1
|
Xia Y, Zhou H, Ou JS, Liu Y. The Potential of a New Natural Vessel Source: Decellularized Intercostal Arteries as Sufficiently Long Small-Diameter Vascular Grafts. Bioengineering (Basel) 2024; 11:700. [PMID: 39061783 PMCID: PMC11273892 DOI: 10.3390/bioengineering11070700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Small-diameter vascular grafts (SDVGs) are severely lacking in clinical settings. Therefore, our study investigates a new source of biological vessels-bovine and porcine decellularized intercostal arteries (DIAs)-as potential SDVGs. We utilized a combination of SDS and Triton X-100 to perfuse the DIAs, establishing two different time protocols. The results show that perfusing with 1% concentrations of each decellularizing agent for 48 h yields DIAs with excellent biocompatibility and mechanical properties. The porcine decellularized intercostal arteries (PDIAs) we obtained had a length of approximately 14 cm and a diameter of about 1.5 mm, while the bovine decellularized intercostal arteries (BDIAs) were about 29 cm long with a diameter of approximately 2.2 mm. Although the lengths and diameters of both the PDIAs and BDIAs are suited for coronary artery bypass grafting (CABG), as the typical diameter of autologous arteries used in CABG is about 2 mm and the grafts required are at least 10 cm long, our research indicates that BDIAs possess more ideal mechanical characteristics for CABG than PDIAs, showing significant potential. Further enhancements may be necessary to address their limited hemocompatibility.
Collapse
Affiliation(s)
- Yuan Xia
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China;
| | - Haiyun Zhou
- Department of Cardiac Surgery, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510160, China
| | - Jing-Song Ou
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China;
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-Sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yunqi Liu
- Department of Cardiac Surgery, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510160, China
| |
Collapse
|
2
|
Rosellini E, Giordano C, Guidi L, Cascone MG. Biomimetic Approaches in Scaffold-Based Blood Vessel Tissue Engineering. Biomimetics (Basel) 2024; 9:377. [PMID: 39056818 PMCID: PMC11274842 DOI: 10.3390/biomimetics9070377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Cardiovascular diseases remain a leading cause of mortality globally, with atherosclerosis representing a significant pathological means, often leading to myocardial infarction. Coronary artery bypass surgery, a common procedure used to treat coronary artery disease, presents challenges due to the limited autologous tissue availability or the shortcomings of synthetic grafts. Consequently, there is a growing interest in tissue engineering approaches to develop vascular substitutes. This review offers an updated picture of the state of the art in vascular tissue engineering, emphasising the design of scaffolds and dynamic culture conditions following a biomimetic approach. By emulating native vessel properties and, in particular, by mimicking the three-layer structure of the vascular wall, tissue-engineered grafts can improve long-term patency and clinical outcomes. Furthermore, ongoing research focuses on enhancing biomimicry through innovative scaffold materials, surface functionalisation strategies, and the use of bioreactors mimicking the physiological microenvironment. Through a multidisciplinary lens, this review provides insight into the latest advancements and future directions of vascular tissue engineering, with particular reference to employing biomimicry to create systems capable of reproducing the structure-function relationships present in the arterial wall. Despite the existence of a gap between benchtop innovation and clinical translation, it appears that the biomimetic technologies developed to date demonstrate promising results in preventing vascular occlusion due to blood clotting under laboratory conditions and in preclinical studies. Therefore, a multifaceted biomimetic approach could represent a winning strategy to ensure the translation of vascular tissue engineering into clinical practice.
Collapse
Affiliation(s)
- Elisabetta Rosellini
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy; (C.G.); (L.G.)
| | | | | | - Maria Grazia Cascone
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy; (C.G.); (L.G.)
