile, the anti-migration effect could be obtained after p53 gene transfection. CONCLUSION Chol-g-PMSC-PPDL-mediated p53 gene transfection could potentially be employed as a promising strategy for achieving effective anti-tumor response.
Collapse
Affiliation(s)
- Mengmeng Dong
- Department of Cancer Center, The First Hospital of Jilin University, Changchun 130021, People's Republic of China,
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, People's Republic of China,
| | - Jiawen Chen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, People's Republic of China,
| | - Jiayuan Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, People's Republic of China,
| | - Xiao Liang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, People's Republic of China,
| | - Jiebing Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, People's Republic of China,
| | - Dan Li
- Department of Cancer Center, The First Hospital of Jilin University, Changchun 130021, People's Republic of China,
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, People's Republic of China,
| |
Collapse
|
9
|
Tang X, Li Q, Liang X, Yang J, Liu Z, Li Q. Inhibition of proliferation and migration of tumor cells through lipoic acid-modified oligoethylenimine-mediated p53 gene delivery. NEW J CHEM 2019. [DOI: 10.1039/c8nj05368e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inhibition of proliferation and migration of tumor cells through lipoic acid-modified oligoethylenimine-mediated p53 gene delivery.
Collapse
Affiliation(s)
- Xiuhui Tang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Qing Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Xiao Liang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Jiebing Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Ziling Liu
- Department of Cancer Center, The First Hospital of Jilin University
- Changchun
- China
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
10
|
Qin SY, Cheng YJ, Jiang ZW, Ma YH, Zhang AQ. Morphology control of self-deliverable nanodrug with enhanced anticancer efficiency. Colloids Surf B Biointerfaces 2018. [DOI: 10.1016/j.colsurfb.2018.02.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Dong M, Chen J, Yang J, Jiang W, Han H, Li Q, Yang Y. Chemoenzymatic synthesis of a cholesterol-g-poly(amine-co-ester) carrier for p53 gene delivery to inhibit the proliferation and migration of tumor cells. NEW J CHEM 2018. [DOI: 10.1039/c8nj02574f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An amphiphilic cholesterol-g-poly(amine-co-ester) synthesizedviaa chemoenzymatic route has been successfully applied as a carrier in p53 gene delivery.
Collapse
Affiliation(s)
- Mengmeng Dong
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Jiawen Chen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Jiebing Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Wei Jiang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Haobo Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Yan Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
12
|
Shen Y, Liu Y, Gao H, Fei H, Yu W, Hu T, Zheng Y, Bi X, Lin C. N-Acetyl-l-leucine-polyethylenimine-mediated miR-34a delivery improves osteogenesis and bone formationin vitroandin vivo. RSC Adv 2018; 8:8080-8088. [PMID: 35542025 PMCID: PMC9078501 DOI: 10.1039/c7ra12548h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 02/12/2018] [Indexed: 12/28/2022] Open
Abstract
We employN-acetyl-l-leucine-modified polyethylenimine as an miR-34a carrier and evaluate its delivery ability, transfection efficiency, cytotoxicity and whether it enhances osteogenic differentiation and bone formationin vitroandin vivo.
