1
|
Banihashemian SA, Zamanlui Benisi S, Hosseinzadeh S, Shojaei S, Abbaszadeh HA. Chitosan/Hyaluronan and Alginate-Nanohydroxyapatite Biphasic Scaffold as a Promising Matrix for Osteoarthritis Disorders. Adv Pharm Bull 2024; 14:176-191. [PMID: 38585453 PMCID: PMC10997938 DOI: 10.34172/apb.2024.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 06/24/2023] [Accepted: 07/19/2023] [Indexed: 04/09/2024] Open
Abstract
Purpose Regenerative medicine offers new techniques for osteoarthritis (OA) disorders, especially while considering simultaneous chondral and subchondral regenerations. Methods Chitosan and hyaluronan were chemically bound as the chondral phase and the osteogenic layer was prepared with alginate and nano-hydroxyapatite (nHAP). These scaffolds were fixed by fibrin glue as a biphasic scaffold and then examined. Results Scanning electron microscopy (SEM) confirmed the porosity of 61.45±4.51 and 44.145±2.81 % for the subchondral and chondral layers, respectively. The composition analysis by energy dispersive X-ray (EDAX) indicated the various elements of both hydrogels. Also, their mechanical properties indicated that the highest modulus and resistance values corresponded to the biphasic hydrogel as 108.33±5.56 and 721.135±8.21 kPa, despite the same strain value as other groups. Their individual examinations demonstrated the proteoglycan synthesis of the chondral layer and also, the alkaline phosphatase (ALP) activity of the subchondral layer as 13.3±2.2 ng. After 21 days, the cells showed a mineralized surface and a polygonal phenotype, confirming their commitment to bone and cartilage tissues, respectively. Immunostaining of collagen I and II represented greater extracellular matrix (ECM) secretion in the biphasic composite group due to the paracrine effect of the two cell types on each other. Conclusion For the first time, the ability of this biphasic scaffold to regenerate both tissue types was evaluated and the results showed satisfactory cellular commitment to bone and cartilage tissues. Thus, this scaffold can be considered a new strategy for the preparation of implants for OA.
Collapse
Affiliation(s)
- Seyed Abdolvahab Banihashemian
- Advanced Medical Sciences and Technologies Department, Faculty of Biomedical Engineering, Central Tehran Branch Islamic Azad University, Tehran, Iran
| | - Soheila Zamanlui Benisi
- Stem Cell Research Center, Tissue Engineering and Regenerative Medicine Institute, Tehran Central Branch, Islamic Azad University, Tehran, Iran
| | - Simzar Hosseinzadeh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahrokh Shojaei
- Islamic Azad University Central Tehran Branch, Department of Biomedical Engineering, Tehran, Iran
| | - Hojjat Allah Abbaszadeh
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Riahinezhad H, Amsden BG. In situ forming, mechanically resilient hydrogels prepared from 4a-[PEG- b-PTMC-Ac] and thiolated chondroitin sulfate for nucleus pulposus cell delivery. J Mater Chem B 2024; 12:1257-1270. [PMID: 38167961 DOI: 10.1039/d3tb02574h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Intervertebral disk degeneration (IVDD) is a common condition that causes severe back pain and affects patients' mobility and life quality considerably. IVDD originates within the central region of the disk called the nucleus pulposus (NP). Removing the damaged tissue and replacing it with NP cells (NPCs) delivered within an in situ forming hydrogel is a promising treatment approach. Herein we describe a hydrogel formulation based on 4-arm [poly(ethylene glycol)-b-poly(trimethylene carbonate)-acrylate] (4a[PEG-b-PTMC-Ac]) crosslinked with thiolated chondroitin sulfate via Michael-type reaction for this purpose. A library of hydrogels based on 15 kDa 4a-[PEG] with PTMC blocks of varying molecular weight were prepared and characterized. The instantaneous moduli of the hydrogels were adjustable from 24 to 150 kPa depending on the length of the PTMC block and the polymer volume fraction. The influence of each of these parameters was effectively explained using both scaling or mean field theories of polyelectrolyte hydrogels. The hydrogels were resistant to cyclic compressive loading and degraded gradually over 70 days in vitro. A hydrogel formulation with an instantaneous modulus at the high end of the range of values reported for human NP tissue was chosen to assess the ability of these hydrogels for delivering NPCs. The prepolymer solution was injectable and formed a hydrogel within 30 minutes at 37 °C. Bovine NPCs were encapsulated within this hydrogel with high viability and proliferated throughout a 28 day, hypoxic culture period. The encapsulated NPCs formed clusters and deposited collagen type II but no collagen type I within the hydrogels. Despite an initial gradual decrease, a steady-state modulus was reached at the end of the 28 day culture period that was within the range reported for healthy human NP tissue. This in situ forming hydrogel formulation is a promising approach and with further development could be a viable clinical treatment for IVDD.
