1
|
Hadzi-Petrushev N, Stojchevski R, Jakimovska A, Stamenkovska M, Josifovska S, Stamatoski A, Sazdova I, Sopi R, Kamkin A, Gagov H, Mladenov M, Avtanski D. GLUT5-overexpression-related tumorigenic implications. Mol Med 2024; 30:114. [PMID: 39107723 PMCID: PMC11304774 DOI: 10.1186/s10020-024-00879-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024] Open
Abstract
Glucose transporter 5 (GLUT5) overexpression has gained increasing attention due to its profound implications for tumorigenesis. This manuscript provides a comprehensive overview of the key findings and implications associated with GLUT5 overexpression in cancer. GLUT5 has been found to be upregulated in various cancer types, leading to alterations in fructose metabolism and enhanced glycolysis, even in the presence of oxygen, a hallmark of cancer cells. This metabolic shift provides cancer cells with an alternative energy source and contributes to their uncontrolled growth and survival. Beyond its metabolic roles, recent research has unveiled additional aspects of GLUT5 in cancer biology. GLUT5 overexpression appears to play a critical role in immune evasion mechanisms, which further worsens tumor progression and complicates therapeutic interventions. This dual role of GLUT5 in both metabolic reprogramming and immune modulation highlights its significance as a potential diagnostic marker and therapeutic target. Understanding the molecular mechanisms driving GLUT5 overexpression is crucial for developing targeted therapeutic strategies that can disrupt the unique vulnerabilities of GLUT5-overexpressing cancer cells. This review emphasizes the complexities surrounding GLUT5's involvement in cancer and underscores the pressing need for continued research to unlock its potential as a diagnostic biomarker and therapeutic target, ultimately improving cancer management and patient outcomes.
Collapse
Affiliation(s)
- Nikola Hadzi-Petrushev
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, 1000, North Macedonia
| | - Radoslav Stojchevski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, 110 E 59th Street, New York, NY, 10022, USA
- Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA
| | - Anastasija Jakimovska
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, 1000, North Macedonia
| | - Mimoza Stamenkovska
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, 1000, North Macedonia
| | - Slavica Josifovska
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, 1000, North Macedonia
| | - Aleksandar Stamatoski
- Faculty of Dental Medicine, University Clinic for Maxillofacial Surgery in Skopje, Ss. Cyril and Methodius University, Skopje, 1000, North Macedonia
| | - Iliyana Sazdova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University 'St. Kliment Ohridski', Sofia, 1504, Bulgaria
| | - Ramadan Sopi
- Faculty of Medicine, University of Prishtina, Prishtina, 10 000, Kosovo
| | - Andre Kamkin
- Institute of Physiology of the Federal State Autonomous Educational Institution of Higher Education "N.I. Pirogov Russian National Research Medical University" Ministry of Health, Moscow, Russian Federation
| | - Hristo Gagov
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University 'St. Kliment Ohridski', Sofia, 1504, Bulgaria
| | - Mitko Mladenov
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, 1000, North Macedonia
- Institute of Physiology of the Federal State Autonomous Educational Institution of Higher Education "N.I. Pirogov Russian National Research Medical University" Ministry of Health, Moscow, Russian Federation
| | - Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, 110 E 59th Street, New York, NY, 10022, USA.
- Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA.
| |
Collapse
|
2
|
Cui Y, Tian J, Wang Z, Guo H, Zhang H, Wang Z, Liu H, Song W, Liu L, Tian R, Zuo X, Ren S, Niu R, Zhang F. Fructose-Induced mTORC1 Activation Promotes Pancreatic Cancer Progression through Inhibition of Autophagy. Cancer Res 2023; 83:4063-4079. [PMID: 37738413 PMCID: PMC10722142 DOI: 10.1158/0008-5472.can-23-0464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/02/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Excessive fructose intake is associated with the occurrence, progression, and poor prognosis of various tumors. A better understanding of the mechanisms underlying the functions of fructose in cancer could facilitate the development of better treatment and prevention strategies. In this study, we investigated the functional association between fructose utilization and pancreatic ductal adenocarcinoma (PDAC) progression. Fructose could be taken up and metabolized by PDAC cells and provided an adaptive survival mechanism for PDAC cells under glucose-deficient conditions. GLUT5-mediated fructose metabolism maintained the survival, proliferation, and invasion capacities of PDAC cells in vivo and in vitro. Fructose metabolism not only provided ATP and biomass to PDAC cells but also conferred metabolic plasticity to the cells, making them more adaptable to the tumor microenvironment. Mechanistically, fructose activated the AMP-activated protein kinase (AMPK)-mTORC1 signaling pathway to inhibit glucose deficiency-induced autophagic cell death. Moreover, the fructose-specific transporter GLUT5 was highly expressed in PDAC tissues and was an independent marker of disease progression in patients with PDAC. These findings provide mechanistic insights into the role of fructose in promoting PDAC progression and offer potential strategies for targeting metabolism to treat PDAC. SIGNIFICANCE Fructose activates AMPK-mTORC1 signaling to inhibit autophagy-mediated cell death in pancreatic cancer cells caused by glucose deficiency, facilitating metabolic adaptation to the tumor microenvironment and supporting tumor growth.
