1
|
Gupta P, Sharma A, Mittal V. Polymeric Vehicles for Nucleic Acid Delivery: Enhancing the Therapeutic Efficacy and Cellular Uptake. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2024; 18:276-293. [PMID: 39356099 DOI: 10.2174/0126673878324536240805060143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND Therapeutic gene delivery may be facilitated by the use of polymeric carriers. When combined with nucleic acids to form nanoparticles or polyplexes, a variety of polymers may shield the cargo from in vivo breakdown and clearance while also making it easier for it to enter intracellular compartments. AIM AND OBJECTIVES Polymer synthesis design choices result in a wide variety of compounds and vehicle compositions. Depending on the application, these characteristics may be changed to provide enhanced endosomal escape, longer-lasting distribution, or stronger connection with nucleic acid cargo and cells. Here, we outline current methods for delivering genes in preclinical and clinical settings using polymers. METHODOLOGY Significant therapeutic outcomes have previously been attained using genetic material- delivering polymer vehicles in both in-vitro and animal models. When combined with nucleic acids to form nanoparticles or polyplexes, a variety of polymers may shield the cargo from in vivo breakdown and clearance while also making it easier for it to enter intracellular compartments. Many innovative diagnoses for nucleic acids have been investigated and put through clinical assessment in the past 20 years. RESULTS Polymer-based carriers have additional delivery issues due to their changes in method and place of biological action, as well as variances in biophysical characteristics. We cover recent custom polymeric carrier architectures that were tuned for nucleic acid payloads such genomemodifying nucleic acids, siRNA, microRNA, and plasmid DNA. CONCLUSION In conclusion, the development of polymeric carriers for gene delivery holds promise for therapeutic applications. Through careful design and optimization, these carriers can overcome various challenges associated with nucleic acid delivery, offering new avenues for treating a wide range of diseases.
Collapse
Affiliation(s)
- Parul Gupta
- Department of Pharmaceutics, Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, 135001, India
| | - Anjali Sharma
- Department of Pharmaceutics, Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, 135001, India
| | - Vishnu Mittal
- Department of Pharmaceutics, Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, 135001, India
| |
Collapse
|
2
|
Wei C, Li P, Liu L, Zhang H, Zhao T, Chen Y. Degradable Poly(amino acid) Vesicles Modulate DNA-Induced Inflammation after Traumatic Brain Injury. Biomacromolecules 2023; 24:909-920. [PMID: 36629517 DOI: 10.1021/acs.biomac.2c01334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Following brain trauma, secondary injury from molecular and cellular changes causes progressive cerebral tissue damage. Acute/chronic neuroinflammation following traumatic brain injury (TBI) is a key player in the development of secondary injury. Rapidly elevated cell-free DNAs (cfDNAs) due to cell death could lead to production of inflammatory cytokines that aggravate TBI. Herein, we designed poly(amino acid)-based cationic nanoparticles (cNPs) and applied them intravenously in a TBI mice model with the purpose of scavenging cfDNA in the brain and suppressing the acute inflammation. In turn, these cNPs could effectively eliminate endogenous cfDNA, inhibit excessive activation of inflammation, and promote neural functional recovery.
Collapse
Affiliation(s)
- Cong Wei
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Peipei Li
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Lixin Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China.,State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou 510006, Guangdong, China.,Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Hong Zhang
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China
| | - Tianyu Zhao
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Yongming Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China.,State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou 510006, Guangdong, China.,Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| |
Collapse
|
3
|
Ulkoski D, Munson MJ, Jacobson ME, Palmer CR, Carson CS, Sabirsh A, Wilson JT, Krishnamurthy VR. High-Throughput Automation of Endosomolytic Polymers for mRNA Delivery. ACS APPLIED BIO MATERIALS 2021; 4:1640-1654. [PMID: 35014512 DOI: 10.1021/acsabm.0c01463] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In recent years, there has been an increasing interest in designing delivery systems to enhance the efficacy of RNA-based therapeutics. Here, we have synthesized copolymers comprised of dimethylaminoethyl methacrylate (DMAEMA) or diethylaminoethyl methacrylate (DEAEMA) copolymerized with alkyl methacrylate monomers ranging from 2 to 12 carbons, and developed a high throughput workflow for rapid investigation of their applicability for mRNA delivery. The structure activity relationship revealed that the mRNA encapsulation efficiency is improved by increasing the cationic density and use of shorter alkyl side chains (2-6 carbons). Minimal cytotoxicity was observed when using DEAEMA-co-BMA (EB) polyplexes up to 18 h after dosing, independent of a poly(ethylene glycol) (PEG) first block. The lowest molecular weight polymer (EB10,250) performed best, exhibiting greater transfection than polyethyenimine (PEI) based upon the number of cells transfected and mean intensity. Conventional investigations into the performance of polymeric materials for mRNA delivery is quite tedious, consequently limiting the number of materials and formulation conditions that can be studied. The high throughput approach presented here can accelerate the screening of polymeric systems and paves the way for expanding this generalizable approach to assess various materials for mRNA delivery.