Collapse
Affiliation(s)
- Hossein Riahinezhad
- Department of Chemical Engineering, Queen's University, Kingston, ON, Canada.
| | - Brian G Amsden
- Department of Chemical Engineering, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
3
|
Brissenden AJ, Amsden BG. In situ forming macroporous biohybrid hydrogel for nucleus pulposus cell delivery. Acta Biomater 2023; 170:169-184. [PMID: 37598793 DOI: 10.1016/j.actbio.2023.08.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/01/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
Degenerative intervertebral disc disease is a common source of chronic pain and reduced quality of life in people over the age of 40. While degeneration occurs throughout the disc, it most often initiates in the nucleus pulposus (NP). Minimally invasive delivery of NP cells within hydrogels that can restore and maintain the disc height while regenerating the damaged NP tissue is a promising treatment strategy for this condition. Towards this goal, a biohybrid ABA dimethacrylate triblock copolymer was synthesized, possessing a lower critical solution temperature below 37 °C and which contained as its central block an MMP-degradable peptide flanked by poly(trimethylene carbonate) blocks bearing pendant oligoethylene glycol groups. This triblock prepolymer was used to form macroporous NP cell-laden hydrogels via redox initiated (ammonium persulfate/sodium bisulfite) crosslinking, with or without the inclusion of thiolated chondroitin sulfate. The resulting macroporous hydrogels had water and mechanical properties similar to those of human NP tissue and were mechanically resilient. The hydrogels supported NP cell attachment and growth over 28 days in hypoxic culture. In hydrogels prepared with the triblock copolymer but without the chondroitin sulfate the NP cells were distributed homogeneously throughout in clusters and deposited collagen type II and sulfated glycosaminoglycans but not collagen type I. This hydrogel formulation warrants further investigation as a cell delivery vehicle to regenerate degenerated NP tissue. STATEMENT OF SIGNIFICANCE: The intervertebral disc between the vertebral bones of the spine consists of three regions: a gel-like central nucleus pulposus (NP) within the annulus fibrosis, and bony endplates. Degeneration of the intervertebral disc is a source of chronic pain in the elderly and most commonly initiates in the NP. Replacement of degenerated NP tissue with a NP cell-laden hydrogel is a promising treatment strategy. Herein we demonstrate that a crosslinkable polymer with a lower critical solution temperature below 37 °C can be used to form macroporous hydrogels for this purpose. The hydrogels are capable of supporting NP cells, which deposit collagen II and sulfated glycosaminoglycans, while also possessing mechanical properties matching those of human NP tissue.
Collapse
Affiliation(s)
- Amanda J Brissenden
- Department of Chemical Engineering, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Brian G Amsden
- Department of Chemical Engineering, Queen's University, Kingston, ON, Canada K7L 3N6.
