1
|
Lisi S, Malerba F, Quaranta P, Florio R, Vitaloni O, Monaca E, Bruni Ercole B, Bitonti AR, Del Perugia O, Mignanelli M, Perrera P, Sabbatella R, Raimondi F, Piazza CR, Moles A, Alfano C, Pistello M, Cattaneo A. Selection and characterization of human scFvs targeting the SARS-CoV-2 nucleocapsid protein isolated from antibody libraries of COVID-19 patients. Sci Rep 2024; 14:15864. [PMID: 38982108 PMCID: PMC11233501 DOI: 10.1038/s41598-024-66558-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024] Open
Abstract
In 2019, the novel SARS-CoV-2 coronavirus emerged in China, causing the pneumonia named COVID-19. At the beginning, all research efforts were focused on the spike (S) glycoprotein. However, it became evident that the nucleocapsid (N) protein is pivotal in viral replication, genome packaging and evasion of the immune system, is highly immunogenic, which makes it another compelling target for antibody development alongside the spike protein. This study focused on the construction of single chain fragments variable (scFvs) libraries from SARS-CoV-2-infected patients to establish a valuable, immortalized and extensive antibodies source. We used the Intracellular Antibody Capture Technology to select a panel of scFvs against the SARS-CoV-2 N protein. The whole panel of scFv was expressed and characterized both as intrabodies and recombinant proteins. ScFvs were then divided into 2 subgroups: those that exhibited high binding activity to N protein when expressed in yeast or in mammalian cells as intrabodies, and those purified as recombinant proteins, displaying affinity for recombinant N protein in the nanomolar range. This panel of scFvs against the N protein represents a novel platform for research and potential diagnostic applications.
Collapse
Affiliation(s)
- Simonetta Lisi
- Bio@SNS Laboratory, Scuola Normale Superiore, 56126, Pisa, Italy
| | - Francesca Malerba
- Fondazione EBRI (European Brain Research Institute) Rita Levi-Montalcini, 00161, Rome, Italy
| | - Paola Quaranta
- Retrovirus Centre, Department of Translational Research, University of Pisa, 56126, Pisa, Italy
- Virology Operative Unit, Pisa University Hospital, 56124, Pisa, Italy
| | - Rita Florio
- Fondazione EBRI (European Brain Research Institute) Rita Levi-Montalcini, 00161, Rome, Italy
| | - Ottavia Vitaloni
- Bio@SNS Laboratory, Scuola Normale Superiore, 56126, Pisa, Italy
| | - Elisa Monaca
- Structural Biology and Biophysics Unit, Fondazione Ri.MED, 90133, Palermo, Italy
| | - Bruno Bruni Ercole
- Fondazione EBRI (European Brain Research Institute) Rita Levi-Montalcini, 00161, Rome, Italy
| | | | - Olga Del Perugia
- Bio@SNS Laboratory, Scuola Normale Superiore, 56126, Pisa, Italy
| | | | - Paola Perrera
- Retrovirus Centre, Department of Translational Research, University of Pisa, 56126, Pisa, Italy
| | - Raffaele Sabbatella
- Structural Biology and Biophysics Unit, Fondazione Ri.MED, 90133, Palermo, Italy
| | | | - Carmen Rita Piazza
- Retrovirus Centre, Department of Translational Research, University of Pisa, 56126, Pisa, Italy
- Department of Medical Biotechnologies, University of Siena, 53100, Siena, Italy
| | - Anna Moles
- Genomnia Srl, 20091, Bresso, MI, Italy
- Institute of Biochemistry and Cell Biology, CNR, 80131, Napoli, Italy
| | - Caterina Alfano
- Structural Biology and Biophysics Unit, Fondazione Ri.MED, 90133, Palermo, Italy
| | - Mauro Pistello
- Retrovirus Centre, Department of Translational Research, University of Pisa, 56126, Pisa, Italy
- Virology Operative Unit, Pisa University Hospital, 56124, Pisa, Italy
| | - Antonino Cattaneo
- Bio@SNS Laboratory, Scuola Normale Superiore, 56126, Pisa, Italy.
- Fondazione EBRI (European Brain Research Institute) Rita Levi-Montalcini, 00161, Rome, Italy.
| |
Collapse
|