1
|
Asl FD, Mousazadeh M, Taji S, Bahmani A, Khashayar P, Azimzadeh M, Mostafavi E. Nano drug-delivery systems for management of AIDS: liposomes, dendrimers, gold and silver nanoparticles. Nanomedicine (Lond) 2023; 18:279-302. [PMID: 37125616 PMCID: PMC10242436 DOI: 10.2217/nnm-2022-0248] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/08/2023] [Indexed: 05/02/2023] Open
Abstract
AIDS causes increasing mortality every year. With advancements in nanomedicine, different nanomaterials (NMs) have been applied to treat AIDS and overcome its limitations. Among different NMs, nanoparticles (NPs) can act as nanocarriers due to their enhanced solubility, sustained release, targeting abilities and facilitation of drug-dose reductions. This review discusses recent advancements in therapeutics for AIDS/HIV using various NMs, mainly focused on three classifications: polymeric, liposomal and inorganic NMs. Polymeric dendrimers, polyethylenimine-NPs, poly(lactic-co-glycolic acid)-NPs, chitosan and the use of liposomal-based delivery systems and inorganic NPs, including gold and silver NPs, are explored. Recent advances, current challenges and future perspectives on the use of these NMs for better management of HIV/AIDS are also discussed.
Collapse
Affiliation(s)
- Fateme Davarani Asl
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, 88138-33435, Iran
| | - Marziyeh Mousazadeh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran
| | - Shirinsadat Taji
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran
- Institute for Genetics, University of Cologne, Cologne, D-50674, Germany
| | - Abbas Bahmani
- Institute for Nanoscience & Nanotechnology (INST), Sharif University of Technology, Tehran, 14588-89694, Iran
| | - Patricia Khashayar
- Center for Microsystems Technology, Imec & Ghent University, Ghent, 9050, Belgium
| | - Mostafa Azimzadeh
- Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, 89195-999, Iran
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Acebo C, Ramis X, Serra A. Improved epoxy thermosets by the use of poly(ethyleneimine) derivatives. PHYSICAL SCIENCES REVIEWS 2017. [DOI: 10.1515/psr-2016-0128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Abstract
Epoxy resins are commonly used as thermosetting materials due to their excellent mechanical properties, high adhesion to many substrates and good heat and chemical resistances. This type of thermosets is intensively used in a wide range of fields, where they act as fiber-reinforced materials, general-purpose adhesives, high-performance coatings and encapsulating materials. These materials are formed by the chemical reaction of multifunctional epoxy monomers forming a polymer network produced through an irreversible way. In this article the improvement of the characteristics of epoxy thermosets using different hyperbranched poly(ethyleneimine) (PEI) derivatives will be explained.
Collapse
|
3
|
Keller D, Beloqui A, Martínez-Martínez M, Ferrer M, Delaittre G. Nitrilotriacetic Amine-Functionalized Polymeric Core–Shell Nanoparticles as Enzyme Immobilization Supports. Biomacromolecules 2017; 18:2777-2788. [DOI: 10.1021/acs.biomac.7b00677] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dominic Keller
- Institute
of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Preparative
Macromolecular Chemistry, Institute for Technical Chemistry and Polymer
Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse
15, 76131 Karlsruhe, Germany
| | - Ana Beloqui
- Institute
of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Preparative
Macromolecular Chemistry, Institute for Technical Chemistry and Polymer
Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse
15, 76131 Karlsruhe, Germany
| | - Mónica Martínez-Martínez
- Institute
of Catalysis, Consejo Superior de Investigaciones Científicas, Marie Curie 2, 28049 Madrid, Spain
| | - Manuel Ferrer
- Institute
of Catalysis, Consejo Superior de Investigaciones Científicas, Marie Curie 2, 28049 Madrid, Spain
| | - Guillaume Delaittre
- Institute
of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Preparative
Macromolecular Chemistry, Institute for Technical Chemistry and Polymer
Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse
15, 76131 Karlsruhe, Germany
| |
Collapse
|
4
|
Mees MA, Effenberg C, Appelhans D, Hoogenboom R. Sweet Polymers: Poly(2-ethyl-2-oxazoline) Glycopolymers by Reductive Amination. Biomacromolecules 2016; 17:4027-4036. [DOI: 10.1021/acs.biomac.6b01451] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maarten A. Mees
- Supramolecular
Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Christiane Effenberg
- Leibniz Institute of Polymer Research Dresden, Hohe Straße 6, D-01069 Dresden, Germany
| | - Dietmar Appelhans
- Leibniz Institute of Polymer Research Dresden, Hohe Straße 6, D-01069 Dresden, Germany
| | - Richard Hoogenboom
- Supramolecular
Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| |
Collapse
|
5
|
Vacas-Córdoba E, Climent N, De La Mata FJ, Plana M, Gómez R, Pion M, García F, Muñoz-Fernández MÁ. Dendrimers as nonviral vectors in dendritic cell-based immunotherapies against human immunodeficiency virus: steps toward their clinical evaluation. Nanomedicine (Lond) 2015; 9:2683-702. [PMID: 25529571 DOI: 10.2217/nnm.14.172] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Although the antiretroviral therapy has led to a long-term control of HIV-1, it does not cure the disease. Therefore, several strategies are being explored to develop an effective HIV vaccine, such as the use of dendritic cells (DCs). DC-based immunotherapies bear different limitations, but one of the most critical point is the antigen loading into DCs. Nanotechnology offers new tools to overcome these constraints. Dendrimers have been proposed as carriers for targeted delivery of HIV antigens in DCs. These nanosystems can release the antigens in a controlled manner leading to a more potent specific immune response. This review focuses on the first steps for clinical development of dendrimers to assess their safety and potential use in DC-based immunotherapies against HIV.