| |
Collapse
|
4
|
Schiavi A, Cuccaro R, Troia A. Functional mechanical attributes of natural and synthetic gel-based scaffolds in tissue engineering: strain-stiffening effects on apparent elastic modulus and compressive toughness. J Mech Behav Biomed Mater 2022; 126:105066. [PMID: 35008012 DOI: 10.1016/j.jmbbm.2021.105066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 12/14/2021] [Accepted: 12/24/2021] [Indexed: 12/18/2022]
Abstract
The accurate identification and determination of elastic modulus and toughness, as well as other functional mechanical attributes of artificial tissues, are of paramount importance in several fields of tissue science, tissue engineering and technology, since biomechanical and biophysical behavior is strongly linked to biological features of the medical implants and tissue-engineering scaffolds. When soft or ultra-soft materials are investigated, a relevant dispersion of elastic modulus values can be achieved, due to the strain-stiffening effects, inducing a typical non-linear behavior of these materials, as a function of strain-range. In this short communication, the Apparent elastic modulus strain-range dependence is estimated from a segmentation of the strain stiffening curve, and the related compressive toughness is investigated and discussed, based on experimental evidence, for 6 different kinds of gels, used for artificial tissue fabrication; experimental results are compared to mechanical properties of native human tissues.
Collapse
Affiliation(s)
- Alessandro Schiavi
- INRiM - Istituto Nazionale di Ricerca Metrologica, Strada Delle Cacce 91, 10135, Torino, Italy.
| | - Rugiada Cuccaro
- INRiM - Istituto Nazionale di Ricerca Metrologica, Strada Delle Cacce 91, 10135, Torino, Italy.
| | - Adriano Troia
- INRiM - Istituto Nazionale di Ricerca Metrologica, Strada Delle Cacce 91, 10135, Torino, Italy.
| |
Collapse
|
5
|
Yu W, Maynard E, Chiaradia V, Arno MC, Dove AP. Aliphatic Polycarbonates from Cyclic Carbonate Monomers and Their Application as Biomaterials. Chem Rev 2021; 121:10865-10907. [DOI: 10.1021/acs.chemrev.0c00883] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wei Yu
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
| | - Edward Maynard
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
| | - Viviane Chiaradia
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
| | - Maria C. Arno
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, B15 2TT U.K
| | - Andrew P. Dove
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
| |
Collapse
|
6
|
Hyaluronic acid and chondroitin sulfate (meth)acrylate-based hydrogels for tissue engineering: Synthesis, characteristics and pre-clinical evaluation. Biomaterials 2020; 268:120602. [PMID: 33360302 DOI: 10.1016/j.biomaterials.2020.120602] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022]
Abstract
Hydrogels based on photocrosslinkable Hyaluronic Acid Methacrylate (HAMA) and Chondroitin Sulfate Methacrylate (CSMA) are presently under investigation for tissue engineering applications. HAMA and CSMA gels offer tunable characteristics such as tailorable mechanical properties, swelling characteristics, and enzymatic degradability. This review gives an overview of the scientific literature published regarding the pre-clinical development of covalently crosslinked hydrogels that (partially) are based on HAMA and/or CSMA. Throughout the review, recommendations for the next steps in clinical translation of hydrogels based on HAMA or CSMA are made and potential pitfalls are defined. Specifically, a myriad of different synthetic routes to obtain polymerizable hyaluronic acid and chondroitin sulfate derivatives are described. The effects of important parameters such as degree of (meth)acrylation and molecular weight of the synthesized polymers on the formed hydrogels are discussed and useful analytical techniques for their characterization are summarized. Furthermore, the characteristics of the formed hydrogels including their enzymatic degradability are discussed. Finally, a summary of several recent applications of these hydrogels in applied fields such as cartilage and cardiac regeneration and advanced tissue modelling is presented.
