1
|
Guan JX, Wang YL, Wang JL. How Advanced are Nanocarriers for Effective Subretinal Injection? Int J Nanomedicine 2024; 19:9273-9289. [PMID: 39282576 PMCID: PMC11401526 DOI: 10.2147/ijn.s479327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Subretinal injection (SR injection) is a commonly used method of ocular drug delivery and has been mainly applied for the treatment of neovascular age-associated macular degeneration (nAMD) and sub-macular hemorrhage (SMH) caused by nAMD, as well as various types of hereditary retinopathies (IRD) such as Stargardt's disease (STGD), retinitis pigmentosa (RP), and a series of fundus diseases such as Leber's congenital dark haze (LCA), choroidal defects, etc. The commonly used carriers of SR injection are mainly divided into viral and non-viral vectors. Leber's congenital amaurosis (LCA), choroidal agenesis, and a series of other fundus diseases are also commonly treated using SR injection. The commonly used vectors for SR injection are divided into two categories: viral vectors and non-viral vectors. Viral vectors are a traditional class of SR injection drug carriers that have been extensively studied in clinical treatment, but they still have many limitations that cannot be ignored, such as poor reproduction efficiency, small loading genes, and triggering of immune reactions. With the rapid development of nanotechnology in the treatment of ocular diseases, nanovectors have become a research hotspot in the field of non-viral vectors. Nanocarriers have numerous attractive properties such as low immunogenicity, robust loading capacity, stable structure, and easy modification. These valuable features imply greater safety, improved therapeutic efficacy, longer duration, and more flexible indications. In recent years, there has been a growing interest in nanocarriers, which has led to significant advancements in the treatment of ocular diseases. Nanocarriers have not only successfully addressed clinical problems that viral vectors have failed to overcome but have also introduced new therapeutic possibilities for certain classical disease types. Nanocarriers offer undeniable advantages over viral vectors. This review discusses the advantages of subretinal (SR) injection, the current status of research, and the research hotspots of gene therapy with viral vectors. It focuses on the latest progress of nanocarriers in SR injection and enumerates the limitations and future perspectives of nanocarriers in the treatment of fundus lesions. Furthermore, this review also covers the research progress of nanocarriers in the field of subretinal injection and highlights the value of nanocarrier-mediated SR injection in the treatment of fundus disorders. Overall, it provides a theoretical basis for the application of nanocarriers in SR injection.
Collapse
Affiliation(s)
- Jia-Xin Guan
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Institute of Ophthalmology, Capital Medical University, Beijing, People's Republic of China
| | - Yan-Ling Wang
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Institute of Ophthalmology, Capital Medical University, Beijing, People's Republic of China
| | - Jia-Lin Wang
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Institute of Ophthalmology, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
2
|
Sun D, Sun W, Gao SQ, Lehrer J, Wang H, Hall R, Lu ZR. Intravitreal Delivery of PEGylated-ECO Plasmid DNA Nanoparticles for Gene Therapy of Stargardt Disease. Pharm Res 2024; 41:807-817. [PMID: 38443629 DOI: 10.1007/s11095-024-03679-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/18/2024] [Indexed: 03/07/2024]
Abstract
OBJECTIVE Current gene therapy of inherited retinal diseases is achieved mainly by subretinal injection, which is invasive with severe adverse effects. Intravitreal injection is a minimally invasive alternative for gene therapy of inherited retinal diseases. This work explores the efficacy of intravitreal delivery of PEGylated ECO (a multifunctional pH-sensitive amphiphilic amino lipid) plasmid DNA (pGRK1-ABCA4-S/MAR) nanoparticles (PEG-ELNP) for gene therapy of Stargardt disease. METHODS Pigmented Abca4-/- knockout mice received 1 µL of PEG-ELNP solution (200 ng/uL, pDNA concentration) by intravitreal injections at an interval of 1.5 months. The expression of ABCA4 in the retina was determined by RT-PCR and immunohistochemistry at 6 months after the second injection. A2E levels in the treated eyes and untreated controls were determined by HPLC. The safety of treatment was monitored by scanning laser ophthalmoscopy and electroretinogram (ERG). RESULTS PEG-ELNP resulted in significant ABCA4 expression at both mRNA level and protein level at]6 months after 2 intravitreal injections, and a 40% A2E accumulation reduction compared with non-treated controls. The PEG-ELNP also demonstrated excellent safety as shown by scanning laser ophthalmoscopy, and the eye function evaluation from electroretinogram. CONCLUSIONS Intravitreal delivery of the PEG-ELNP of pGRK1-ABCA4-S/MAR is a promising approach for gene therapy of Stargardt Disease, which can also be a delivery platform for gene therapy of other inherited retinal diseases.
Collapse
Affiliation(s)
- Da Sun
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, United States
| | - Wenyu Sun
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, United States
| | - Song-Qi Gao
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, United States
| | - Jonathan Lehrer
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, United States
| | - Hong Wang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, United States
| | - Ryan Hall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, United States
| | - Zheng-Rong Lu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, United States.
| |
Collapse
|
3
|
Kadowaki R, Ogata F, Nishida M, Komatsu M, Otake H, Nakazawa Y, Yamamoto N, Kawasaki N, Nagai N. Therapeutic Effects of Hydrogel Formulations Incorporating Troxipide Nanoparticles on Oral Mucositis in Hamsters. Drug Des Devel Ther 2023; 17:3349-3361. [PMID: 38024531 PMCID: PMC10657765 DOI: 10.2147/dddt.s433776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Medical therapies, such as the use of anti-inflammatory agents, are commonly used for the treatment of oral mucositis (OM). However, these treatments have limited efficacy in treating severe cases of OM. In this study, we aimed to develop a carbopol gel incorporating troxipide (TRO) nanoparticles and methylcellulose (TRO-NP gel) and demonstrate its efficacy in accelerating wound healing in a hamster model of OM (OM model) induced by acetic acid injection. Methods TRO nanoparticles were prepared using bead milling. The crystalline form was determined by powder X-ray diffraction, and the particle size was measured using a NanoSight LM10 instrument. The drug release was determined using a Franz diffusion cell, and the hamsters injected with acetic acid were selected to evaluate the therapeutic effect of OM. Results After preparing TRO nanoparticles, we observed a mixture of crystals and amorphous TRO, and the particle size of TRO in the TRO-NP gel ranged from 50 to 280 nm. The TRO-NP gel exhibited a more uniform TRO distribution and viscosity compared to the Carbopol gel containing TRO microparticles (TRO-MP gel). However, the solubility of TRO was comparable in both TRO-MP and TRO-NP gels. The TRO-NP gel released a higher amount of TRO than that from the TRO-MP gel, with detectable release of TRO nanoparticles. TRO levels in the cheek pouches of hamsters treated with TRO-NP gel were higher than those treated with TRO-MP gel. The increased TRO levels in the cheek pouches of hamsters treated with TRO-NP gel were attenuated by treatment with 40 μM dynasore, an inhibitor of clathrin-dependent endocytosis (CME). Moreover, the therapeutic effect of the TRO-NP gel was superior to that of the TRO-MP gel in the hamster model of OM. Conclusion We have designed a TRO-NP gel, and this gel showed excellent TRO delivery into the cheek pouch tissue through the CME pathway. Moreover, the TRO-NP gel treatment enhanced wound healing after acetic acid injection.