Collapse
Affiliation(s)
- Yuqin Shen
- Department of Periodontics
- School and Hospital of Stomatology
- Jilin University
- Changchun 130021
- China
| | - Yin Liu
- Department of Periodontics
- School and Hospital of Stomatology
- Jilin University
- Changchun 130021
- China
| | - Han Gao
- Department of Periodontics
- School and Hospital of Stomatology
- Jilin University
- Changchun 130021
- China
| | - Hongbo Fei
- Department of Periodontics
- School and Hospital of Stomatology
- Jilin University
- Changchun 130021
- China
| | - Wenwen Yu
- Department of Orthodontics
- School and Hospital of Stomatology
- Jilin University
- Changchun 130021
- China
| | - Tianqi Hu
- Department of Periodontics
- School and Hospital of Stomatology
- Jilin University
- Changchun 130021
- China
| | - Yi Zheng
- Department of Periodontics
- School and Hospital of Stomatology
- Jilin University
- Changchun 130021
- China
| | - Xueting Bi
- Department of Periodontics
- School and Hospital of Stomatology
- Jilin University
- Changchun 130021
- China
| | - Chongtao Lin
- Department of Periodontics
- School and Hospital of Stomatology
- Jilin University
- Changchun 130021
- China
| |
Collapse
|
13
|
Yu W, Zheng Y, Yang Z, Fei H, Wang Y, Hou X, Sun X, Shen Y. N-AC-l-Leu-PEI-mediated miR-34a delivery improves osteogenic differentiation under orthodontic force. Oncotarget 2017; 8:110460-110473. [PMID: 29299161 PMCID: PMC5746396 DOI: 10.18632/oncotarget.22790] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/14/2017] [Indexed: 01/08/2023] Open
Abstract
Rare therapeutic genes or agents are reported to control orthodontic bone remodeling. MicroRNAs have recently been associated with bone metabolism. Here, we report the in vitro and in vivo effects of miR-34a on osteogenic differentiation under orthodontic force using an N-acetyl-L-leucine-modified polyethylenimine (N-Ac-l-Leu-PEI) carrier. N-Ac-l-Leu-PEI exhibited low cytotoxicity and high miR-34a transfection efficiency in rat bone mineral stem cells and local alveolar bone tissue. After transfection, miR-34a enhanced the osteogenic differentiation of Runx2 and ColI, Runx2 and ColI protein levels, and early osteogenesis function under orthodontic strain in vitro. MiR-34a also enhanced alveolar bone remodeling under orthodontic force in vivo, as evidenced by elevated gene and protein expression, upregulated indices of alveolar bone anabolism, and diminished tooth movement. We determined that the mechanism miR-34a in osteogenesis under orthodontic force may be associated with GSK-3β. These results suggested that miR-34a delivered by N-Ac-l-Leu-PEI could be a potential therapeutic target for orthodontic treatment.
Collapse
Affiliation(s)
- Wenwen Yu
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Yi Zheng
- Department of Periodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Zhujun Yang
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Hongbo Fei
- Department of Periodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Yang Wang
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Xu Hou
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Xinhua Sun
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Yuqin Shen
- Department of Periodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| |
Collapse
|
14
|
Stimuli-responsive nanocarriers for intracellular delivery. Biophys Rev 2017; 9:931-940. [PMID: 29178081 DOI: 10.1007/s12551-017-0341-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/13/2017] [Indexed: 12/15/2022] Open
Abstract
The emergence of different nanoparticles (NPs) has made a significant revolution in the field of medicine. Different NPs in the form of metallic NPs, dendrimers, polymeric NPs, carbon quantum dots and liposomes have been functionalized and used as platforms for intracellular delivery of biomolecules, drugs, imaging agents and nucleic acids. These NPs are designed to improve the pharmacokinetic properties of the drug, improve their bioavailability and successfully surpass physiological or pathological obstacles in the biological system so that therapeutic efficacy is achieved. In this review I present some of the current approaches used in intracellular delivery systems, with a focus on various stimuli-responsive nanocarriers, including cell-penetrating peptides, to highlight their various biomedical applications.
Collapse
|
15
|
Zheng Y, Lin C, Hou X, Ma N, Yu W, Xu X, Lou Y, Fei H, Shen Y, Sun X. Enhancing the osteogenic capacity of MG63 cells through N-isopropylacrylamide-modified polyethylenimine-mediated oligodeoxynucleotide MT01 delivery. RSC Adv 2017. [DOI: 10.1039/c6ra27182k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The delivery of MT01 into MG63 cells was successfully achieved using the PEN derivative.
Collapse
|
16
|
Catalytic properties of polymer-colloid complexes based on polyethyleneimines and mono- and diquaternized 1,4-diazabicyclo[2.2.2]octane derivatives in the hydrolysis of phosphorus acids esters. Russ Chem Bull 2016. [DOI: 10.1007/s11172-015-1242-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Cui PF, Zhuang WR, Qiao JB, Zhang JL, He YJ, Luo CQ, Jin QR, Xing L, Jiang HL. Histone-inspired biomimetic polymeric gene vehicles with excellent biocompatibility and enhanced transfection efficacy. Polym Chem 2016. [DOI: 10.1039/c6py01703g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Histone-inspired biomimetic polymeric gene vectors show great biocompatibility and enhanced transfection efficacy.