| |
Collapse
|
3
|
Adhami M, Picco CJ, Detamornrat U, Anjani QK, Cornelius VA, Robles-Martinez P, Margariti A, Donnelly RF, Domínguez-Robles J, Larrañeta E. Clopidogrel-loaded vascular grafts prepared using digital light processing 3D printing. Drug Deliv Transl Res 2024; 14:1693-1707. [PMID: 38051475 PMCID: PMC11052781 DOI: 10.1007/s13346-023-01484-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2023] [Indexed: 12/07/2023]
Abstract
The leading cause of death worldwide and a significant factor in decreased quality of life are the cardiovascular diseases. Endovascular operations like angioplasty, stent placement, or atherectomy are often used in vascular surgery to either dilate a narrowed blood artery or remove a blockage. As an alternative, a vascular transplant may be utilised to replace or bypass a dysfunctional or blocked blood vessel. Despite the advancements in endovascular surgery and its popularisation over the past few decades, vascular bypass grafting remains prevalent and is considered the best option for patients in need of long-term revascularisation treatments. Consequently, the demand for synthetic vascular grafts composed of biocompatible materials persists. To address this need, biodegradable clopidogrel (CLOP)-loaded vascular grafts have been fabricated using the digital light processing (DLP) 3D printing technique. A mixture of polylactic acid-polyurethane acrylate (PLA-PUA), low molecular weight polycaprolactone (L-PCL), and CLOP was used to achieve the required mechanical and biological properties for vascular grafts. The 3D printing technology provides precise detail in terms of shape and size, which lead to the fabrication of customised vascular grafts. The fabricated vascular grafts were fully characterised using different techniques, and finally, the drug release was evaluated. Results suggested that the performed 3D-printed small-diameter vascular grafts containing the highest CLOP cargo (20% w/w) were able to provide a sustained drug release for up to 27 days. Furthermore, all the CLOP-loaded 3D-printed materials resulted in a substantial reduction of the platelet deposition across their surface compared to the blank materials containing no drug. Haemolysis percentage for all the 3D-printed samples was lower than 5%. Moreover, 3D-printed materials were able to provide a supportive environment for cellular attachment, viability, and growth. A substantial increase in cell growth was detected between the blank and drug-loaded grafts.
Collapse
Affiliation(s)
- Masoud Adhami
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Camila J Picco
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Usanee Detamornrat
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Qonita K Anjani
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Victoria A Cornelius
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, UK
| | | | - Andriana Margariti
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Juan Domínguez-Robles
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK.
- Department of Pharmacy and Pharmaceutical Technology, University of Seville, Seville, Spain.
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK.
| |
Collapse
|
4
|
Esmaeili J, Jalise SZ, Pisani S, Rochefort GY, Ghobadinezhad F, Mirzaei Z, Mohammed RUR, Fathi M, Tebyani A, Nejad ZM. Development and characterization of Polycaprolactone/chitosan-based scaffolds for tissue engineering of various organs: A review. Int J Biol Macromol 2024; 272:132941. [PMID: 38848842 DOI: 10.1016/j.ijbiomac.2024.132941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Research in creating 3D structures mirroring the extracellular matrix (ECM) with accurate environmental cues holds paramount significance in biological applications.Biomaterials that replicate ECM properties-mechanical, physicochemical, and biological-emerge as pivotal tools in mimicking ECM behavior.Incorporating synthetic and natural biomaterials is widely used to produce scaffolds suitable for the intended organs.Polycaprolactone (PCL), a synthetic biomaterial, boasts commendable mechanical properties, albeit with relatively modest biological attributes due to its hydrophobic nature.Chitosan (CTS) exhibits strong biological traits but lacks mechanical resilience for complex tissue regeneration.Notably, both PCL and CTS have demonstrated their application in tissue engineering for diverse types of tissues.Their combination across varying PCL:CTS ratios has increased the likelihood of fabricating scaffolds to address defects in sturdy and pliable tissues.This comprehensive analysis aspires to accentuate their distinct attributes within tissue engineering across different organs.The central focus resides in the role of PCL:CTS-based scaffolds, elucidating their contribution to the evolution of advanced functional 3D frameworks tailored for tissue engineering across diverse organs.Moreover, this discourse delves into the considerations pertinent to each organ.