Collapse
Affiliation(s)
- Reita Kadowaki
- Faculty of Pharmacy, Kindai University, Higashi-Osaka, Osaka, Japan
| | - Fumihiko Ogata
- Faculty of Pharmacy, Kindai University, Higashi-Osaka, Osaka, Japan
| | - Miku Nishida
- Faculty of Pharmacy, Kindai University, Higashi-Osaka, Osaka, Japan
| | - Miri Komatsu
- Faculty of Pharmacy, Kindai University, Higashi-Osaka, Osaka, Japan
| | - Hiroko Otake
- Faculty of Pharmacy, Kindai University, Higashi-Osaka, Osaka, Japan
| | - Yosuke Nakazawa
- Faculty of Pharmacy, Keio University, Minato-ku, Tokyo, Japan
| | - Naoki Yamamoto
- Support Office for Bioresource Research, Research Promotion Headquarters, Fujita Health University, Toyoake, Aichi, Japan
| | - Naohito Kawasaki
- Faculty of Pharmacy, Kindai University, Higashi-Osaka, Osaka, Japan
| | - Noriaki Nagai
- Faculty of Pharmacy, Kindai University, Higashi-Osaka, Osaka, Japan
| |
Collapse
|
4
|
Peynshaert K, Devoldere J, De Smedt S, Remaut K. Every nano-step counts: a critical reflection on do's and don'ts in researching nanomedicines for retinal gene therapy. Expert Opin Drug Deliv 2023; 20:259-271. [PMID: 36630275 DOI: 10.1080/17425247.2023.2167979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Retinal disease affects millions of people worldwide, generating a massive social and economic burden. Current clinical trials for retinal diseases are dominated by gene augmentation therapies delivered with recombinant viruses as key players. As an alternative, nanoparticles hold great promise for the delivery of nucleic acid therapeutics as well. Nevertheless, despite numerous attempts, 'nano' is in practice not as successful as aspired and major breakthroughs in retinal gene therapy applying nanomaterials are yet to be seen. AREAS COVERED In this review, we summarize the advantages of nanomaterials and give an overview of nanoparticles designed for retinal nucleic acid delivery up to now. We furthermore critically reflect on the predominant issues that currently limit nano to progress to the clinic, where faulty study design and the absence of representative models play key roles. EXPERT OPINION Since the current approach of in vitro - in vivo experimentation is highly inefficient and creates misinformation, we advocate for a more prominent role for ex vivo testing early on in nanoparticle research. In addition, we elaborate on several concepts, including systematic studies and open science, which could aid in pushing the field of nanomedicine beyond the preclinical stage.
Collapse
Affiliation(s)
- Karen Peynshaert
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Belgium Belgium.,Ghent Research Group on Nanomedicines, Ghent University, Belgium Belgium
| | - Joke Devoldere
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Belgium Belgium.,Ghent Research Group on Nanomedicines, Ghent University, Belgium Belgium
| | - Stefaan De Smedt
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Belgium Belgium.,Ghent Research Group on Nanomedicines, Ghent University, Belgium Belgium
| | - Katrien Remaut
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Belgium Belgium.,Ghent Research Group on Nanomedicines, Ghent University, Belgium Belgium
| |
Collapse
|
5
|
Steffens RC, Wagner E. Directing the Way-Receptor and Chemical Targeting Strategies for Nucleic Acid Delivery. Pharm Res 2023; 40:47-76. [PMID: 36109461 PMCID: PMC9483255 DOI: 10.1007/s11095-022-03385-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/29/2022] [Indexed: 11/20/2022]
Abstract
Nucleic acid therapeutics have shown great potential for the treatment of numerous diseases, such as genetic disorders, cancer and infections. Moreover, they have been successfully used as vaccines during the COVID-19 pandemic. In order to unfold full therapeutical potential, these nano agents have to overcome several barriers. Therefore, directed transport to specific tissues and cell types remains a central challenge to receive carrier systems with enhanced efficiency and desired biodistribution profiles. Active targeting strategies include receptor-targeting, mediating cellular uptake based on ligand-receptor interactions, and chemical targeting, enabling cell-specific delivery as a consequence of chemically and structurally modified carriers. With a focus on synthetic delivery systems including polyplexes, lipid-based systems such as lipoplexes and lipid nanoparticles, and direct conjugates optimized for various types of nucleic acids (DNA, mRNA, siRNA, miRNA, oligonucleotides), we highlight recent achievements, exemplified by several nucleic acid drugs on the market, and discuss challenges for targeted delivery to different organs such as brain, eye, liver, lung, spleen and muscle in vivo.
Collapse
Affiliation(s)
- Ricarda Carolin Steffens
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, Ludwig-Maximilians-Universität, 81377, Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, Ludwig-Maximilians-Universität, 81377, Munich, Germany.
- Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität, 81377, Munich, Germany.
| |
Collapse
|
6
|
Sun D, Lu ZR. Structure and Function of Cationic and Ionizable Lipids for Nucleic Acid Delivery. Pharm Res 2023; 40:27-46. [PMID: 36600047 PMCID: PMC9812548 DOI: 10.1007/s11095-022-03460-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/08/2022] [Indexed: 01/05/2023]
Abstract
Hereditary genetic diseases, cancer, and infectious diseases are affecting global health and become major health issues, but the treatment development remains challenging. Gene therapies using DNA plasmid, RNAi, miRNA, mRNA, and gene editing hold great promise. Lipid nanoparticle (LNP) delivery technology has been a revolutionary development, which has been granted for clinical applications, including mRNA vaccines against SARS-CoV-2 infections. Due to the success of LNP systems, understanding the structure, formulation, and function relationship of the lipid components in LNP systems is crucial for design more effective LNP. Here, we highlight the key considerations for developing an LNP system. The evolution of structure and function of lipids as well as their LNP formulation from the early-stage simple formulations to multi-components LNP and multifunctional ionizable lipids have been discussed. The flexibility and platform nature of LNP enable efficient intracellular delivery of a variety of therapeutic nucleic acids and provide many novel treatment options for the diseases that are previously untreatable.
Collapse
Affiliation(s)
- Da Sun
- Department of Biomedical Engineering, Case Western Reserve University, Wickenden 427, Mail Stop 7207, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Zheng-Rong Lu
- Department of Biomedical Engineering, Case Western Reserve University, Wickenden 427, Mail Stop 7207, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
| |
Collapse
|
7
|
Sharma AR, Lee YH, Bat-Ulzii A, Bhattacharya M, Chakraborty C, Lee SS. Recent advances of metal-based nanoparticles in nucleic acid delivery for therapeutic applications. J Nanobiotechnology 2022; 20:501. [PMID: 36434667 PMCID: PMC9700905 DOI: 10.1186/s12951-022-01650-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/27/2022] [Indexed: 11/26/2022] Open
Abstract
Recent efforts in designing nanomaterials to deliver potential therapeutics to the targeted site are overwhelming and palpable. Engineering nanomaterials to deliver biological molecules to exert desirable physiological changes, with minimized side effects and optimal dose, has revolutionized the next-generation therapy for several diseases. The rapid progress of nucleic acids as biopharmaceutics is going to alter the traditional pharmaceutics practices in modern medicine. However, enzymatic instability, large size, dense negative charge (hydrophilic for cell uptake), and unintentional adverse biological responses-such as prolongation of the blood coagulation and immune system activation-hamper the potential use of nucleic acids for therapeutic purposes. Moreover, the safe delivery of nucleic acids into the clinical setting is an uphill task, and several efforts are being put forward to deliver them to targeted cells. Advances in Metal-based NanoParticles (MNPs) are drawing attention due to the unique properties offered by them for drug delivery, such as large surface-area-to-volume ratio for surface modification, increased therapeutic index of drugs through site-specific delivery, increased stability, enhanced half-life of the drug in circulation, and efficient biodistribution to the desired targeted site. Here, the potential of nanoparticles delivery systems for the delivery of nucleic acids, specially MNPs, and their ability and advantages over other nano delivery systems are reviewed.