Collapse
Affiliation(s)
- David Ulkoski
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Boston 02451, United States
| | - Michael J. Munson
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg SE-431 83, Sweden
| | - Max E. Jacobson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Christian R. Palmer
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Carcia S. Carson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37240-0002, United States
| | - Alan Sabirsh
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg SE-431 83, Sweden
| | - John T. Wilson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37240-0002, United States
| | | |
Collapse
|
4
|
Piotrowski-Daspit AS, Kauffman AC, Bracaglia LG, Saltzman WM. Polymeric vehicles for nucleic acid delivery. Adv Drug Deliv Rev 2020; 156:119-132. [PMID: 32585159 PMCID: PMC7736472 DOI: 10.1016/j.addr.2020.06.014] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/09/2020] [Accepted: 06/13/2020] [Indexed: 12/20/2022]
Abstract
Polymeric vehicles are versatile tools for therapeutic gene delivery. Many polymers-when assembled with nucleic acids into vehicles-can protect the cargo from degradation and clearance in vivo, and facilitate its transport into intracellular compartments. Design options in polymer synthesis yield a comprehensive range of molecules and resulting vehicle formulations. These properties can be manipulated to achieve stronger association with nucleic acid cargo and cells, improved endosomal escape, or sustained delivery depending on the application. Here, we describe current approaches for polymer use and related strategies for gene delivery in preclinical and clinical applications. Polymer vehicles delivering genetic material have already achieved significant therapeutic endpoints in vitro and in animal models. From our perspective, with preclincal assays that better mimic the in vivo environment, improved strategies for target specificity, and scalable techniques for polymer synthesis, the impact of this therapeutic approach will continue to expand.
Collapse
Affiliation(s)
| | - Amy C Kauffman
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, United States of America; Corning Life Sciences, Kennebunk, ME 04043, United States of America
| | - Laura G Bracaglia
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, United States of America
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, United States of America; Department of Chemical & Environmental Engineering, Yale University, New Haven, CT 06511, United States of America; Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, United States of America; Department of Dermatology, Yale School of Medicine, New Haven, CT 06510, United States of America.
| |
Collapse
|
5
|
Song Y, Lin Q, Cai Z, Hao T, Zhang Y, Zhu X. Cysteine-rich protein 61 regulates the chemosensitivity of chronic myeloid leukemia to imatinib mesylate through the nuclear factor kappa B/Bcl-2 pathway. Cancer Sci 2019; 110:2421-2430. [PMID: 31145521 PMCID: PMC6676106 DOI: 10.1111/cas.14083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/21/2019] [Accepted: 05/28/2019] [Indexed: 12/13/2022] Open
Abstract
Although the targeted tyrosine kinase inhibitor imatinib mesylate (IM) has achieved significant responses against CML in the clinical setting, a small proportion of patients fail to respond to IM treatment and their disease continues to progress, indicating resistance to IM therapy. As a secreted extracellular matrix protein, cysteine‐rich protein 61 (Cyr61) plays an important role in the resistance of solid tumors to chemotherapy, but its role in CML is unclear. In the present study, we observed that Cyr61 levels were upregulated in the plasma and bone marrow (BM) of patients with CML as well as in K562 cells. This upregulation of Cyr61 significantly decreased IM‐induced cellular apoptosis of K562 cells through nuclear factor kappa B/B‐cell lymphoma 2 pathways. Inhibition of Cyr61 restored the chemosensitivity of K562 cells to IM both in vitro and in vivo. Thus, our results showed for the first time that Cyr61 plays an important role in regulating the chemosensitivity of CML cells to IM, suggesting that selectively targeting Cyr61 directly or its relevant effector pathways may provide potential value in improving the clinical response of patients with CML to IM treatment.
Collapse
Affiliation(s)
- Yanfang Song
- Department of Laboratory Medicine, Clinical Laboratory, The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Qing Lin
- Department of Laboratory Medicine, Clinical Laboratory, The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zhaolian Cai
- Department of Laboratory Medicine, Clinical Laboratory, The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Taisen Hao
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, USA
| | - Yaohan Zhang
- Department of Laboratory Medicine, Clinical Laboratory, The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xianjin Zhu
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|