Collapse
Affiliation(s)
- Yanfen Cui
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jianfei Tian
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhaosong Wang
- Laboratory Animal Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Hui Guo
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - He Zhang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhiyong Wang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Hui Liu
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Weijie Song
- Laboratory Animal Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Liming Liu
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ruinan Tian
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xiaoyan Zuo
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Sixin Ren
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ruifang Niu
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Fei Zhang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
3
|
Song A, Mao Y, Wei H. GLUT5: structure, functions, diseases and potential applications. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1519-1538. [PMID: 37674366 PMCID: PMC10582729 DOI: 10.3724/abbs.2023158] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/19/2023] [Indexed: 09/08/2023] Open
Abstract
Glucose transporter 5 (GLUT5) is a membrane transporter that specifically transports fructose and plays a key role in dietary fructose uptake and metabolism. In recent years, a high fructose diet has occupied an important position in the daily intake of human beings, resulting in a significant increase in the incidence of obesity and metabolic diseases worldwide. Over the past few decades, GLUT5 has been well understood to play a significant role in the pathogenesis of human digestive diseases. Recently, the role of GLUT5 in human cancer has received widespread attention, and a large number of studies have focused on exploring the effects of changes in GLUT5 expression levels on cancer cell survival, metabolism and metastasis. However, due to various difficulties and shortcomings, the molecular structure and mechanism of GLUT5 have not been fully elucidated, which to some extent prevents us from revealing the relationship between GLUT5 expression and cell carcinogenesis at the protein molecular level. In this review, we summarize the current understanding of the structure and function of mammalian GLUT5 and its relationship to intestinal diseases and cancer and suggest that GLUT5 may be an important target for cancer therapy.
Collapse
Affiliation(s)
- Aqian Song
- Department of GastroenterologyBeijing Ditan HospitalCapital Medical UniversityBeijing100015China
| | - Yuanpeng Mao
- Department of GastroenterologyPeking University Ditan Teaching HospitalBeijing100015China
| | - Hongshan Wei
- Department of GastroenterologyBeijing Ditan HospitalCapital Medical UniversityBeijing100015China
- Department of GastroenterologyPeking University Ditan Teaching HospitalBeijing100015China
| |
Collapse
|
4
|
Hsu WH, Ku CL, Lai YR, Wang SSS, Chou SH, Lin TH. Developing targeted drug delivery carriers for breast cancer using glutathione-sensitive doxorubicin-coupled glycated bovine serum albumin nanoparticles. Int J Biol Macromol 2023; 249:126114. [PMID: 37541475 DOI: 10.1016/j.ijbiomac.2023.126114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Incorporation of the nano-based carriers into drug delivery provides a promising alternative to overcome the limitations of the conventional chemotherapy. Doxorubicin (DOXO) is an effective chemotherapeutic drug widely used in chemotherapy for breast cancer treatment. A globular protein bovine serum albumin (BSA) holds great potential as carriers in pharmaceutical applications. This work is aimed at developing the DOXO-coupled glycated BSA nanoparticles via desolvation method for improving the capability of targeting the GLUT5 transporters over-expressed on breast cancer cells. Fructosamine assay and Fourier transform infrared spectroscopy were employed to determine the content of fructosamine structure and structural changes on the surfaces of nanoparticles, respectively. Additionally, the synthesized BSA nanoparticles were further characterized by electron microscopy and dynamic light scattering. Results revealed that the DOXO-coupled glycated BSA nanoparticles were spherically shaped with a hydrodynamic diameter of ~60.74 nm and a ζ-potential of ~ - 42.20 mV. Moreover, the DOXO release behavior of as-synthesized DOXO-coupled glycated BSA nanoparticles was examined under different conditions. Finally, the DOXO-coupled glycated BSA nanoparticles were found to exhibit cytotoxicity toward both MCF-7 and MDA-MB-231 cells. Our findings evidently suggested that the drug-coupled glycated BSA nanoparticles serve as the potential candidates for targeted drug delivery platform used in breast cancer therapy.