Collapse
Affiliation(s)
- Ashish Ranjan Sharma
- grid.464534.40000 0004 0647 1735Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252 Gangwon-do Republic of Korea
| | - Yeon-Hee Lee
- grid.464534.40000 0004 0647 1735Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252 Gangwon-do Republic of Korea
| | - Altanzul Bat-Ulzii
- grid.464534.40000 0004 0647 1735Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252 Gangwon-do Republic of Korea
| | - Manojit Bhattacharya
- grid.444315.30000 0000 9013 5080Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, Odisha 756020 India
| | - Chiranjib Chakraborty
- grid.502979.00000 0004 6087 8632Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Ba-rasat-Barrackpore Rd, Kolkata, West Bengal 700126 India
| | - Sang-Soo Lee
- grid.464534.40000 0004 0647 1735Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252 Gangwon-do Republic of Korea
| |
Collapse
|
8
|
Sun D, Sun W, Gao SQ, Lehrer J, Naderi A, Wei C, Lee S, Schilb AL, Scheidt J, Hall RC, Traboulsi EI, Palczewski K, Lu ZR. Effective gene therapy of Stargardt disease with PEG-ECO/ pGRK1-ABCA4-S/MAR nanoparticles. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:823-835. [PMID: 36159595 PMCID: PMC9463552 DOI: 10.1016/j.omtn.2022.08.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 08/17/2022] [Indexed: 01/07/2023]
Abstract
Stargardt disease (STGD) is the most common form of inherited retinal genetic disorders and is often caused by mutations in ABCA4. Gene therapy has the promise to effectively treat monogenic retinal disorders. However, clinically approved adeno-associated virus (AAV) vectors do not have a loading capacity for large genes, such as ABCA4. Self-assembly nanoparticles composed of (1-aminoethyl)iminobis[N-(oleoylcysteinyl-1-amino-ethyl)propionamide (ECO; a multifunctional pH-sensitive/ionizable amino lipid) and plasmid DNA produce gene transfection comparable with or better than the AAV2 capsid. Stable PEG-ECO/pGRK1-ABCA4-S/MAR nanoparticles produce specific and prolonged expression of ABCA4 in the photoreceptors of Abca4 -/- mice and significantly inhibit accumulation of toxic A2E in the eye. Multiple subretinal injections enhance gene expression and therapeutic efficacy with an approximately 69% reduction in A2E accumulation in Abca4 -/- mice after 3 doses. Very mild inflammation was observed after multiple injections of the nanoparticles. PEG-ECO/pGRK1-ABCA4-S/MAR nanoparticles are a promising non-viral mediated gene therapy modality for STGD type 1 (STGD1).
Collapse
Affiliation(s)
- Da Sun
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Wenyu Sun
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Song-Qi Gao
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Jonathan Lehrer
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Amirreza Naderi
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Cheng Wei
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Sangjoon Lee
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Andrew L. Schilb
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Josef Scheidt
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Ryan C. Hall
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Elias I. Traboulsi
- Department of Pediatric Ophthalmology and Center for Genetic Eye Diseases, Cole Eye Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44106, USA
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, Departments of Physiology and Biophysics, Chemistry, and Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Zheng-Rong Lu
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| |
Collapse
|
9
|
Combination of Lanosterol and Nilvadipine Nanosuspensions Rescues Lens Opacification in Selenite-Induced Cataractic Rats. Pharmaceutics 2022; 14:pharmaceutics14071520. [PMID: 35890415 PMCID: PMC9318002 DOI: 10.3390/pharmaceutics14071520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023] Open
Abstract
It has recently been reported that lanosterol (LAN) plays a preventive role against lens opacification through the reversal of crystalline aggregation. However, the effect of LAN is not sufficient to restore lens transparency. In this study, we designed ophthalmic nanosuspensions (LAN-ONSs and NIL-ONSs) based on LAN and nilvadipine (NIL), which can counteract cataract-related factors (e.g., enhanced Ca2+ and calpain levels), and investigated whether the combination of LAN-ONSs and NIL-ONSs can restore the nuclear lens opacity in sodium-selenite-induced cataractic rats (cataractic rats). The mean particle sizes of the LAN-ONSs and NIL-ONSs were 108.8 nm and 89.0 nm, respectively. The instillation of the LAN-ONSs or NIL-ONSs successfully delivered the drugs (LAN or NIL) into the lenses of the rats, although the instillation of LAN-ONSs or NIL-ONSs alone did not increase lens transparency in the cataractic rats. On the other hand, the cataract-related factors (enhanced Ca2+ and calpain levels) were significantly alleviated by the combination of LAN-ONSs and NIL-ONSs; furthermore, the perinuclear refractile ring in the lens nucleus and enhanced number of swollen fibers were attenuated by the LAN-ONS and NIL-ONS combination. Moreover, the opacity levels in the cataractic rats were reduced after treatment with the combination of LAN-ONSs and NIL-ONSs. It is possible that the combination of LAN and NIL will be useful for the treatment of lens opacification in the future.
Collapse
|
10
|
Goto R, Yamada S, Otake H, Nakazawa Y, Oka M, Yamamoto N, Sasaki H, Nagai N. Instillation of Ophthalmic Formulation Containing Nilvadipine Nanocrystals Attenuates Lens Opacification in Shumiya Cataract Rats. Pharmaceutics 2021; 13:pharmaceutics13121999. [PMID: 34959281 PMCID: PMC8709220 DOI: 10.3390/pharmaceutics13121999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/23/2022] Open
Abstract
We developed ophthalmic formulations based on nilvadipine (NIL) nanocrystals (NIL-NP dispersions; mean particle size: 98 nm) by using bead mill treatment and investigated whether the instillation of NIL-NP dispersions delivers NIL to the lens and prevents lens opacification in hereditary cataractous Shumiya cataract rats (SCRs). Serious corneal stimulation was not detected in either human corneal epithelial cells or rats treated with NIL-NP dispersions. The NIL was directly delivered to the lens by the instillation of NIL-NP dispersions, and NIL content in the lenses of rats instilled with NIL-NP dispersions was significantly higher than that in the ophthalmic formulations based on NIL microcrystals (NIL-MP dispersions; mean particle size: 21 µm). Moreover, the supply of NIL prevented increases in Ca2+ content and calpain activity in the lenses of SCRs and delayed the onset of cataracts. In addition, the anti-cataract effect in the lens of rats instilled with NIL-NP dispersions was also significantly higher than that in NIL-MP dispersions. NIL-NPs could be used to prevent lens opacification.
Collapse
Affiliation(s)
- Ryoka Goto
- Faculty of Pharmacy, Kindai University, Kowakae, Higashi-Osaka 577-8502, Osaka, Japan; (R.G.); (S.Y.); (H.O.)
| | - Shigehiro Yamada
- Faculty of Pharmacy, Kindai University, Kowakae, Higashi-Osaka 577-8502, Osaka, Japan; (R.G.); (S.Y.); (H.O.)
| | - Hiroko Otake
- Faculty of Pharmacy, Kindai University, Kowakae, Higashi-Osaka 577-8502, Osaka, Japan; (R.G.); (S.Y.); (H.O.)
| | - Yosuke Nakazawa
- Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan;
| | - Mikako Oka
- Laboratory of Clinical Pharmacology, Yokohama University of Pharmacy, Yokohama 245-0066, Kanagawa, Japan;
| | - Naoki Yamamoto
- Center for Clinical Trial and Research Support, Fujita Health University, Research Promotion and Support Headquarters, Toyoake 470-1192, Aichi, Japan;
| | - Hiroshi Sasaki
- Department of Ophthalmology, Kanazawa Medical University, Kahoku 920-0293, Ishikawa, Japan;
| | - Noriaki Nagai
- Faculty of Pharmacy, Kindai University, Kowakae, Higashi-Osaka 577-8502, Osaka, Japan; (R.G.); (S.Y.); (H.O.)