Collapse
Affiliation(s)
- Javad Esmaeili
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 38156-88349, Iran; Department of Tissue Engineering, TISSUEHUB Co., Tehran, Iran; Tissue Engineering Hub (TEHUB), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Saeedeh Zare Jalise
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Silvia Pisani
- Department of Drug Sciences, University of Pavia, Via Taramelli 12,27100 Pavia, Italy
| | - Gaël Y Rochefort
- Bioengineering Biomodulation and Imaging of the Orofacial Sphere, 2BIOS, faculty of dentistry, tours university, France; UMR 1253, iBrain, Tours University, France
| | | | - Zeynab Mirzaei
- Institute for Nanotechnology and Correlative Microscopy e.V.INAM, Forchheim, Germany
| | | | - Mehdi Fathi
- Department of Esthetic and Restorative Dentistry, School of Dentistry, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Amir Tebyani
- Department of Chemical Engineering, Faculty of Engineering, Tehran University, Tehran, Iran
| | - Zohreh Mousavi Nejad
- School of Mechanical and Manufacturing Engineering, Dublin City University, D09 Y074 Dublin, Ireland; Centre for medical engineering research, school of mechanical and manufacturing engineering, Dublin city university, D09 Y074 Dublin, Ireland
| |
Collapse
|
5
|
Xiao Y, Jin X, Jia L, Li J, Zhang B, Geng X, Ye L, Zhang AY, Gu Y, Feng ZG. Long-term observation of polycaprolactone small-diameter vascular grafts with thickened outer layer and heparinized inner layer in rabbit carotid arteries. Biomed Mater 2024; 19:035018. [PMID: 38430567 DOI: 10.1088/1748-605x/ad2f6b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 03/01/2024] [Indexed: 03/04/2024]
Abstract
In our previous study, the pristine bilayer small-diameterin situtissue engineered vascular grafts (pTEVGs) were electrospun from a heparinized polycaprolactone (PCL45k) as an inner layer and a non-heparinized PCL80k as an outer layer in the thickness of about 131 μm and 202 μm, respectively. However, the hydrophilic enhancement of inner layer stemmed from the heparinization accelerated the degradation of grafts leading to the early formation of arterial aneurysms in a period of 3 months, severely hindering the perennial observation of the neo-tissue regeneration, host cell infiltration and graft remodeling in those implanted pTEVGs. Herein to address this drawback, the thickness of the outer layers was increased with PCL80k to around 268 μm, while the inner layer remained unchangeable. The thickened TEVGs named as tTEVGs were evaluated in six rabbits via a carotid artery interpositional model for a period of 9 months. All the animals kept alive and the grafts remained patent until explantation except for one whose one side of arterial blood vessels was occluded after an aneurysm occurred at 6 months. Although a significant degradation was observed in the implanted grafts at 9 month, the occurrence of aneurysms was obviously delayed compared to pTEVGs. The tissue stainings indicated that the endothelial cell remodeling was substantially completed by 3 months, while the regeneration of elastin and collagen remained smaller and unevenly distributed in comparison to autologous vessels. Additionally, the proliferation of macrophages and smooth muscle cells reached the maximum by 3 months. These tTEVGs possessing a heparinized inner layer and a thickened outer layer exhibited good patency and significantly delayed onset time of aneurysms.
Collapse
Affiliation(s)
- Yonghao Xiao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Xin Jin
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Liujun Jia
- Beijing Key Laboratory of Pre-clinic Research and Evaluation for Cardiovascular Implant Materials, Fuwai Hospital National Cardiovascular Center, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Jubo Li
- Beijing Key Laboratory of Pre-clinic Research and Evaluation for Cardiovascular Implant Materials, Fuwai Hospital National Cardiovascular Center, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Baojie Zhang
- Beijing Key Laboratory of Pre-clinic Research and Evaluation for Cardiovascular Implant Materials, Fuwai Hospital National Cardiovascular Center, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Xue Geng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Lin Ye
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Ai-Ying Zhang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Yongquan Gu
- Department of Vascular Surgery, Xuanwu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing, People's Republic of China
| | - Zeng-Guo Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, People's Republic of China
| |
Collapse
|
6
|
Carrabba M, Fagnano M, Ghorbel MT. Development of a Novel Hierarchically Biofabricated Blood Vessel Mimic Decorated with Three Vascular Cell Populations for the Reconstruction of Small-Diameter Arteries. ADVANCED FUNCTIONAL MATERIALS 2024; 34:adfm.202300621. [PMID: 39257639 PMCID: PMC7616429 DOI: 10.1002/adfm.202300621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Indexed: 09/12/2024]
Abstract
The availability of grafts to replace small-diameter arteries remains an unmet clinical need. Here, the validated methodology is reported for a novel hybrid tissue-engineered vascular graft that aims to match the natural structure of small-size arteries. The blood vessel mimic (BVM) comprises an internal conduit of co-electrospun gelatin and polycaprolactone (PCL) nanofibers (corresponding to the tunica intima of an artery), reinforced by an additional layer of PCL aligned fibers (the internal elastic membrane). Endothelial cells are deposited onto the luminal surface using a rotative bioreactor. A bioprinting system extrudes two concentric cell-laden hydrogel layers containing respectively vascular smooth muscle cells and pericytes to create the tunica media and adventitia. The semi-automated cellularization process reduces the production and maturation time to 6 days. After the evaluation of mechanical properties, cellular viability, hemocompatibility, and suturability, the BVM is successfully implanted in the left pulmonary artery of swine. Here, the BVM showed good hemostatic properties, capability to withstand blood pressure, and patency at 5 weeks post-implantation. These promising data open a new avenue to developing an artery-like product for reconstructing small-diameter blood vessels.