Collapse
Affiliation(s)
- Wei-Hsiang Hsu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chien-Liang Ku
- Department of Life Science, Fu-Jen Catholic University, Xinzhuang Dist., New Taipei City 24205, Taiwan
| | - You-Ren Lai
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Steven S-S Wang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| | - Shiu-Huey Chou
- Department of Life Science, Fu-Jen Catholic University, Xinzhuang Dist., New Taipei City 24205, Taiwan.
| | - Ta-Hsien Lin
- Laboratory of Nuclear Magnetic Resonance, Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan.
| |
Collapse
|
5
|
Chałaśkiewicz K, Karaś K, Zakłos-Szyda M, Karwaciak I, Pastwińska J, Koziołkiewicz M, Ratajewski M. Trichostatin a inhibits expression of the human SLC2A5 gene via SNAI1/SNAI2 transcription factors and sensitizes colon cancer cells to platinum compounds. Eur J Pharmacol 2023; 949:175728. [PMID: 37062501 DOI: 10.1016/j.ejphar.2023.175728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/29/2023] [Accepted: 04/14/2023] [Indexed: 04/18/2023]
Abstract
GLUT5, a key protein encoded by the SLC2A5 gene, is involved in the uptake of fructose from the intestine. Currently, with the increased consumption of this sugar and the associated increased incidence of obesity, diabetes and cancer, GLUT5 may represent an important molecular target in the prevention and treatment of these diseases. Here, we demonstrate that overexpression of the SNAI1 and SNAI2 transcription factors in cells expressing high levels of SLC2A5 mRNA reduced SLC2A5 gene expression. Furthermore, a histone deacetylase inhibitor, trichostatin A, which induces SNAI1 and SNAI2 expression, inhibits SLC2A5/GLUT5 expression and sensitizes colon cancer cells to cisplatin and oxaliplatin. This finding might have potential relevance for the development of therapeutic treatments aimed at modulating fructose transport or genes involved in this process for use with certain cancers.
Collapse
Affiliation(s)
- Katarzyna Chałaśkiewicz
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Lodz, Poland; Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537, Lodz, Poland
| | - Kaja Karaś
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Lodz, Poland
| | - Małgorzata Zakłos-Szyda
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537, Lodz, Poland
| | - Iwona Karwaciak
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Lodz, Poland
| | - Joanna Pastwińska
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Lodz, Poland
| | - Maria Koziołkiewicz
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537, Lodz, Poland
| | - Marcin Ratajewski
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Lodz, Poland.
| |
Collapse
|
6
|
Poly(caprolactone)- b-poly(ethylene glycol)-Based Polymeric Micelles as Drug Carriers for Efficient Breast Cancer Therapy: A Systematic Review. Polymers (Basel) 2022; 14:polym14224847. [PMID: 36432974 PMCID: PMC9698711 DOI: 10.3390/polym14224847] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/12/2022] Open
Abstract
Recently, drug delivery systems based on nanoparticles for cancer treatment have become the centre of attention for researchers to design and fabricate drug carriers for anti-cancer drugs due to the lack of tumour-targeting activity in conventional pharmaceuticals. Poly(caprolactone)-b-poly(ethylene glycol) (PCL-PEG)-based micelles have attracted significant attention as a potential drug carrier intended for human use. Since their first discovery, the Food and Drug Administration (FDA)-approved polymers have been studied extensively for various biomedical applications, specifically cancer therapy. The application of PCL-PEG micelles in different cancer therapies has been recorded in countless research studies for their efficacy as drug cargos. However, systematic studies on the effectiveness of PCL-PEG micelles of specific cancers for pharmaceutical applications are still lacking. As breast cancer is reported as the most prevalent cancer worldwide, we aim to systematically review all available literature that has published research findings on the PCL-PEG-based micelles as drug cargo for therapy. We further discussed the preparation method and the anti-tumour efficacy of the micelles. Using a prearranged search string, Scopus and Science Direct were selected as the databases for the systematic searching strategy. Only eight of the 314 articles met the inclusion requirements and were used for data synthesis. From the review, all studies reported the efficiency of PCL-PEG-based micelles, which act as drug cargo for breast cancer therapy.