- Correspondence: ; Tel.: +81-6-4307-3638
| |
Collapse
|
11
|
Otake H, Goto R, Ogata F, Isaka T, Kawasaki N, Kobayakawa S, Matsunaga T, Nagai N. Fixed-Combination Eye Drops Based on Fluorometholone Nanoparticles and Bromfenac/Levofloxacin Solution Improve Drug Corneal Penetration. Int J Nanomedicine 2021; 16:5343-5356. [PMID: 34413642 PMCID: PMC8369340 DOI: 10.2147/ijn.s317046] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/22/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose The multi-instillation of three commercially available (CA) eye drops [fluorometholone (FL)-, bromfenac (BF)- and levofloxacin (LV)-eye drops] has been used to manage pain and inflammation post-intraocular surgery. However, the multi-instillation of these three eye drops causes corneal damage, and the FL drops have the disadvantage of low ocular bioavailability. To overcome these problems, we prepared fixed-combination eye drops based on FL nanoparticles (FL-NPs) and BF/LV solution (nFBL-FC), and evaluated the corneal toxicity and transcorneal penetration of the nFBL-FC eye drops. Methods FL powder was mixed in 2-hydroxypropyl-β-cyclodextrin solution containing benzalkonium chloride, mannitol and methylcellulose, and milled with a Bead Smash 12 (5500 rpm for 30 s×30 times). The BF/LV solution was then added to the milled-dispersions to be used as nFBL-FC. The FL, BF and LV concentrations were measured by HPLC methods, and transcorneal penetration was evaluated in rabbits. Results The FL particle size in nFBL-FC was 40–150 nm, with only 0.0018% in liquid form. No aggregation of FL particles in the nFBL-FC was observed for 1 month. The viability of human corneal epithelial cells treated with nFBL-FC was remarkably higher than that of cells subjected to the multi-instillation of the corresponding three CA-eye drops. In addition, the corneal penetrations (AUC) of the FL, BF and LV in nFBL-FC were 4.9-, 1.8-, and 7.1-fold those of the corresponding CA-eye drops, respectively. Moreover, the caveolae-dependent endocytosis (CavME) inhibitor (nystatin) significantly prevented the transcorneal penetration of these drugs. Conclusion We prepared fixed-combination eye drops based on FL-NPs and BF/LV solution (nFBL-FC), and show that high levels of FL-NPs and dissolved BF/LV (liquid drugs) can be delivered into the aqueous humor by the instillation of nFBL-FC. Further, we show that CavME is mainly related to the enhancement of transcorneal penetration of both the solid (NPs) and liquid drugs.
Collapse
Affiliation(s)
- Hiroko Otake
- Faculty of Pharmacy, Kindai University, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Ryoka Goto
- Faculty of Pharmacy, Kindai University, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Fumihiko Ogata
- Faculty of Pharmacy, Kindai University, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Takumi Isaka
- Faculty of Pharmacy, Kindai University, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Naohito Kawasaki
- Faculty of Pharmacy, Kindai University, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Shinichiro Kobayakawa
- Department of Ophthalmology, Nippon Medical School, Musashi-Kosugi Hospital, Kawasaki, Kanagawa, 211-8533, Japan
| | - Toru Matsunaga
- Design and Development, SEED Co., Ltd., Kounosu-shi, Saitama, 369-0131, Japan
| | - Noriaki Nagai
- Faculty of Pharmacy, Kindai University, Higashi-Osaka, Osaka, 577-8502, Japan
| |
Collapse
|
12
|
Piotter E, McClements ME, MacLaren RE. Therapy Approaches for Stargardt Disease. Biomolecules 2021; 11:1179. [PMID: 34439845 PMCID: PMC8393614 DOI: 10.3390/biom11081179] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/27/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022] Open
Abstract
Despite being the most prevalent cause of inherited blindness in children, Stargardt disease is yet to achieve the same clinical trial success as has been achieved for other inherited retinal diseases. With an early age of onset and continual progression of disease over the life course of an individual, Stargardt disease appears to lend itself to therapeutic intervention. However, the aetiology provides issues not encountered with the likes of choroideremia and X-linked retinitis pigmentosa and this has led to a spectrum of treatment strategies that approach the problem from different aspects. These include therapeutics ranging from small molecules and anti-sense oligonucleotides to viral gene supplementation and cell replacement. The advancing development of CRISPR-based molecular tools is also likely to contribute to future therapies by way of genome editing. In this we review, we consider the most recent pre-clinical and clinical trial data relating to the different strategies being applied to the problem of generating a treatment for the large cohort of Stargardt disease patients worldwide.
Collapse
Affiliation(s)
- Elena Piotter
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK; (E.P.); (M.E.M.)
- Oxford University Hospitals NHS Foundation Trust NIHR Biomedical Research Centre, Oxford OX3 9DU, UK
| | - Michelle E McClements
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK; (E.P.); (M.E.M.)
- Oxford University Hospitals NHS Foundation Trust NIHR Biomedical Research Centre, Oxford OX3 9DU, UK
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK; (E.P.); (M.E.M.)
- Oxford University Hospitals NHS Foundation Trust NIHR Biomedical Research Centre, Oxford OX3 9DU, UK
| |
Collapse
|
13
|
Sun D, Sun W, Gao SQ, Wei C, Naderi A, Schilb AL, Scheidt J, Lee S, Kern TS, Palczewski K, Lu ZR. Formulation and efficacy of ECO/pRHO-ABCA4-SV40 nanoparticles for nonviral gene therapy of Stargardt disease in a mouse model. J Control Release 2021; 330:329-340. [PMID: 33358976 PMCID: PMC9066847 DOI: 10.1016/j.jconrel.2020.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 01/13/2023]
Abstract
It is still a challenge to develop gene replacement therapy for retinal disorders caused by mutations in large genes, such as Stargardt disease (STGD). STGD is caused by mutations in ABCA4 gene. Previously, we have developed an effective non-viral gene therapy using self-assembled nanoparticles of a multifunctional pH-sensitive amino lipid ECO and a therapeutic ABCA4 plasmid containing rhodopsin promoter (pRHO-ABCA4). In this study, we modified the ABCA4 plasmid with simian virus 40 enhancer (SV40, pRHO-ABCA4-SV40) for enhanced gene expression. We also prepared and assessed the formulations of ECO/pDNA nanoparticles using sucrose or sorbitol as a stablilizer to develop consistent and stable formulations. Results demonstrated that ECO formed stable nanoparticles with pRHO-ABCA4-SV40 in the presence of sucrose, but not with sorbitol. The transfection efficiency in vitro increased significantly after introduction of SV40 enhancer for plasmid pCMV-ABCA4-SV40 with a CMV promoter. Sucrose didn't affect the transfection efficiency, while sorbitol resulted in a fluctuation of the in vitro transfection efficiency. Subretinal gene therapy in Abca4-/- mice using ECO/pRHO-ABCA4 and ECO/pRHO-ABCA4-SV40 nanoparticles induced 36% and 29% reduction in A2E accumulation respectively. Therefore, the ECO/pABCA4 based nanoparticles are promising for non-viral gene therapy for Stargardt disease and can be expended for applications in a variety of visual dystrophies with mutated large genes.