Collapse
Affiliation(s)
- Michele Carrabba
- Bristol Heart Institute, School of Translational Health Sciences, Bristol Medical School, University of Bristol, BristolBS2 8HW, UK
| | - Marco Fagnano
- Bristol Heart Institute, School of Translational Health Sciences, Bristol Medical School, University of Bristol, BristolBS2 8HW, UK
| | - Mohamed T Ghorbel
- Bristol Heart Institute, School of Translational Health Sciences, Bristol Medical School, University of Bristol, BristolBS2 8HW, UK
| |
Collapse
|
7
|
Zhao J, Wu S, Zhang M, Hong X, Zhao M, Xu S, Ji J, Ren K, Fu G, Fu J. Adventitial delivery of miR-145 to treat intimal hyperplasia post vascular injuries through injectable and in-situ self-assembling peptide hydrogels. Acta Biomater 2024; 173:247-260. [PMID: 37939818 DOI: 10.1016/j.actbio.2023.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/07/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
Intimal hyperplasia is a common lesion that can be observed in diverse vascular diseases. Drug-eluting stents and drug-coated balloons, which can release anti-proliferative agents to inhibit smooth muscle cell (SMC) proliferation, are developed to prevent intimal hyperplasia. However, these intervention devices still cannot achieve satisfactory clinical outcomes. In contrast to endovascular drug delivery, vascular adventitial drug delivery is a new strategy. To develop a vascular adventitial drug delivery system to treat intimal hyperplasia post vascular injuries, we loaded miR-145-5p-agomir (miR-145) into an injectable and in-situ self-assembling RAD peptide hydrogel. In vitro data showed that the miR-145 could be well incorporated into the RAD peptide hydrogels and released in a slow and controlled manner. The released miR-145 could transfect SMCs successfully, and the transfected SMCs exhibited a reduced migration capacity and higher expressions of SMC contractile biomarkers as compared to the non-transfected SMCs. In vivo data showed that the retention of the miR-145 was greatly elongated by the RAD peptide hydrogels. In addition, the application of the miR-145-loaded RAD peptide hydrogels surrounding injured arteries decreased the proliferative SMCs, promoted the regeneration of endothelium, reduced the macrophage infiltration, inhibited the neointimal formation and prevented adverse ECM remodeling via downregulation of KLF4 expression. The RAD peptide hydrogels loaded with miR-145 can successfully inhibit intimal hyperplasia after vascular injuries and thus hold great potential as an innovative extravascular drug delivery approach to treat vascular diseases. STATEMENT OF SIGNIFICANCE: Intimal hyperplasia is a common lesion that can be observed in diverse vascular diseases. Drug-eluting stents and drug-coated balloons, which can release anti-proliferative agents to inhibit smooth muscle cell (SMC) proliferation, are developed to prevent intimal hyperplasia. However, these intervention devices still cannot achieve satisfactory clinical outcomes. In contrast to endovascular drug delivery, vascular adventitial drug delivery is a new strategy. Our work here demonstrates that the RAD peptide hydrogels loaded with miR-145-5p-agomir (miR-145) can successfully reverse intimal hyperplasia after vascular injuries and thus hold great potential as an innovative vascular adventitial drug delivery approach to treat vascular diseases. Our work proposes a possible paradigm shift from endovascular drug delivery to extravascular drug delivery for vascular disorder treatment.