Collapse
Affiliation(s)
- Enrique Vacas-Córdoba
- Laboratorio InmunoBiología Molecular, Sección Inmunologia, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria del Gregorio Marañón, C/Dr. Esquerdo 46, 28007, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Bekhradnia S, Naz I, Lund R, Effenberg C, Appelhans D, Sande SA, Nyström B. Characterization of oligosaccharide-functionalized hyperbranched poly(ethylene imine) and their complexes with retinol in aqueous solution. J Colloid Interface Sci 2015. [PMID: 26218197 DOI: 10.1016/j.jcis.2015.07.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Structure, internal density distribution, and size of hyperbranched poly(ethylene imine) (PEI) functionalized with various amounts of maltose (PEI-Mal) in phosphate buffer were studied by small angle X-ray scattering (SAXS) and dynamic light scattering (DLS). The value of pH was varied in the range from 3 to 9. Virtually no effect of pH on the nanostructure was found in this interval. The SAXS results revealed a broad segmental radial density distribution, i.e. a "fluffy" globular structure rather than a distinct core-shell structure with a high-density compact core and a low-density corona. This suggests that the maltose units are rather evenly distributed both in the interior and on the surface of the species with a PEI-core of molar mass of 25,000g/mol. The DLS measurements showed that the overall size of the PEI-Mal derivatives increased as the number of maltose units in the PEI-Mal structures rises. The interaction of the hydrophobic model drug retinol with PEI or PEI-Mal derivatives was also investigated. The UV-visible spectroscopy results disclosed that the solubility of retinol in the phosphate buffer is very poor and it takes a very long time to solubilize retinol. Moreover, retinol induces aggregation of dendritic glycopolymers where the growth of aggregates occurs continuously over several days and then remains virtually constant.
Collapse
Affiliation(s)
- Sara Bekhradnia
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway; School of Pharmacy, Department of Pharmaceutics, University of Oslo, P.O. Box 1068, Blindern, N-0316 Oslo, Norway.
| | - Iram Naz
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway; School of Pharmacy, Department of Pharmaceutics, University of Oslo, P.O. Box 1068, Blindern, N-0316 Oslo, Norway.
| | - Reidar Lund
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway.
| | - Christiane Effenberg
- Leibni-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden, Germany.
| | - Dietmar Appelhans
- Leibni-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden, Germany.
| | - Sverre Arne Sande
- School of Pharmacy, Department of Pharmaceutics, University of Oslo, P.O. Box 1068, Blindern, N-0316 Oslo, Norway.
| | - Bo Nyström
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway.
| |
Collapse
|
7
|
Xie L, Jiang Q, He Y, Nie Y, Yue D, Gu Z. Insight into the efficient transfection activity of a designed low aggregated magnetic polyethyleneimine/DNA complex in serum-containing medium and the application in vivo. Biomater Sci 2015. [DOI: 10.1039/c4bm00317a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In vitro fate of designed low aggregated magnetic polyethyleneimine/DNA (MPD-cc) complexes and in vivo study via systemic administration.
Collapse
Affiliation(s)
- Li Xie
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Qian Jiang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Yiyan He
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Yu Nie
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Dong Yue
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Zhongwei Gu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| |
Collapse
|
8
|
Appelhans D, Klajnert-Maculewicz B, Janaszewska A, Lazniewska J, Voit B. Dendritic glycopolymers based on dendritic polyamine scaffolds: view on their synthetic approaches, characteristics and potential for biomedical applications. Chem Soc Rev 2015; 44:3968-96. [DOI: 10.1039/c4cs00339j] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The potential of dendritic glycopolymers based on dendritic polyamine scaffolds for biomedical applications is presented and compared with that of the structurally related anti-adhesive dendritic glycoconjugates.
Collapse
Affiliation(s)
- Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V
- 01069 Dresden
- Germany
| | - Barbara Klajnert-Maculewicz
- Department of General Biophysics
- Faculty of Biology and Environmental Protection
- University of Lodz
- 90-236 Lodz
- Poland
| | - Anna Janaszewska
- Department of General Biophysics
- Faculty of Biology and Environmental Protection
- University of Lodz
- 90-236 Lodz
- Poland
| | - Joanna Lazniewska
- Department of General Biophysics
- Faculty of Biology and Environmental Protection
- University of Lodz
- 90-236 Lodz
- Poland
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V
- 01069 Dresden
- Germany
- Organic Chemistry of Polymers
- Technische Universität Dresden
| |
Collapse
|
9
|
Hauptmann N, Pion M, Wehner R, Muñoz-Fernández MÁ, Schmitz M, Voit B, Appelhans D. Potential of Ni(II)-NTA-Modified Poly(ethylene imine) Glycopolymers as Carrier System for Future Dendritic Cell-Based Immunotherapy. Biomacromolecules 2014; 15:957-67. [DOI: 10.1021/bm401845b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- N. Hauptmann
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
- Organic
Chemistry of Polymers, Dresden University of Technology, D-01062 Dresden, Germany
| | - M. Pion
- Laboratorio
InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón. Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Networking
Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/Dr Esquerdo 46, E 28007, Madrid, Spain
| | - R. Wehner
- Institute
of Immunology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Fiedlerstraße 42, D-01307 Dresden, Germany
| | - M.-Á. Muñoz-Fernández
- Laboratorio
InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón. Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Networking
Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/Dr Esquerdo 46, E 28007, Madrid, Spain
| | - M. Schmitz
- Institute
of Immunology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Fiedlerstraße 42, D-01307 Dresden, Germany
| | - B. Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
- Organic
Chemistry of Polymers, Dresden University of Technology, D-01062 Dresden, Germany
| | - D. Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
| |
Collapse
|