Collapse
Affiliation(s)
- Da Sun
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Wenyu Sun
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Song-Qi Gao
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Cheng Wei
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Amirreza Naderi
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Andrew L Schilb
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Josef Scheidt
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Sangjoon Lee
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Timothy S Kern
- Department of Ophthalmology, Physiology & Biophysics, and Chemistry, University of California, Irvine, Irvine, CA 92697, United States of America; Veterans Administration Medical Center Research Service, Long Beach, CA, 90822, United States of America
| | - Krzysztof Palczewski
- Department of Ophthalmology, Physiology & Biophysics, and Chemistry, University of California, Irvine, Irvine, CA 92697, United States of America
| | - Zheng-Rong Lu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States of America.
| |
Collapse
|
14
|
Ocular Drug Delivery to the Retina: Current Innovations and Future Perspectives. Pharmaceutics 2021; 13:pharmaceutics13010108. [PMID: 33467779 PMCID: PMC7830424 DOI: 10.3390/pharmaceutics13010108] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Treatment options for retinal diseases, such as neovascular age-related macular degeneration, diabetic retinopathy, and retinal vascular disorders, have markedly expanded following the development of anti-vascular endothelial growth factor intravitreal injection methods. However, because intravitreal treatment requires monthly or bimonthly repeat injections to achieve optimal efficacy, recent investigations have focused on extended drug delivery systems to lengthen the treatment intervals in the long term. Dose escalation and increasing molecular weight of drugs, intravitreal implants and nanoparticles, hydrogels, combined systems, and port delivery systems are presently under preclinical and clinical investigations. In addition, less invasive techniques rather than intravitreal administration routes, such as topical, subconjunctival, suprachoroidal, subretinal, and trans-scleral, have been evaluated to reduce the treatment burden. Despite the latest advancements in the field of ophthalmic pharmacology, enhancing drug efficacy with high ocular bioavailability while avoiding systemic and local adverse effects is quite challenging. Consequently, despite the performance of numerous in vitro studies, only a few techniques have translated to clinical trials. This review discusses the recent developments in ocular drug delivery to the retina, the pharmacokinetics of intravitreal drugs, efforts to extend drug efficacy in the intraocular space, minimally invasive techniques for drug delivery to the retina, and future perspectives in this field.
Collapse
|
15
|
Nagai N, Isaka T, Deguchi S, Minami M, Yamaguchi M, Otake H, Okamoto N, Nakazawa Y. In Situ Gelling Systems Using Pluronic F127 Enhance Corneal Permeability of Indomethacin Nanocrystals. Int J Mol Sci 2020; 21:ijms21197083. [PMID: 32992931 PMCID: PMC7582645 DOI: 10.3390/ijms21197083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
We previously designed an ophthalmic dispersion containing indomethacin nanocrystals (IMC-NCs), showing that multiple energy-dependent endocytoses led to the enhanced absorption of drugs from ocular dosage forms. In this study, we attempted to prepare Pluronic F-127 (PLF-127)-based in situ gel (ISG) incorporating IMC-NCs, and we investigated whether the instillation of the newly developed ISG incorporating IMC-NCs prolonged the precorneal resident time of the drug and improved ocular bioavailability. The IMC-NC-incorporating ISG was prepared using the bead-mill method and PLF-127, which yielded a mean particle size of 50–150 nm. The viscosity of the IMC-NC-incorporating ISG was higher at 37 °C than at 10 °C, and the diffusion and release of IMC-NCs in the IMC-NC-incorporating ISG were decreased by PLF-127 at 37 °C. In experiments using rabbits, the retention time of IMC levels in the lacrimal fluid was enhanced with PLF-127 in the IMC-NC-incorporating ISG, whereby the IMC-NC-incorporating ISG with 5% and 10% PLF-127 increased the transcorneal penetration of the IMCs. In contrast to the results with optimal PLF-127 (5% and 10%), excessive PLF-127 (15%) decreased the uptake of IMC-NCs after instillation. In conclusion, we found that IMC-NC-incorporating ISG with an optimal amount of PLF-127 (5–10%) resulted in higher IMC corneal permeation after instillation than that with excessive PLF-127, probably because of the balance between higher residence time and faster diffusion of IMC-NCs on the ocular surface. These findings provide significant information for developing ophthalmic nanomedicines.
Collapse
Affiliation(s)
- Noriaki Nagai
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan; (T.I.); (S.D.); (M.M.); (M.Y.); (H.O.)
- Correspondence: ; Tel.: +81-6-4307-3638
| | - Takumi Isaka
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan; (T.I.); (S.D.); (M.M.); (M.Y.); (H.O.)
| | - Saori Deguchi
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan; (T.I.); (S.D.); (M.M.); (M.Y.); (H.O.)
| | - Misa Minami
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan; (T.I.); (S.D.); (M.M.); (M.Y.); (H.O.)
| | - Mizuki Yamaguchi
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan; (T.I.); (S.D.); (M.M.); (M.Y.); (H.O.)
| | - Hiroko Otake
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan; (T.I.); (S.D.); (M.M.); (M.Y.); (H.O.)
| | - Norio Okamoto
- Okamoto Eye Clinic, 5-11-12-312 Izumicho, Suita, Osaka 564-0041, Japan;
| | - Yosuke Nakazawa
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan;
| |
Collapse
|
16
|
In Situ Gel Incorporating Disulfiram Nanoparticles Rescues the Retinal Dysfunction via ATP Collapse in Otsuka Long-Evans Tokushima Fatty Rats. Cells 2020; 9:cells9102171. [PMID: 32993012 PMCID: PMC7601925 DOI: 10.3390/cells9102171] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
We attempted to design an ophthalmic in situ gel formulation incorporating disulfiram (DIS) nanoparticles (Dis-NPs/ISG) and demonstrated the therapeutic effect of Dis-NPs/ISG on retinal dysfunction in 15-month-old Otsuka Long–Evans Tokushima Fatty (OLETF) rats, a rat model of diabetes. The DIS particles were crushed using a bead mill to prepare the nanoparticles, and the Dis-NPs/ISG was prepared using a combination of the DIS nanoparticles and an in situ gelling system based on methylcellulose (MC). The particle size of the Dis-NPs/ISG was 80–250 nm, and there was no detectable precipitation or aggregation for 1 month. Moreover, the Dis-NPs/ISG was gelled at 37 °C, and the drug was delivered into the retina by instillation. Only diethyldithiocarbamate (DDC) was detected in the retina (DIS was not detected) when the Dis-NPs/ISG was instilled in the right eye, and the DDC levels in the right retina were significantly higher than those in the left retina. In addition, the retinal residence time of the drug was prolonged by the application of the in situ gelling system, since the DDC levels in the retinas of rats instilled with Dis-NPs/ISG were higher than those in DIS nanoparticles without MC. Furthermore, repetitive instillation of the Dis-NPs/ISG attenuated the deterioration of electroretinograms (ERGs) in 15-month-old OLETF rats by preventing the collapse of ATP production via excessive nitric oxide and recovered the decrease in retinal function. These findings provide important information for the development of novel therapeutic approaches to diabetic retinopathy.
Collapse
|
17
|
Nagai N, Minami M, Deguchi S, Otake H, Sasaki H, Yamamoto N. An in situ Gelling System Based on Methylcellulose and Tranilast Solid Nanoparticles Enhances Ocular Residence Time and Drug Absorption Into the Cornea and Conjunctiva. Front Bioeng Biotechnol 2020; 8:764. [PMID: 32733870 PMCID: PMC7358604 DOI: 10.3389/fbioe.2020.00764] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 06/16/2020] [Indexed: 01/30/2023] Open
Abstract
We previously developed ophthalmic formulations containing tranilast nanopartaicles (ophthalmic TL-NPs formulations), and found them to show high uptake into ocular tissues. In this study, we aimed to design an in situ gel incorporating TL-NPs with 0.5–3% methylcellulose (MC, type SM-4) to ensure long residence time of the drug at the ocular surface. The ophthalmic TL-NPs formulations were prepared by the bead mill method, which yielded a mean particle size of ~93 nm with or without MC (0.5–3%). Although the dispersibility of TL particles in ophthalmic formulations increased with the MC content, the diffusion behavior of TL particles in the dispersion medium decreased with MC content. In an in vivo study using rats, the TL content in the lacrimal fluid was enhanced with MC content in the ophthalmic TL-NPs formulations, and the optimum amount of MC (0.5–1.5%) enhanced the TL content in the cornea and conjunctiva, and an anti-inflammatory effect of TL in rats instilled with ophthalmic TL-NPs formulations was observed. On the other hand, excessive MC (3%) prevented the corneal uptake of TL-NPs after instillation, and the anti-inflammation effect of TL was lower than that of ophthalmic TL-NPs formulations with optimum MC (0.5–1.5%). In conclusion, we found that gel formulations of TL-NPs with 0.5 and 1.5% MC provided a prolonged pre-corneal and pre-conjunctival contact time of TL, and resulted in higher TL contents in the cornea and conjunctiva following instillation in comparison with TL-NPs with or without 3% MC. This is probably due to the balance between the higher residence time and faster diffusion of TL-NPs on the ocular surface. These findings provide significant information that can be used to design further studies aimed at developing ophthalmic nanomedicines.