Collapse
Affiliation(s)
- Jing Zhao
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shaofei Wu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Mingqi Zhang
- Guangxi University of Chinese Medicine, Nanning 530001, China
| | - Xulin Hong
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Meng Zhao
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Shihui Xu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Kefeng Ren
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guosheng Fu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China.
| | - Jiayin Fu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China.
| |
Collapse
|
8
|
Khan RL, Khraibi AA, Dumée LF, Corridon PR. From waste to wealth: Repurposing slaughterhouse waste for xenotransplantation. Front Bioeng Biotechnol 2023; 11:1091554. [PMID: 36815880 PMCID: PMC9935833 DOI: 10.3389/fbioe.2023.1091554] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Slaughterhouses produce large quantities of biological waste, and most of these materials are underutilized. In many published reports, the possibility of repurposing this form of waste to create biomaterials, fertilizers, biogas, and feeds has been discussed. However, the employment of particular offal wastes in xenotransplantation has yet to be extensively uncovered. Overall, viable transplantable tissues and organs are scarce, and developing bioartificial components using such discarded materials may help increase their supply. This perspective manuscript explores the viability and sustainability of readily available and easily sourced slaughterhouse waste, such as blood vessels, eyes, kidneys, and tracheas, as starting materials in xenotransplantation derived from decellularization technologies. The manuscript also examines the innovative use of animal stem cells derived from the excreta to create a bioartificial tissue/organ platform that can be translated to humans. Institutional and governmental regulatory approaches will also be outlined to support this endeavor.
Collapse
Affiliation(s)
- Raheema L. Khan
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ali A. Khraibi
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ludovic F. Dumée
- Department of Chemical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Research and Innovation Center on CO2 and Hydrogen (RICH), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Peter R. Corridon
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
9
|
Tan W, Boodagh P, Selvakumar PP, Keyser S. Strategies to counteract adverse remodeling of vascular graft: A 3D view of current graft innovations. Front Bioeng Biotechnol 2023; 10:1097334. [PMID: 36704297 PMCID: PMC9871289 DOI: 10.3389/fbioe.2022.1097334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Vascular grafts are widely used for vascular surgeries, to bypass a diseased artery or function as a vascular access for hemodialysis. Bioengineered or tissue-engineered vascular grafts have long been envisioned to take the place of bioinert synthetic grafts and even vein grafts under certain clinical circumstances. However, host responses to a graft device induce adverse remodeling, to varied degrees depending on the graft property and host's developmental and health conditions. This in turn leads to invention or failure. Herein, we have mapped out the relationship between the design constraints and outcomes for vascular grafts, by analyzing impairment factors involved in the adverse graft remodeling. Strategies to tackle these impairment factors and counteract adverse healing are then summarized by outlining the research landscape of graft innovations in three dimensions-cell technology, scaffold technology and graft translation. Such a comprehensive view of cell and scaffold technological innovations in the translational context may benefit the future advancements in vascular grafts. From this perspective, we conclude the review with recommendations for future design endeavors.
Collapse
Affiliation(s)
- Wei Tan
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States,*Correspondence: Wei Tan,
| | - Parnaz Boodagh
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Sean Keyser
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
10
|
Wang Z, Xiang L, Lin F, Tang Y, Cui W. 3D bioprinting of emulating homeostasis regulation for regenerative medicine applications. J Control Release 2023; 353:147-165. [PMID: 36423869 DOI: 10.1016/j.jconrel.2022.11.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022]
Abstract
Homeostasis is the most fundamental mechanism of physiological processes, occurring simultaneously as the production and outcomes of pathological procedures. Accompanied by manufacture and maturation of intricate and highly hierarchical architecture obtained from 3D bioprinting (three-dimension bioprinting), homeostasis has substantially determined the quality of printed tissues and organs. Instead of only shape imitation that has been the remarkable advances, fabrication for functionality to make artificial tissues and organs that act as real ones in vivo has been accepted as the optimized strategy in 3D bioprinting for the next several years. Herein, this review aims to provide not only an overview of 3D bioprinting, but also the main strategies used for homeostasis bioprinting. This paper briefly introduces the principles of 3D bioprinting system applied in homeostasis regulations firstly, and then summarizes the specific strategies and potential trend of homeostasis regulations using multiple types of stimuli-response biomaterials to maintain auto regulation, specifically displaying a brilliant prospect in hormone regulation of homeostasis with the most recently outbreak of vasculature fabrication. Finally, we discuss challenges and future prospects of homeostasis fabrication based on 3D bioprinting in regenerative medicine, hoping to further inspire the development of functional fabrication in 3D bioprinting.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Lei Xiang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Feng Lin
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Yunkai Tang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China.