Collapse
|
7
|
Farhat W, Chatelain F, Marret A, Faivre L, Arakelian L, Cattan P, Fuchs A. Trends in 3D bioprinting for esophageal tissue repair and reconstruction. Biomaterials 2020; 267:120465. [PMID: 33129189 DOI: 10.1016/j.biomaterials.2020.120465] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 02/08/2023]
Abstract
In esophageal pathologies, such as esophageal atresia, cancers, caustic burns, or post-operative stenosis, esophageal replacement is performed by using parts of the gastrointestinal tract to restore nutritional autonomy. However, this surgical procedure most often does not lead to complete functional recovery and is instead associated with many complications resulting in a decrease in the quality of life and survival rate. Esophageal tissue engineering (ETE) aims at repairing the defective esophagus and is considered as a promising therapeutic alternative. Noteworthy progress has recently been made in the ETE research area but strong challenges remain to replicate the structural and functional integrity of the esophagus with the approaches currently being developed. Within this context, 3D bioprinting is emerging as a new technology to facilitate the patterning of both cellular and acellular bioinks into well-organized 3D functional structures. Here, we present a comprehensive overview of the recent advances in tissue engineering for esophageal reconstruction with a specific focus on 3D bioprinting approaches in ETE. Current biofabrication techniques and bioink features are highlighted, and these are discussed in view of the complexity of the native esophagus that the designed substitute needs to replace. Finally, perspectives on recent strategies for fabricating other tubular organ substitutes via 3D bioprinting are discussed briefly for their potential in ETE applications.
Collapse
Affiliation(s)
- Wissam Farhat
- Université de Paris, Inserm, U976 HIPI, F-75006, Paris, France; AP-HP, Hôpital Saint-Louis, 1 avenue Vellefaux, F-75010, Paris, France; CEA, IRIG, F-38000, Grenoble, France
| | - François Chatelain
- Université de Paris, Inserm, U976 HIPI, F-75006, Paris, France; AP-HP, Hôpital Saint-Louis, 1 avenue Vellefaux, F-75010, Paris, France; CEA, IRIG, F-38000, Grenoble, France
| | - Auriane Marret
- Université de Paris, Inserm, U976 HIPI, F-75006, Paris, France; AP-HP, Hôpital Saint-Louis, 1 avenue Vellefaux, F-75010, Paris, France; CEA, IRIG, F-38000, Grenoble, France
| | - Lionel Faivre
- Université de Paris, Inserm, U976 HIPI, F-75006, Paris, France; Assistance Publique - Hôpitaux de Paris, Unité de Thérapie Cellulaire, Hôpital Saint-Louis, Paris, France
| | - Lousineh Arakelian
- Université de Paris, Inserm, U976 HIPI, F-75006, Paris, France; Assistance Publique - Hôpitaux de Paris, Unité de Thérapie Cellulaire, Hôpital Saint-Louis, Paris, France
| | - Pierre Cattan
- Université de Paris, Inserm, U976 HIPI, F-75006, Paris, France; Assistance Publique - Hôpitaux de Paris, Service de Chirurgie Digestive, Hôpital Saint-Louis, Paris, France
| | - Alexandra Fuchs
- Université de Paris, Inserm, U976 HIPI, F-75006, Paris, France; AP-HP, Hôpital Saint-Louis, 1 avenue Vellefaux, F-75010, Paris, France; CEA, IRIG, F-38000, Grenoble, France.
| |
Collapse
|
8
|
Young SA, Flynn LE, Amsden BG. Adipose-Derived Stem Cells in a Resilient In Situ Forming Hydrogel Modulate Macrophage Phenotype. Tissue Eng Part A 2018; 24:1784-1797. [DOI: 10.1089/ten.tea.2018.0093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Stuart A. Young
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada
- Human Mobility Research Centre, Queen's University, Kingston, Ontario, Canada
| | - Lauren E. Flynn
- Department of Chemical and Biochemical Engineering and The University of Western Ontario, London, Ontario, Canada
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, Canada
| | - Brian G. Amsden
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada
- Human Mobility Research Centre, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
9
|