Collapse
Affiliation(s)
- Peng-Fei Cui
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Wan-Ru Zhuang
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Jian-Bin Qiao
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Jia-Liang Zhang
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Yu-Jing He
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Cheng-Qiong Luo
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Qing-Ri Jin
- College of Animal Science and Technology
- Zhejiang A&F University
- Lin'an
- China
| | - Lei Xing
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| |
Collapse
|
18
|
Xing Z, Gao S, Duan Y, Han H, Li L, Yang Y, Li Q. Delivery of DNAzyme targeting aurora kinase A to inhibit the proliferation and migration of human prostate cancer. Int J Nanomedicine 2015; 10:5715-27. [PMID: 26425080 PMCID: PMC4583550 DOI: 10.2147/ijn.s90559] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Herein, a polyethylenimine derivative N-acetyl-l-leucine-polyethylenimine (N-Ac-l-Leu-PEI) was employed as a carrier to achieve the delivery of DNAzyme targeting aurora kinase A using PC-3 cell as a model. Flow cytometry and confocal laser scanning microscopy demonstrated that the derivative could realize the cellular uptake of nanoparticles in an energy-dependent and clathrin-mediated pathway and obtain a high DNAzyme concentration in the cytoplasm through further endosomal escape. After DNAzyme transfection, expression level of aurora kinase A would be downregulated at the protein level. Meanwhile, the inhibition of cell proliferation was observed through 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and cell colony formation assay, attributing to the activation of apoptosis and cell cycle arrest. Through flow cytometric analysis, an early apoptotic ratio of 25.93% and G2 phase of 22.58% has been detected after N-Ac-l-Leu-PEI-mediated DNAzyme transfection. Finally, wound healing and Transwell migration assay showed that DNAzyme transfection could efficiently inhibit the cell migration. These results demonstrated that N-Ac-l-Leu-PEI could successfully mediate the DNAzyme delivery and downregulate the expression level of aurora kinase A, triggering a significant inhibitory effect of excessive proliferation and migration of tumor cells.
Collapse
Affiliation(s)
- Zhen Xing
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Sai Gao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Yan Duan
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Haobo Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Li Li
- Department of Clinic Library, Changchun Women and Children's Health, Changchun, People's Republic of China
| | - Yan Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
19
|
Zhang J, Wu D, Shi H, Gao S, Chen X, Yang Y, Li Q. A polyethylenimine derivative-based nanocarrier for the highly efficient delivery of p53 gene to inhibit the proliferation of cancer cells. J Control Release 2015; 213:e51. [DOI: 10.1016/j.jconrel.2015.05.083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Li Z, Zhang L, Li Q. Induction of apoptosis in cancer cells through N-acetyl-l-leucine-modified polyethylenimine-mediated p53 gene delivery. Colloids Surf B Biointerfaces 2015; 135:630-638. [PMID: 26322477 DOI: 10.1016/j.colsurfb.2015.08.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/23/2015] [Accepted: 08/18/2015] [Indexed: 02/08/2023]
Abstract
Herein, N-acetyl-L-leucine-modified polyethylenimine was successfully constructed through the EDC/NHS-mediated coupling reaction and employed as vectors to accomplish p53 gene delivery using HeLa (p53wt) and PC-3 cells (p53null) as models. Compared with PEI25K, the derivatives exhibited lower cytotoxicity, protein adsorption and hemolytic activity, together with satisfactory pDNA condensation capability and gene transfection efficiency. After p53 transfection, MTT analysis confirmed that the cell proliferation was inhibited. Flow cytometric analysis showed that the derivative-mediated p53 delivery could induce stronger early apoptosis than PEI25K and Lipofectamine(2000). Further, PC-3 cells showed higher sensitivity to the exogenous p53 transfection than HeLa cells. The mechanism for inducing apoptosis was determined to be up-regulation of p53 expression at both mRNA and protein levels using RT-PCR and western blotting analysis. Expression level and activity analysis of caspase-3, -8 and -9, and mitochondrial membrane potential measurement revealed that p53 transfection mediated by these derivatives facilitated early apoptosis of tumor cells via a mitochondria-dependent apoptosis pathway. Thus, the derivatives showed potential as biocompatible carriers for realizing effective tumor gene therapy.