Collapse
Affiliation(s)
- Noriaki Nagai
- Faculty of Pharmacy, Kindai University, Osaka, Japan
| | - Misa Minami
- Faculty of Pharmacy, Kindai University, Osaka, Japan
| | - Saori Deguchi
- Faculty of Pharmacy, Kindai University, Osaka, Japan
| | - Hiroko Otake
- Faculty of Pharmacy, Kindai University, Osaka, Japan
| | - Hiroshi Sasaki
- Department of Ophthalmology, School of Medicine, Kanazawa Medical University, Ishikawa, Japan
| | - Naoki Yamamoto
- Department of Ophthalmology, School of Medicine, Kanazawa Medical University, Ishikawa, Japan
| |
Collapse
|
18
|
Nagai N, Umachi K, Otake H, Oka M, Hiramatsu N, Sasaki H, Yamamoto N. Ophthalmic In Situ Gelling System Containing Lanosterol Nanoparticles Delays Collapse of Lens Structure in Shumiya Cataract Rats. Pharmaceutics 2020; 12:pharmaceutics12070629. [PMID: 32635523 PMCID: PMC7408553 DOI: 10.3390/pharmaceutics12070629] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 12/24/2022] Open
Abstract
We attempted to prepare ophthalmic in situ gel formulations containing lanosterol (Lan) nanoparticles (LA-NPs/ISG) and investigated the characteristics, delivery pathway into the lens, and anti-cataract effects of LA-NPs/ISG using SCR-N (rats with slight lens structure collapse) and SCR-C (rats with a combination of remarkable lens structure collapse and opacification). LA-NPs/ISG was prepared by bead milling of the dispersions containing 0.5% Lan powder, 5% 2-hydroxypropyl-β-cyclodextrin, 0.5% methylcellulose, 0.005% benzalkonium chloride, and 0.5% mannitol. The particle size distribution of Lan was 60–250 nm. The LA-NPs/ISG was gelled at 37 °C, and the LA-NPs/ISG was taken into the cornea by energy-dependent endocytosis and then released to the intraocular side. In addition, the Lan contents in the lenses of both SCR-N and SCR-C were increased by the repetitive instillation of LA-NPs/ISG (twice per day). The space and structure collapse in the lens of SCR-N with aging was attenuated by the instillation of LA-NPs/ISG. Moreover, the repetitive instillation of LA-NPs/ISG attenuated the changes in cataract-related factors (the enhancement of nitric oxide levels, calpain activity, lipid peroxidation levels, Ca2+ contents, and the decrease of Ca2+-ATPase activity) in the lenses of SCR-C, and the repetitive instillation of LA-NPs/ISG delayed the onset of opacification in the SCR-C. It is possible that the LA-NPs/ISG is useful in maintaining lens homeostasis.
Collapse
Affiliation(s)
- Noriaki Nagai
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan; (K.U.); (H.O.)
- Correspondence: ; Tel.: +81-6-4307-3638
| | - Kazuki Umachi
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan; (K.U.); (H.O.)
| | - Hiroko Otake
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan; (K.U.); (H.O.)
| | - Mikako Oka
- Laboratory of Clinical Pharmacology, Yokohama University of Pharmacy, Yokohama, Kanagawa 245-0066, Japan;
| | - Noriko Hiramatsu
- Laboratory of Molecularbiology and Histochemistry, Fujita Health University Institute of Joint Research, 1-98 Dengakugakubo, Kutsukake, Toyoake 470-1192, Aichi, Japan;
| | - Hiroshi Sasaki
- Department of Ophthalmology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa 920-0293, Japan; (H.S.); (N.Y.)
| | - Naoki Yamamoto
- Department of Ophthalmology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa 920-0293, Japan; (H.S.); (N.Y.)
| |
Collapse
|
19
|
Abstract
Retinal diseases, such as age-related macular degeneration and diabetic retinopathy, are the leading causes of blindness worldwide. The mainstay of treatment for these blinding diseases remains to be surgery, and the available pharmaceutical therapies on the market are limited, partially owing to various biological barriers in hindering the delivery of therapeutics to the retina. The nanoparticulate drug delivery system confers the capability for delivering therapeutics to the specific ocular targets and, hence, potentially revolutionizes the current treatment landscape of retinal diseases. While the research to date indicates the enormous therapeutics potentials of the nanoparticulate delivery systems, the successful translation of these systems from the bench to bedside is challenging and requires a combined understanding of retinal pathology, physiology of the eye, and particle and formulation designs of nanoparticles. To this end, the review begins with an overview of the most prevalent retinal diseases and related pharmacotherapy. Highlights of the current challenges encountered in ocular drug delivery for each administration route are provided, followed by critical appraisal of various nanoparticulate drug delivery systems for the retinal diseases, including their formulation designs, therapeutic merits, limitations, and future direction. It is believed that a greater understanding of the nano-biointeraction in eyes will lead to the development of more sophisticated drug delivery systems for retinal diseases.
Collapse
Affiliation(s)
- Qingqing Li
- Faculty of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jingwen Weng
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Si Nga Wong
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Wai Yip Thomas Lee
- Aptorum Group Limited, Unit 232, 12 Science Park West Avenue, Hong Kong Science Park, Shatin New Town, Hong Kong
| | - Shing Fung Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| |
Collapse
|
20
|
Sun D, Schur RM, Sears AE, Gao SQ, Sun W, Naderi A, Kern T, Palczewski K, Lu ZR. Stable Retinoid Analogue Targeted Dual pH-Sensitive Smart Lipid ECO/pDNA Nanoparticles for Specific Gene Delivery in the Retinal Pigment Epithelium. ACS APPLIED BIO MATERIALS 2020; 3:3078-3086. [PMID: 34327311 DOI: 10.1021/acsabm.0c00130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Da Sun
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106
| | - Rebecca M Schur
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106
| | - Avery E Sears
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106
| | - Song-Qi Gao
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106
| | - Wenyu Sun
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106
| | - Amirreza Naderi
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106
| | - Timothy Kern
- Department of Ophthalmology, University of California Irvine, Irvine, CA 92697-7600
| | - Krzysztof Palczewski
- Department of Ophthalmology, University of California Irvine, Irvine, CA 92697-7600
| | - Zheng-Rong Lu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
21
|
Minami M, Seiriki R, Otake H, Nakazawa Y, Kanai K, Tanino T, Nagai N. Development of Sustained-Release Ophthalmic Formulation Based on Tranilast Solid Nanoparticles. MATERIALS 2020; 13:ma13071675. [PMID: 32260210 PMCID: PMC7178381 DOI: 10.3390/ma13071675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 03/28/2020] [Accepted: 04/01/2020] [Indexed: 01/02/2023]
Abstract
Eye drops containing Tranilast (TL), N-(3,4-dimethoxycinnamoyl) anthramilic acid, are used as an anti-allergic conjunctivitis drug in the ophthalmic field. Traditional eye drops are very patient compliant, although the bioavailability (BA) of most eye drops is low since eye drops cannot be instilled beyond the capacity of the conjunctival sac due to its limited volume. Thus, traditional eye drops have low BA and a short duration of the drug on the ocular surface, so solutions to these problems are highly anticipated. In this study, we designed a sustained-release drug-delivery system (DDS) for TL nanoparticles. TL nanoparticles were prepared by bead mill treatment, and the gel formulations containing TL nanoparticles (TL-NPs-Gel, particle size 50 nm–100 nm) were provided by carboxypolymethylene. The crystal structure of TL with and without bead mill treatment is the same, but the TL solubility in formulations containing nanoparticles was 5.3-fold higher compared with gel formulations containing TL microparticles (TL-MPs-Gel). The photo and thermal stabilities of TL-NPs-Gel are also higher than those of dissolved TL. Moreover, when TL-NPs-Gel is applied to the upper eyelid skin (outside), the TL is released as nanoparticles, and delivered to the lacrimal fluid through the meibomian glands. In addition, the TL release profile for TL-NPs-Gel was sustained over 180 min after the treatment. These findings can be used to develop a sustained-release DDS in the ophthalmic field.