Meng Z, Chao Y, Zhou X, Liang C, Liu J, Zhang R, Cheng L, Yang K, Pan W, Zhu M, Liu Z. Near-Infrared-Triggered in Situ Gelation System for Repeatedly Enhanced Photothermal Brachytherapy with a Single Dose. ACS NANO 2018; 12:9412-9422. [PMID: 30148960 DOI: 10.1021/acsnano.8b04544] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Brachytherapy by the placing of therapeutic radioactive materials into or near tumors has been widely used in a clinical setting for cancer treatment. The efficacy of brachytherapy, however, may often be limited by the radiation resistance for tumor cells located in the hypoxic region of a solid tumor as well as the non-optimal distribution of radioactivity inside the tumor. Herein, a hybrid hydrogel system is developed by using 131I-labeled copper sulfide (CuS/131I) nanoparticles as the photothermal- and radiotherapeutic agent, poly(ethylene glycol) double acrylates (PEGDA) as the polymeric matrix, and 2,2'-azobis[2-(2-imidazolin-2-yl) propane] dihydrochloride (AIPH) as the thermal initiator to realize light-induced in situ gelation in the tumor for the combined photothermal brachytherapy. After local injection, CuS/131I nanoparticles under irradiation by the 915 nm near-infrared (NIR) laser would produce heat to mildly raise the tumor temperature and initiate the polymerization of PEGDA by activating the AIPH thermal initiator, effectively fixing CuS/131I by in situ gelation within the tumor for the long term. By the repeated NIR irradiation of tumors, the tumor hypoxia could be relieved for a much-longer term, resulting in a significant synergistic photothermal brachytherapeutic effect to eliminate tumors. This work presents an efficient type of NIR-responsive nanoparticle-encapsulated hydrogel system, inspiring the design of a form of brachytherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science , Shandong Normal University , Jinan 250014 , China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering , Donghua University , Shanghai 201620 , China
| | | |
Collapse
|
10
|
Radwan-Pragłowska J, Piątkowski M, Kitala D, Janus Ł, Klama-Baryła A, Łabuś W, Tomanek E, Glik J, Matysek D, Bogdał D, Kawecki M. Microwave-assisted synthesis and characterization of bioactive chitosan scaffolds doped with Au nanoparticles for mesenchymal stem cells culture. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2018.1445632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Julia Radwan-Pragłowska
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Cracow, Poland
| | - Marek Piątkowski
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Cracow, Poland
| | - Diana Kitala
- Dr Stanislaw Sakiel Center for Burns Treatment, Siemianowice Slaskie, Poland
| | - Łukasz Janus
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Cracow, Poland
| | | | - Wojciech Łabuś
- Dr Stanislaw Sakiel Center for Burns Treatment, Siemianowice Slaskie, Poland
| | - Ewa Tomanek
- Dr Stanislaw Sakiel Center for Burns Treatment, Siemianowice Slaskie, Poland
| | - Justyna Glik
- Dr Stanislaw Sakiel Center for Burns Treatment, Siemianowice Slaskie, Poland
- Department of Chronic Wounds Management Organization, School of Health Science in Katowice, Medical University of Silesia, Katowice, Poland
| | - Dalibor Matysek
- Institute of Clean Technologies for Mining and Utilization of Raw Materials for Energy Use, Faculty of Mining and Geology, Technical University of Ostrava, Ostrava-Poruba, Czech Republic
| | - Dariusz Bogdał
- Dr Stanislaw Sakiel Center for Burns Treatment, Siemianowice Slaskie, Poland
| | - Marek Kawecki
- Dr Stanislaw Sakiel Center for Burns Treatment, Siemianowice Slaskie, Poland
- Department of Health Sciences, Technical-Humanistic Academy, Bielsko-Biala, Poland
| |
Collapse
|
11
|
Can we achieve the perfect injectable scaffold for cell therapy? Future Sci OA 2018; 4:FSO284. [PMID: 29682319 PMCID: PMC5905605 DOI: 10.4155/fsoa-2017-0153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 12/31/2022] Open
|
12
|
Young SA, Sherman SE, Cooper TT, Brown C, Anjum F, Hess DA, Flynn LE, Amsden BG. Mechanically resilient injectable scaffolds for intramuscular stem cell delivery and cytokine release. Biomaterials 2018; 159:146-160. [PMID: 29324306 DOI: 10.1016/j.biomaterials.2018.01.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/24/2017] [Accepted: 01/03/2018] [Indexed: 12/17/2022]
Abstract