Collapse
Affiliation(s)
- Zhiyuan Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Liu Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
21
|
Han H, Shi H, Wu D, Li C, Zhang Y, Xing Z, Shi W, Li Q. Genipin-Cross-Linked Thermophilic Histone-Polyethylenimine as a Hybrid Gene Carrier. ACS Macro Lett 2015; 4:575-578. [PMID: 35596288 DOI: 10.1021/acsmacrolett.5b00141] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A hybrid gene carrier, HGP, has been successfully constructed through the genipin-mediated cross-linking of thermophilic histone and PEI25K. The thermophilic histone gene GK2215 was cloned from Geobacillus kastophilus HTA426 and overexpressed in Escherichia coli BL21. The thermophilic histone was systematically characterized and then cross-linked with PEI25K by genipin to obtain HGP. Notably, HGP exhibited superior transfection efficiency due to the synergistic effects between these two components: PEI25K mainly contributed to the condensation and transfer of pDNA, while thermophilic histone could enhance the endosomal escape and further nuclear location to achieve high gene expression. Meanwhile, HGP showed much lower cytotoxicity and hemolytic activity than PEI25K due to the introduction of nontoxic thermophilic histone. In addition, a strong intrinsic red fluorescence could be obviously observed in HGP. In conclusion, the protein-polymer hybrid carrier could potentially be used as a theranostic delivery system for achieving both efficient gene therapy and in vivo imaging.
Collapse
Affiliation(s)
- Haobo Han
- Key Laboratory for Molecular
Enzymology and Engineering of Ministry of Education, School of Life
Sciences, Jilin University, Changchun 130012, China
| | - Hui Shi
- Key Laboratory for Molecular
Enzymology and Engineering of Ministry of Education, School of Life
Sciences, Jilin University, Changchun 130012, China
| | - Di Wu
- Key Laboratory for Molecular
Enzymology and Engineering of Ministry of Education, School of Life
Sciences, Jilin University, Changchun 130012, China
| | - Chunjie Li
- Key Laboratory for Molecular
Enzymology and Engineering of Ministry of Education, School of Life
Sciences, Jilin University, Changchun 130012, China
| | - Yan Zhang
- Key Laboratory for Molecular
Enzymology and Engineering of Ministry of Education, School of Life
Sciences, Jilin University, Changchun 130012, China
| | - Zhen Xing
- Key Laboratory for Molecular
Enzymology and Engineering of Ministry of Education, School of Life
Sciences, Jilin University, Changchun 130012, China
| | - Wei Shi
- Key Laboratory for Molecular
Enzymology and Engineering of Ministry of Education, School of Life
Sciences, Jilin University, Changchun 130012, China
| | - Quanshun Li
- Key Laboratory for Molecular
Enzymology and Engineering of Ministry of Education, School of Life
Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
22
|
Kapilov-Buchman Y, Lellouche E, Michaeli S, Lellouche JP. Unique Surface Modification of Silica Nanoparticles with Polyethylenimine (PEI) for siRNA Delivery Using Cerium Cation Coordination Chemistry. Bioconjug Chem 2015; 26:880-9. [PMID: 25830668 DOI: 10.1021/acs.bioconjchem.5b00100] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The discovery of RNA interference (RNAi) as a naturally occurring mechanism for gene knockdown has attracted considerable attention toward the use of small interfering RNAs (siRNAs) for therapeutic purposes. The main obstacles of harnessing siRNAs as drugs are their inefficient delivery to cells and off-target effect making clinical applications very challenging. The positively charged, branched 25 kDa polyethylenimine (b-PEI) polymer is widely regarded as one of the most efficient nonviral commercially available transfection agents. However, it has also been shown that 25 kDa b-PEI is highly cytotoxic and can readily lead to cell death. In this specific context, this study presents the preparation and characterization of innovative 25 kDa b-PEI-decorated polycationic silica nanoparticles (SiO2 NPs) for cellular siRNA delivery and subsequent gene silencing. A new method of b-PEI attachment onto the SiO2 NP surface has been developed that makes use of cerium(III) cations (Ce(3+)), a lanthanide group element, as an effective noncovalent inorganic linker between both polyNH2-SiO2 nanoparticle (SPA NPs) surface and polycationic 25 kDa b-PEI polymer. Two resulting novel SPA-Ce-PEI NPs consist of similar amounts of b-PEI, while possessing different amounts of Ce(3+). Various analytical techniques (TEM, DLS, ζ potential, ICP-AES, and TGA) have been used to deeply characterize NPs physicochemical qualities. The observed results of Ce(3+)-dependent gene silencing and cytotoxic activities led us to conclusions about the role of Ce(3+)-N bonding during the chemical attachment of the 25 kDa b-PEI shell onto the NP surface.