Collapse
Affiliation(s)
- Misa Minami
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan; (M.M.); (R.S.); (H.O.)
| | - Ryotaro Seiriki
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan; (M.M.); (R.S.); (H.O.)
| | - Hiroko Otake
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan; (M.M.); (R.S.); (H.O.)
| | - Yosuke Nakazawa
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan;
| | - Kazutaka Kanai
- Department of Small Animal Internal Medicine, School of Veterinary Medicine, University of Kitasato, Towada, Aomori 034-8628, Japan;
| | - Tadatoshi Tanino
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Yamashiro-Cho, Tokushima 770-8514, Japan;
| | - Noriaki Nagai
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan; (M.M.); (R.S.); (H.O.)
- Correspondence: ; Tel.: +81-6-4307-3640
| |
Collapse
|
22
|
Liu X, Vaidya AM, Sun D, Zhang Y, Ayat N, Schilb A, Lu ZR. Role of eIF4E on epithelial-mesenchymal transition, invasion, and chemoresistance of prostate cancer cells. Cancer Commun (Lond) 2020; 40:126-131. [PMID: 32189455 PMCID: PMC7144414 DOI: 10.1002/cac2.12011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 02/06/2020] [Indexed: 01/19/2023] Open
Affiliation(s)
- Xujie Liu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Amita M Vaidya
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Da Sun
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Yan Zhang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Nadia Ayat
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Andrew Schilb
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Zheng-Rong Lu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| |
Collapse
|
23
|
Non-viral Gene Therapy for Stargardt Disease with ECO/pRHO-ABCA4 Self-Assembled Nanoparticles. Mol Ther 2019; 28:293-303. [PMID: 31611143 DOI: 10.1016/j.ymthe.2019.09.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/10/2019] [Accepted: 09/06/2019] [Indexed: 12/20/2022] Open
Abstract
Stargardt disease (STGD) is an autosomal recessive retinal disorder caused by a monogenic ABCA4 mutation. Currently, there is no effective therapy to cure Stargardt disease. The replacement of mutated ABCA4 with a functional gene remains an attractive strategy. In this study, we have developed a non-viral gene therapy using nanoparticles self-assembled by a multifunctional pH-sensitive amino lipid ECO and a therapeutic ABCA4 plasmid. The nanoparticles mediated efficient intracellular gene transduction in wild-type (WT) and Abca4-/- mice. Specific ABCA4 expression in the outer segment of photoreceptors was achieved by incorporating a rhodopsin promoter into the plasmids. The ECO/pRHO-ABCA4 nanoparticles induced substantial and specific ABCA4 expression for at least 8 months, 35% reduction in A2E accumulation on average, and a delayed Stargardt disease progression for at least 6 months in Abca4-/- mice. ECO/plasmid nanoparticles constitute a promising non-viral gene therapy platform for Stargardt disease and other visual dystrophies.
Collapse
|
24
|
Sun D, Sun Z, Jiang H, Vaidya AM, Xin R, Ayat NR, Schilb AL, Qiao PL, Han Z, Naderi A, Lu ZR. Synthesis and Evaluation of pH-Sensitive Multifunctional Lipids for Efficient Delivery of CRISPR/Cas9 in Gene Editing. Bioconjug Chem 2019; 30:667-678. [PMID: 30582790 PMCID: PMC6429435 DOI: 10.1021/acs.bioconjchem.8b00856] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/20/2018] [Indexed: 01/06/2023]
Abstract
CRISPR/Cas9 system is a promising approach for gene editing in gene therapy. Effective gene editing requires safe and efficient delivery of CRISPR/Cas9 system in target cells. Several new multifunctional pH-sensitive amino lipids were designed and synthesized with modification of the amino head groups for intracellular delivery of CRISPR/Cas9 system. These multifunctional pH-sensitive amino lipids exhibited structurally dependent formulation of stable nanoparticles with the DNA plasmids of CRISPR/Cas9 system with the sizes ranging from 100 to 200 nm. The amino lipid plasmid DNA nanoparticles showed pH-sensitive hemolysis with minimal hemolytic activity at pH 7.4 and increased hemolysis at acidic pH (pH = 5.5, 6.5). The nanoparticles exhibited low cytotoxicity at an N/P ratio of 10. Expression of both Cas9 and sgRNA of the CRISPR/Cas9 system was in the range from 4.4% to 33%, dependent on the lipid structure in NIH3T3-GFP cells. The amino lipids that formed stable nanoparticles with high expression of both Cas9 and sgRNA mediated high gene editing efficiency. ECO and iECO mediated more efficient gene editing than other tested lipids. ECO mediated up to 50% GFP suppression based on observations with confocal microscopy and nearly 80% reduction of GFP mRNA based on RT-PCR measurement in NIH3T3-GFP cells. The multifunctional pH-sensitive amino lipids have the potential for efficient intracellular delivery of CRISPR/Cas9 for effective gene editing.
Collapse
Affiliation(s)
| | | | - Hongfa Jiang
- Department
of Biomedical
Engineering, School of Engineering, Case
Western Reserve University, Cleveland, Ohio 44106, United States
| | - Amita M. Vaidya
- Department
of Biomedical
Engineering, School of Engineering, Case
Western Reserve University, Cleveland, Ohio 44106, United States
| | - Rui Xin
- Department
of Biomedical
Engineering, School of Engineering, Case
Western Reserve University, Cleveland, Ohio 44106, United States
| | - Nadia R. Ayat
- Department
of Biomedical
Engineering, School of Engineering, Case
Western Reserve University, Cleveland, Ohio 44106, United States
| | - Andrew L. Schilb
- Department
of Biomedical
Engineering, School of Engineering, Case
Western Reserve University, Cleveland, Ohio 44106, United States
| | - Peter L. Qiao
- Department
of Biomedical
Engineering, School of Engineering, Case
Western Reserve University, Cleveland, Ohio 44106, United States
| | - Zheng Han
- Department
of Biomedical
Engineering, School of Engineering, Case
Western Reserve University, Cleveland, Ohio 44106, United States
| | - Amirreza Naderi
- Department
of Biomedical
Engineering, School of Engineering, Case
Western Reserve University, Cleveland, Ohio 44106, United States
| | - Zheng-Rong Lu
- Department
of Biomedical
Engineering, School of Engineering, Case
Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
25
|
|
26
|
Hyaluronic-acid-modified lipid-polymer hybrid nanoparticles as an efficient ocular delivery platform for moxifloxacin hydrochloride. Int J Biol Macromol 2018; 116:1026-1036. [DOI: 10.1016/j.ijbiomac.2018.05.113] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/03/2018] [Accepted: 05/15/2018] [Indexed: 12/13/2022]
|
27
|
Zhang Y, Tu J, Wang D, Zhu H, Maity SK, Qu X, Bogaert B, Pei H, Zhang H. Programmable and Multifunctional DNA-Based Materials for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1703658. [PMID: 29389041 DOI: 10.1002/adma.201703658] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/09/2017] [Indexed: 06/07/2023]
Abstract
DNA encodes the genetic information; recently, it has also become a key player in material science. Given the specific Watson-Crick base-pairing interactions between only four types of nucleotides, well-designed DNA self-assembly can be programmable and predictable. Stem-loops, sticky ends, Holliday junctions, DNA tiles, and lattices are typical motifs for forming DNA-based structures. The oligonucleotides experience thermal annealing in a near-neutral buffer containing a divalent cation (usually Mg2+ ) to produce a variety of DNA nanostructures. These structures not only show beautiful landscape, but can also be endowed with multifaceted functionalities. This Review begins with the fundamental characterization and evolutionary trajectory of DNA-based artificial structures, but concentrates on their biomedical applications. The coverage spans from controlled drug delivery to high therapeutic profile and accurate diagnosis. A variety of DNA-based materials, including aptamers, hydrogels, origamis, and tetrahedrons, are widely utilized in different biomedical fields. In addition, to achieve better performance and functionality, material hybridization is widely witnessed, and DNA nanostructure modification is also discussed. Although there are impressive advances and high expectations, the development of DNA-based structures/technologies is still hindered by several commonly recognized challenges, such as nuclease instability, lack of pharmacokinetics data, and relatively high synthesis cost.