Collapse
|
7
|
WITHDRAWN: Poly(caprolactone)-b-Poly(ethylene glycol)-based Polymeric Micelles as Drug Carrier for Efficient Breast Cancer Therapy: A Systematic Review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
8
|
Zhou X, Huang D, Wang R, Wu M, Zhu L, Peng W, Tu H, Deng X, Zhu H, Zhang Z, Wang X, Cao X. Targeted therapy of rheumatoid arthritis via macrophage repolarization. Drug Deliv 2021; 28:2447-2459. [PMID: 34766540 PMCID: PMC8592611 DOI: 10.1080/10717544.2021.2000679] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The polarization of macrophages plays a critical role in the physiological and pathological progression of rheumatoid arthritis (RA). Activated M1 macrophages overexpress folate receptors in arthritic joints. Hence, we developed folic acid (FA)-modified liposomes (FA-Lips) to encapsulate triptolide (TP) (FA-Lips/TP) for the targeted therapy of RA. FA-Lips exhibited significantly higher internalization efficiency in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells than liposomes (Lips) in the absence of folate. Next, an adjuvant-induced arthritis (AIA) rat model was established to explore the biodistribution profiles of FA-Lips which showed markedly selective accumulation in inflammatory paws. Moreover, FA-Lips/TP exhibited greatly improved therapeutic efficacy and low toxicity in AIA rats by targeting M1 macrophages and repolarizing macrophages from M1 to M2 subtypes. Overall, a safe FA-modified liposomal delivery system encapsulating TP was shown to achieve inflammation-targeted therapy against RA via macrophage repolarization.
Collapse
Affiliation(s)
- Xu Zhou
- Sichuan Provincial Orthopedic Hospital, Chengdu, China
| | - Dandan Huang
- Key Laboratory of Drug Targeting and Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Runkong Wang
- Sichuan Provincial Orthopedic Hospital, Chengdu, China
| | - Mingquan Wu
- Sichuan Provincial Orthopedic Hospital, Chengdu, China
| | - Liyang Zhu
- Sichuan Provincial Orthopedic Hospital, Chengdu, China
| | - Wei Peng
- Sichuan Provincial Orthopedic Hospital, Chengdu, China
| | - He Tu
- Sichuan Provincial Orthopedic Hospital, Chengdu, China
| | - Xuangeng Deng
- Sichuan Provincial Orthopedic Hospital, Chengdu, China
| | - He Zhu
- Sichuan Provincial Orthopedic Hospital, Chengdu, China
| | - Zhong Zhang
- Sichuan Provincial Orthopedic Hospital, Chengdu, China
| | - Xinming Wang
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xi Cao
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
9
|
Qin X, Xu Y, Zhou X, Gong T, Zhang ZR, Fu Y. An injectable micelle-hydrogel hybrid for localized and prolonged drug delivery in the management of renal fibrosis. Acta Pharm Sin B 2021; 11:835-847. [PMID: 33777685 PMCID: PMC7982499 DOI: 10.1016/j.apsb.2020.10.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/04/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023] Open
Abstract
Localized delivery, comparing to systemic drug administration, offers a unique alternative to enhance efficacy, lower dosage, and minimize systemic tissue toxicity by releasing therapeutics locally and specifically to the site of interests. Herein, a localized drug delivery platform ("plum‒pudding" structure) with controlled release and long-acting features is developed through an injectable hydrogel ("pudding") crosslinked via self-assembled triblock polymeric micelles ("plum") to help reduce renal interstitial fibrosis. This strategy achieves controlled and prolonged release of model therapeutics in the kidney for up to three weeks in mice. Following a single injection, local treatments containing either anti-inflammatory small molecule celastrol or anti-TGFβ antibody effectively minimize inflammation while alleviating fibrosis via inhibiting NF-κB signaling pathway or neutralizing TGF-β1 locally. Importantly, the micelle-hydrogel hybrid based localized therapy shows enhanced efficacy without local or systemic toxicity, which may represent a clinically relevant delivery platform in the management of renal interstitial fibrosis.