| |
Collapse
|
11
|
Nasiri B, Yi T, Wu Y, Smith RJ, Podder AK, Breuer CK, Andreadis ST. Monocyte Recruitment for Vascular Tissue Regeneration. Adv Healthc Mater 2022; 11:e2200890. [PMID: 36112115 PMCID: PMC9671850 DOI: 10.1002/adhm.202200890] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/05/2022] [Indexed: 01/28/2023]
Abstract
A strategy to recruit monocytes (MCs) from blood to regenerate vascular tissue from unseeded (cell-free) tissue engineered vascular grafts is presented. When immobilized on the surface of vascular grafts, the fusion protein, H2R5 can capture blood-derived MC under static or flow conditions in a shear stress dependent manner. The bound MC turns into macrophages (Mϕ) expressing both M1 and M2 phenotype specific genes. When H2R5 functionalized acellular-tissue engineered vessels (A-TEVs) are implanted into the mouse aorta, they remain patent and form a continuous endothelium expressing both endothelial cell (EC) and MC specific proteins. Underneath the EC layer, multiple cells layers are formed coexpressing both smooth muscle cell (SMC) and MC specific markers. Lineage tracing analysis using a novel CX3CR1-confetti mouse model demonstrates that fluorescently labeled MC populates the graft lumen by two and four weeks postimplantation, providing direct evidence in support of MC/Mϕ recruitment to the graft lumen. Given their abundance in the blood, circulating MCs may be a great source of cells that contribute directly to the endothelialization and vascular wall formation of acellular vascular grafts under the right chemical and biomechanical cues.
Collapse
Affiliation(s)
- Bita Nasiri
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA
| | - Tai Yi
- Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Yulun Wu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA
| | - Randall J. Smith
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA
| | - Ashis Kumar Podder
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA
| | | | - Stelios T. Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY
- Center for Cell, Gene and Tissue Engineering (CGTE), University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA
| |
Collapse
|
12
|
Weekes A, Bartnikowski N, Pinto N, Jenkins J, Meinert C, Klein TJ. Biofabrication of small diameter tissue-engineered vascular grafts. Acta Biomater 2022; 138:92-111. [PMID: 34781026 DOI: 10.1016/j.actbio.2021.11.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/21/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022]
Abstract
Current clinical treatment strategies for the bypassing of small diameter (<6 mm) blood vessels in the management of cardiovascular disease frequently fail due to a lack of suitable autologous grafts, as well as infection, thrombosis, and intimal hyperplasia associated with synthetic grafts. The rapid advancement of 3D printing and regenerative medicine technologies enabling the manufacture of biological, tissue-engineered vascular grafts (TEVGs) with the ability to integrate, remodel, and repair in vivo, promises a paradigm shift in cardiovascular disease management. This review comprehensively covers current state-of-the-art biofabrication technologies for the development of biomimetic TEVGs. Various scaffold based additive manufacturing methods used in vascular tissue engineering, including 3D printing, bioprinting, electrospinning and melt electrowriting, are discussed and assessed against the biomechanical and functional requirements of human vasculature, while the efficacy of decellularization protocols currently applied to engineered and native vessels are evaluated. Further, we provide interdisciplinary insight into the outlook of regenerative medicine for the development of vascular grafts, exploring key considerations and perspectives for the successful clinical integration of evolving technologies. It is expected that continued advancements in microscale additive manufacturing, biofabrication, tissue engineering and decellularization will culminate in the development of clinically viable, off-the-shelf TEVGs for small diameter applications in the near future. STATEMENT OF SIGNIFICANCE: Current clinical strategies for the management of cardiovascular disease using small diameter vessel bypassing procedures are inadequate, with up to 75% of synthetic grafts failing within 3 years of implantation. It is this critically important clinical problem that researchers in the field of vascular tissue engineering and regenerative medicine aim to alleviate using biofabrication methods combining additive manufacturing, biomaterials science and advanced cellular biology. While many approaches facilitate the development of bioengineered constructs which mimic the structure and function of native blood vessels, several challenges must still be overcome for clinical translation of the next generation of tissue-engineered vascular grafts.