Collapse
Affiliation(s)
- Yekaterina Kapilov-Buchman
- †Department of Chemistry, Faculty of Exact Sciences, ‡The Mina and Everard Goodman Faculty of Life Sciences, and §Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002 Israel
| | - Emmanuel Lellouche
- †Department of Chemistry, Faculty of Exact Sciences, ‡The Mina and Everard Goodman Faculty of Life Sciences, and §Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002 Israel
| | - Shulamit Michaeli
- †Department of Chemistry, Faculty of Exact Sciences, ‡The Mina and Everard Goodman Faculty of Life Sciences, and §Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002 Israel
| | - Jean-Paul Lellouche
- †Department of Chemistry, Faculty of Exact Sciences, ‡The Mina and Everard Goodman Faculty of Life Sciences, and §Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002 Israel
| |
Collapse
|
23
|
N-Isopropylacrylamide-modified polyethylenimine-mediated p53 gene delivery to prevent the proliferation of cancer cells. Colloids Surf B Biointerfaces 2015; 129:54-62. [PMID: 25829127 DOI: 10.1016/j.colsurfb.2015.03.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/16/2015] [Accepted: 03/10/2015] [Indexed: 01/05/2023]
Abstract
In this paper, N-isopropylacrylamide-modified polyethylenimine (PEN) was constructed through Michael addition and employed as a carrier to achieve the p53 gene delivery, using HeLa (p53wt) and PC-3 cells (p53null) as models. After PEN-mediated p53 transfection, expression level of p53 in HeLa and PC3 cells was up-regulated at both mRNA and protein levels. Due to the exogenous p53 expression, the inhibition of cell proliferation was observed through MTT analysis, attributing to the activation of apoptosis and cell cycle arrest. Using flow cytometric analysis, early apoptotic ratios of 54.95% and 27.06% after PEN-mediated p53 transfection were detected in PC-3 and HeLa cells, respectively, indicating that PC-3 cells were more sensitive to the exogenous p53 transfection than HeLa cells. Meanwhile, G1 phase arrest was detected in PC-3 cells while a unique G2 phase arrest was identified in HeLa cells after p53 transfection. Through Western blotting, activity analysis of caspase-3, caspase-8 and caspase-9 and mitochondrial membrane potential measurement, the apoptosis induced by PEN-mediated p53 transfection was conducted in a mitochondria-dependent apoptosis pathway. These results demonstrated that PEN could successfully mediate the p53 gene delivery and up-regulate the cellular p53 expression level, triggering a significant p53-dependent anti-proliferative effect on tumor cells.
Collapse
|
24
|
Pashirova TN, Zhil’tsova EP, Lukashenko SS, Zakharova LY, Konovalov AI. Supramolecular systems based on polyethyleneimines and quaternized derivatives of 1,4-diazabicyclo[2.2.2]octane. J STRUCT CHEM+ 2015. [DOI: 10.1134/s002247661408023x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Shi H, Han H, Xing Z, Chen J, Wang Y, Zhang A, Shi W, Li Q. A protein–polymer hybrid gene carrier based on thermophilic histone and polyethylenimine. NEW J CHEM 2015. [DOI: 10.1039/c5nj01272d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Protein–polymer hybrid gene carrier with high transfection efficiency and low cytotoxicity.
Collapse
Affiliation(s)
- Hui Shi
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Haobo Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Zhen Xing
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Jiawen Chen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Yudi Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Aijun Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Wei Shi
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
26
|
Selective blocking of primary amines in branched polyethylenimine with biocompatible ligand alleviates cytotoxicity and augments gene delivery efficacy in mammalian cells. Colloids Surf B Biointerfaces 2014; 115:79-85. [DOI: 10.1016/j.colsurfb.2013.11.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/15/2013] [Accepted: 11/13/2013] [Indexed: 01/24/2023]
|
27
|
Yan X, Zhang Y, Zhang H, Wang PG, Chu X, Wang X. Amphiphilic polyethylenimine (PEI) as highly efficient non-viral gene carrier. Org Biomol Chem 2014; 12:1975-82. [PMID: 24549264 DOI: 10.1039/c3ob42279h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Efficient and safe gene vectors are important for gene therapy. Here, a novel family of amphiphilic polyethylenimine (PEI) LD1-PEI bearing a polar group of branched PEI 25K and four dodecyl chains was developed. Agarose gel electrophoresis was used to confirm the formation of complexes. The transfection activity of the amphiphilic carrier was evaluated in different cell lines. The in vitro study showed that LD1-PEI showed a higher transfection efficiency with improved biocompatibility than PEI 25K. Serum showed almost no or only a slight effect on LD1-PEI/DNA transfection efficiency. In summary, LD1-PEI is a promising nonviral gene carrier.