A promising strategy for treating peripheral ischemia involves the delivery of stem cells to promote angiogenesis through paracrine signaling. Treatment success depends on cell localization, retention, and survival within the mechanically dynamic intramuscular (IM) environment. Herein we describe an injectable, in situ-gelling hydrogel for the IM delivery of adipose-derived stem/stromal cells (ASCs), specifically designed to withstand the dynamic loading conditions of the lower limb and facilitate cytokine release from encapsulated cells. Copolymers of poly(trimethylene carbonate)-b-poly(ethylene glycol)-b-poly(trimethylene carbonate) diacrylate were used to modulate the properties of methacrylated glycol chitosan hydrogels crosslinked by thermally-initiated polymerization using ammonium persulfate and N,N,N',N'-tetramethylethylenediamine. The scaffolds had an ultimate compressive strain over 75% and maintained mechanical properties during compressive fatigue testing at physiological levels. Rapid crosslinking (<3 min) was achieved at low initiator concentration (5 mM). Following injection and crosslinking within the scaffolds, human ASCs demonstrated high viability (>90%) over two weeks in culture under both normoxia and hypoxia. Release of angiogenic and chemotactic cytokines was enhanced from encapsulated cells under sustained hypoxia, in comparison to normoxic and tissue culture polystyrene controls. When delivered by IM injection in a mouse model of hindlimb ischemia, human ASCs were well retained in the scaffold over 28 days and significantly increased the IM vascular density compared to untreated controls.
Collapse
Affiliation(s)
- Stuart A Young
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, K7L 3N6, Canada; Human Mobility Research Centre, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Stephen E Sherman
- Krembil Centre for Stem Cell Biology, Molecular Medicine Research Laboratories, Robarts Research Institute, London, Ontario, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Tyler T Cooper
- Krembil Centre for Stem Cell Biology, Molecular Medicine Research Laboratories, Robarts Research Institute, London, Ontario, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Cody Brown
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, N6A 3K7, Canada
| | - Fraz Anjum
- Pharmaceutical Production Research Facility, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - David A Hess
- Krembil Centre for Stem Cell Biology, Molecular Medicine Research Laboratories, Robarts Research Institute, London, Ontario, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Lauren E Flynn
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, N6A 3K7, Canada; Department of Chemical and Biochemical Engineering, Thompson Engineering Building, The University of Western Ontario, London, Ontario, N6A 5B9, Canada.
| | - Brian G Amsden
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, K7L 3N6, Canada; Human Mobility Research Centre, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
13
|
Mollet BB, Spaans S, Fard PG, Bax NAM, Bouten CVC, Dankers PYW. Mechanically Robust Electrospun Hydrogel Scaffolds Crosslinked via Supramolecular Interactions. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201700053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/16/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Björne B. Mollet
- Department of Biomedical Engineering; Laboratory of Chemical Biology; Institute for Complex Molecular Systems; Eindhoven University of Technology; P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Sergio Spaans
- Department of Biomedical Engineering; Laboratory for Cell and Tissue Engineering; Institute for Complex Molecular Systems; Eindhoven University of Technology; P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Parinaz Goodarzy Fard
- Department of Biomedical Engineering; Laboratory of Chemical Biology; Institute for Complex Molecular Systems; Eindhoven University of Technology; P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Noortje A. M. Bax
- Department of Biomedical Engineering; Laboratory for Cell and Tissue Engineering; Institute for Complex Molecular Systems; Eindhoven University of Technology; P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Carlijn V. C. Bouten
- Department of Biomedical Engineering; Laboratory for Cell and Tissue Engineering; Institute for Complex Molecular Systems; Eindhoven University of Technology; P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Patricia Y. W. Dankers
- Department of Biomedical Engineering; Laboratory of Chemical Biology; Institute for Complex Molecular Systems; Eindhoven University of Technology; P.O. Box 513 5600 MB Eindhoven The Netherlands
- Department of Biomedical Engineering; Laboratory for Cell and Tissue Engineering; Institute for Complex Molecular Systems; Eindhoven University of Technology; P.O. Box 513 5600 MB Eindhoven The Netherlands
| |
Collapse
|