Collapse
Affiliation(s)
- Angus Weekes
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia; Herston Biofabrication Institute, Metro North Hospital and Health Services, Herston, QLD, 4006, Australia.
| | - Nicole Bartnikowski
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia; Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, 4035, Australia.
| | - Nigel Pinto
- Herston Biofabrication Institute, Metro North Hospital and Health Services, Herston, QLD, 4006, Australia; Department of Vascular Surgery, The Royal Brisbane and Women's Hospital, Herston, QLD, 4006, Australia.
| | - Jason Jenkins
- Herston Biofabrication Institute, Metro North Hospital and Health Services, Herston, QLD, 4006, Australia; Department of Vascular Surgery, The Royal Brisbane and Women's Hospital, Herston, QLD, 4006, Australia.
| | - Christoph Meinert
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia; Herston Biofabrication Institute, Metro North Hospital and Health Services, Herston, QLD, 4006, Australia.
| | - Travis J Klein
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia.
| |
Collapse
|
13
|
Feng ZG, Fang Z, Xing Y, Wang H, Geng X, Ye L, Zhang A, Gu Y. Remodeling of Structurally Reinforced (TPU+PCL/PCL)-Hep Electro-spun Small Diameter Bilayer Vascular Grafts Interposed in Rat Ab-dominal Aorta. Biomater Sci 2022; 10:4257-4270. [DOI: 10.1039/d1bm01653a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As the thermoplastic polyurethane (TPU) elastomer possesses good biocompatibility and mechanical properties similar to native vascular tissues as well, it is intended to co-electrospin with poly(ε-caprolactone) (PCL) onto the outer...
Collapse
|
14
|
Hayat U, Raza A, Bilal M, Iqbal HM, Wang JY. Biodegradable polymeric conduits: Platform materials for guided nerve regeneration and vascular tissue engineering. J Drug Deliv Sci Technol 2022; 67:103014. [DOI: 10.1016/j.jddst.2021.103014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
15
|
Wei Y, Wang F, Guo Z, Zhao Q. Tissue-engineered vascular grafts and regeneration mechanisms. J Mol Cell Cardiol 2021; 165:40-53. [PMID: 34971664 DOI: 10.1016/j.yjmcc.2021.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases (CVDs) are life-threatening diseases with high morbidity and mortality worldwide. Vascular bypass surgery is still the ultimate strategy for CVD treatment. Autografts are the gold standard for graft transplantation, but insufficient sources limit their widespread application. Therefore, alternative tissue engineered vascular grafts (TEVGs) are urgently needed. In this review, we summarize the major strategies for the preparation of vascular grafts, as well as the factors affecting their patency and tissue regeneration. Finally, the underlying mechanisms of vascular regeneration that are mediated by host cells are discussed.