Collapse
Key Words
- Anti-TGFβ antibody
- BSA, bovine serum albumin
- CLT, celastrol
- Celastrol
- Controlled release
- Cy5.5-NHS, cyanine 5.5-N-hydroxysuccinimide
- DAPI, 4′,6-diamidino-2-phenylindole
- DEX, dexamethasone
- DiD, 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindodicarbocyanineperchlorate
- ECM, extracellular matrix
- EDCI, carbodiimide hydrochloride
- ESR, equilibrium swelling ratio
- FITC, fluorescein isothiocyanate
- G", the loss modulus
- G', storage modulus
- HA, hyaluronic acid
- HASH, thiolated hyaluronic acid
- Hydrogel
- IL-1β, interleukin 1β
- IL-6, interleukin 6
- Inflammation
- Localized therapy
- MOD, mean optical density
- NHS, N-hydroxysuccinimide
- PDI, polydispersity index
- RIF, renal interstitial fibrosis
- RSR, real-time swelling ratio
- Renal fibrosis
- SD, standard deviation
- SEM, scanning electron microscopy
- TEM, transmission electron microscopy
- TGF-β1, transforming growth factor β1
- TNF-α, tumor necrosis factor α
- TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labelling
- UUO, unilateral ureteral obstruction
- bis-F127-MA, bis-F127-methacrylate
- iNOS, nitric oxide synthase
- α-SMA, α-smooth muscle actin
- “Plum‒pudding” structure
Collapse
|
10
|
Promoting apical-to-basolateral unidirectional transport of nanoformulations by manipulating the nutrient-absorption pathway. J Control Release 2020; 323:151-160. [DOI: 10.1016/j.jconrel.2020.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 11/19/2022]
|
11
|
Cai L, Gu Z, Zhong J, Wen D, Chen G, He L, Wu J, Gu Z. Advances in glycosylation-mediated cancer-targeted drug delivery. Drug Discov Today 2018; 23:1126-1138. [DOI: 10.1016/j.drudis.2018.02.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/22/2018] [Accepted: 02/22/2018] [Indexed: 12/11/2022]
|
12
|
Teles RHG, Moralles HF, Cominetti MR. Global trends in nanomedicine research on triple negative breast cancer: a bibliometric analysis. Int J Nanomedicine 2018; 13:2321-2336. [PMID: 29713164 PMCID: PMC5910795 DOI: 10.2147/ijn.s164355] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Nanotechnology has emerged as a promising tool in the clinic to combat several difficult-to-manage diseases, such as cancer, which is the second leading cause of death worldwide. Chemotherapeutic drugs present several limitations such as undesired side effects, low specificity, resistance, and high relapse rates. Triple negative breast cancer (TNBC) is caused by cells that lack specific receptors in their membrane, such as estrogen (ER+) and progesterone (PR+) receptors, or by cells that do not express the amplification of human epidermal growth factor receptor-2 (HER-2+). This cancer type has poor prognosis, high relapse rates, and no targeted therapies. Thus, this study aimed to investigate the trends of nanotechnology research in TNBC and compare the contribution of research from different regions, institutions, and authors. A search of the studies published between 2012 and 2017, related to nanotechnology and TNBC, with different keyword combinations, was performed in the Scopus database. The keywords found in this search were grouped into four clusters, in which "breast cancer" was the most mentioned (1,133 times) and the word "MCF-7 cell line" is one of the latest hotspots that appeared in the year 2016. A total of 1,932 articles, which were cited 26,450 times, were identified. The USA accounted for 28.36% of the articles and 27.61% of the citations; however, none of its centers appeared in the list of 10 most productive ones in terms of publications. The journals Biomaterials and International Journal of Nanomedicine had the highest number of publications. The USA and China had the highest number of articles produced and cited; however, the highest average citation per article was from Singapore. The studies focused on the research of antineoplastic agents in animal models and cell culture, and these were the most used topics in research with nanotechnology and TNBC.
Collapse
|
13
|
Pröhl M, Seupel S, Sungur P, Höppener S, Gottschaldt M, Brendel JC, Schubert US. The influence of the grafting density of glycopolymers on the lectin binding affinity of block copolymer micelles. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.11.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|