Collapse
Affiliation(s)
- Yuezhou Zhang
- Department of Pharmaceutical Science Laboratory, Åbo Akademi University, 20520, Turku, Finland
| | - Jing Tu
- Department of Pharmaceutical Science Laboratory, Åbo Akademi University, 20520, Turku, Finland
| | - Dongqing Wang
- Department of Radiology, Affiliated Hospital of Jiangsu University Jiangsu University, 212001, Zhenjiang, P. R. China
| | - Haitao Zhu
- Department of Radiology, Affiliated Hospital of Jiangsu University Jiangsu University, 212001, Zhenjiang, P. R. China
| | | | - Xiangmeng Qu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, P. R. China
| | - Bram Bogaert
- Department of Pharmaceutical Science Laboratory, Åbo Akademi University, 20520, Turku, Finland
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, P. R. China
| | - Hongbo Zhang
- Department of Pharmaceutical Science Laboratory, Åbo Akademi University, 20520, Turku, Finland
- Department of Radiology, Affiliated Hospital of Jiangsu University Jiangsu University, 212001, Zhenjiang, P. R. China
- Turku Center for Biotechnology, Åbo Akademi University, 20520, Turku, Finland
| |
Collapse
|
28
|
Wu H, Zhou J, Mei S, Wu D, Mu Z, Chen B, Xie Y, Ye Y, Liu J. Circulating exosomal microRNA-96 promotes cell proliferation, migration and drug resistance by targeting LMO7. J Cell Mol Med 2017; 21:1228-1236. [PMID: 28026121 PMCID: PMC5431139 DOI: 10.1111/jcmm.13056] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/03/2016] [Indexed: 12/11/2022] Open
Abstract
Detection and treatment of lung cancer still remain a clinical challenge. This study aims to validate exosomal microRNA-96 (miR-96) as a serum biomarker for lung cancer and understand the underlying mechanism in lung cancer progression. MiR-96 expressions in normal and lung cancer patients were characterized by qPCR analysis. Changes in cell viability, migration and cisplatin resistance were monitored after incubation with isolated miR-96-containing exosomes, anti-miR-96 and anti-miR negative control (anti-miR-NC) transfections. Dual-luciferase reporter assay was used to study interaction between miR-96 and LIM-domain only protein 7 (LMO7). Changes induced by miR-96 transfection and LMO7 overexpression were also evaluated. MiR-96 expression was positively correlated with high-grade and metastatic lung cancers. While anti-miR-96 transfection exhibited a tumour-suppressing function, exosomes isolated from H1299 enhanced cell viability, migration and cisplatin resistance. Potential miR-96 binding sites were found within the 3'-UTR of wild-type LMO7 gene, but not of mutant LMO7 gene. LMO7 expression was inversely correlated with lung cancer grades, and LMO7 overexpression reversed promoting effect of miR-96. We have identified exosomal miR-96 as a serum biomarker of malignant lung cancer. MiR-96 promotes lung cancer progression by targeting LMO7. The miR-96-LMO7 axis may be a therapeutic target for lung cancer patients, and new diagnostic or therapeutic strategies could be developed by targeting the miR-96-LMO7 axis.
Collapse
Affiliation(s)
- Hao Wu
- Department of Thoracic SurgeryPeking University Shenzhen HospitalShenzhenGuangdong ProvinceChina
| | - Jingcheng Zhou
- Department of Thoracic SurgeryPeking University Shenzhen HospitalShenzhenGuangdong ProvinceChina
| | - Shanshan Mei
- Department of Thoracic SurgeryPeking University Shenzhen HospitalShenzhenGuangdong ProvinceChina
| | - Da Wu
- Department of Thoracic SurgeryPeking University Shenzhen HospitalShenzhenGuangdong ProvinceChina
| | - Zhimin Mu
- Department of Thoracic SurgeryPeking University Shenzhen HospitalShenzhenGuangdong ProvinceChina
| | - Baokun Chen
- Department of Thoracic SurgeryPeking University Shenzhen HospitalShenzhenGuangdong ProvinceChina
| | - Yuancai Xie
- Department of Thoracic SurgeryPeking University Shenzhen HospitalShenzhenGuangdong ProvinceChina
| | - Yiwang Ye
- Department of Thoracic SurgeryPeking University Shenzhen HospitalShenzhenGuangdong ProvinceChina
| | - Jixian Liu
- Department of Thoracic SurgeryPeking University Shenzhen HospitalShenzhenGuangdong ProvinceChina
| |
Collapse
|
29
|
Sun D, Sahu B, Gao S, Schur RM, Vaidya AM, Maeda A, Palczewski K, Lu ZR. Targeted Multifunctional Lipid ECO Plasmid DNA Nanoparticles as Efficient Non-viral Gene Therapy for Leber's Congenital Amaurosis. MOLECULAR THERAPY. NUCLEIC ACIDS 2017. [PMID: 28624218 PMCID: PMC5363681 DOI: 10.1016/j.omtn.2017.02.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Development of a gene delivery system with high efficiency and a good safety profile is essential for successful gene therapy. Here we developed a targeted non-viral delivery system using a multifunctional lipid ECO for treating Leber’s congenital amaurosis type 2 (LCA2) and tested this in a mouse model. ECO formed stable nanoparticles with plasmid DNA (pDNA) at a low amine to phosphate (N/P) ratio and mediated high gene transfection efficiency in ARPE-19 cells because of their intrinsic properties of pH-sensitive amphiphilic endosomal escape and reductive cytosolic release (PERC). All-trans-retinylamine, which binds to interphotoreceptor retinoid-binding protein (IRBP), was incorporated into the nanoparticles via a polyethylene glycol (PEG) spacer for targeted delivery of pDNA into the retinal pigmented epithelium. The targeted ECO/pDNA nanoparticles provided high GFP expression in the RPE of 1-month-old Rpe65−/− mice after subretinal injection. Such mice also exhibited a significant increase in electroretinographic activity, and this therapeutic effect continued for at least 120 days. A safety study in wild-type BALB/c mice indicated no irreversible retinal damage following subretinal injection of these targeted nanoparticles. All-trans-retinylamine-modified ECO/pDNA nanoparticles provide a promising non-viral platform for safe and effective treatment of RPE-specific monogenic eye diseases such as LCA2.
Collapse
Affiliation(s)
- Da Sun
- Case Center for Biomolecular Engineering and Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Bhubanananda Sahu
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Songqi Gao
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44140, USA
| | - Rebecca M Schur
- Case Center for Biomolecular Engineering and Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Amita M Vaidya
- Case Center for Biomolecular Engineering and Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Akiko Maeda
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Krzysztof Palczewski
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44140, USA
| | - Zheng-Rong Lu
- Case Center for Biomolecular Engineering and Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|