Collapse
Affiliation(s)
- Xibo Yan
- College of Pharmacy, Nankai University, China
| | | | | | | | | | | |
Collapse
|
28
|
Buchman YK, Lellouche E, Zigdon S, Bechor M, Michaeli S, Lellouche JP. Silica nanoparticles and polyethyleneimine (PEI)-mediated functionalization: a new method of PEI covalent attachment for siRNA delivery applications. Bioconjug Chem 2013; 24:2076-87. [PMID: 24180511 DOI: 10.1021/bc4004316] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Small-interfering RNA (siRNA) is a synthetic double-stranded RNA that consists of approximately 21 nucleotides (nts). It induces degradation of target mRNAs in a sequence-specific manner by the RNA interference (RNAi) mechanism. Thus, siRNAs offer a potential strategy for silencing mutated or defective genes that cause a variety of human diseases. The main obstacles of harnessing siRNAs as drugs are their inefficient delivery to cells and off-target effect making clinical applications very challenging. To address these issues, researchers have studied a variety of nanocarrier systems for siRNA delivery. This study presents the design, fabrication, and full characterization of innovative polyethyleneimine (PEI)-decorated polycationic 34.2 ± 4.2 nm silica (SiO2) NPs for siRNA-mediated gene silencing. More specifically, a new means of introduction (covalent mode of attachment) of the polycationic 25 kDa PEI polymer onto the SiO2 NP surface has been developed that makes use of an effective electrophilic double Michäel acceptor, divinyl sulfone (DVS). The resulting novel SiO2-PEI nanoparticles (SPEI NPs) have been fully characterized using a wide range of analytical, spectroscopic, and microscopic methods (TEM, DLS, ζ potential, elemental analysis (EA), XPS, TGA, and FTIR). Disclosing quite low cytotoxicity due to this unique mode of PEI covalent grafting, SPEI NPs/siRNA polyplexes have been successfully tested for the induction of gene silencing using dual-reporter luciferase transfected human osteosarcoma U2OS cells. The corresponding gene silencing data showed a clear correlation between PEI/siRNA ratios, siRNA concentration(s), and the level of gene silencing. Moreover, these SPEI NPs have been demonstrated to be thermodynamically stable with an ability to efficiently bind siRNAs and induce silencing for at least a one-year-long storage.
Collapse
Affiliation(s)
- Yekaterina Kapilov Buchman
- Department of Chemistry, Faculty of Exact Sciences, ‡The Mina and Everard Goodman Faculty of Life Sciences, and §Institute of Nanotechnology and Advanced Materials, Bar-Ilan University , Ramat-Gan, 5290002 Israel
| | | | | | | | | | | |
Collapse
|
29
|
Yang C, Cheng W, Teo PY, Engler AC, Coady DJ, Hedrick JL, Yang YY. Mitigated cytotoxicity and tremendously enhanced gene transfection efficiency of PEI through facile one-step carbamate modification. Adv Healthc Mater 2013; 2:1304-8. [PMID: 23505024 DOI: 10.1002/adhm.201300046] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Indexed: 01/04/2023]
Abstract
Extremely efficacious gene transfection vector: The rapid and facile modification of PEI with commercially available TMC produces an extremely efficacious gene delivery vector with minimal cytotoxicity. Functionalization of PEI is easily controlled by PEI:cyclic carbonate feed ratios and allows for the addition of functionality. Modified PEIs hold great potential as gene delivery systems due to easy synthesis, scalability, low cost, low toxicity, and outstanding transfection capacity.
Collapse
Affiliation(s)
- Chuan Yang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | | | | | | | | | | | | |
Collapse
|