Collapse
Affiliation(s)
- Yongzhen Wei
- Zhengzhou Cardiovascular Hospital and 7th People's Hospital of Zhengzhou, Zhengzhou, Henan Province, China; State key Laboratory of Medicinal Chemical Biology & Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | - Fei Wang
- State key Laboratory of Medicinal Chemical Biology & Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | - Zhikun Guo
- Zhengzhou Cardiovascular Hospital and 7th People's Hospital of Zhengzhou, Zhengzhou, Henan Province, China
| | - Qiang Zhao
- Zhengzhou Cardiovascular Hospital and 7th People's Hospital of Zhengzhou, Zhengzhou, Henan Province, China; State key Laboratory of Medicinal Chemical Biology & Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
16
|
Keshi E, Tang P, Weinhart M, Everwien H, Moosburner S, Seiffert N, Lommel M, Kertzscher U, Globke B, Reutzel-Selke A, Strücker B, Pratschke J, Sauer IM, Haep N, Hillebrandt KH. Surface modification of decellularized bovine carotid arteries with human vascular cells significantly reduces their thrombogenicity. J Biol Eng 2021; 15:26. [PMID: 34819102 PMCID: PMC8611970 DOI: 10.1186/s13036-021-00277-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Since autologous veins are unavailable when needed in more than 20% of cases in vascular surgery, the production of personalized biological vascular grafts for implantation has become crucial. Surface modification of decellularized xenogeneic grafts with vascular cells to achieve physiological luminal coverage and eventually thromboresistance is an important prerequisite for implantation. However, ex vivo thrombogenicity testing remains a neglected area in the field of tissue engineering of vascular grafts due to a multifold of reasons. METHODS After seeding decellularized bovine carotid arteries with human endothelial progenitor cells and umbilical cord-derived mesenchymal stem cells, luminal endothelial cell coverage (LECC) was correlated with glucose and lactate levels on the cell supernatant. Then a closed loop whole blood perfusion system was designed. Recellularized grafts with a LECC > 50% and decellularized vascular grafts were perfused with human whole blood for 2 h. Hemolysis and complete blood count evaluation was performed on an hourly basis, followed by histological and immunohistochemical analysis. RESULTS While whole blood perfusion of decellularized grafts significantly reduced platelet counts, platelet depletion from blood resulting from binding to re-endothelialized grafts was insignificant (p = 0.7284). Moreover, macroscopic evaluation revealed thrombus formation only in the lumen of unseeded grafts and histological characterization revealed lack of CD41 positive platelets in recellularized grafts, thus confirming their thromboresistance. CONCLUSION In the present study we were able to demonstrate the effect of surface modification of vascular grafts in their thromboresistance in an ex vivo whole blood perfusion system. To our knowledge, this is the first study to expose engineered vascular grafts to human whole blood, recirculating at high flow rates, immediately after seeding.
Collapse
Affiliation(s)
- Eriselda Keshi
- Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Experimental Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Peter Tang
- Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Experimental Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Marie Weinhart
- Cluster of Excellence Matters of Activity. Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy - EXC 2025 - 390648296, Berlin, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany.,Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Hanover, Germany
| | - Hannah Everwien
- Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Experimental Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Simon Moosburner
- Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Experimental Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Nicolai Seiffert
- Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Experimental Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Michael Lommel
- Institute for Cardiovascular Computer-Assisted Medicine, Biofluid Mechanics Lab, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ulrich Kertzscher
- Institute for Cardiovascular Computer-Assisted Medicine, Biofluid Mechanics Lab, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Brigitta Globke
- Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Experimental Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Anja Reutzel-Selke
- Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Experimental Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Benjamin Strücker
- Department of General, Visceral and Transplant Surgery, Universitätsklinikum Münster, Münster, Germany
| | - Johann Pratschke
- Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Experimental Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany.,Cluster of Excellence Matters of Activity. Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy - EXC 2025 - 390648296, Berlin, Germany
| | - Igor Maximillian Sauer
- Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Experimental Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany. .,Cluster of Excellence Matters of Activity. Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy - EXC 2025 - 390648296, Berlin, Germany.
| | - Nils Haep
- Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Experimental Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany.,Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Karl Herbert Hillebrandt
- Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Experimental Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
17
|
Durán-Rey D, Crisóstomo V, Sánchez-Margallo JA, Sánchez-Margallo FM. Systematic Review of Tissue-Engineered Vascular Grafts. Front Bioeng Biotechnol 2021; 9:771400. [PMID: 34805124 PMCID: PMC8595218 DOI: 10.3389/fbioe.2021.771400] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/18/2021] [Indexed: 01/01/2023] Open
Abstract
Pathologies related to the cardiovascular system are the leading causes of death worldwide. One of the main treatments is conventional surgery with autologous transplants. Although donor grafts are often unavailable, tissue-engineered vascular grafts (TEVGs) show promise for clinical treatments. A systematic review of the recent scientific literature was performed using PubMed (Medline) and Web of Science databases to provide an overview of the state-of-the-art in TEVG development. The use of TEVG in human patients remains quite restricted owing to the presence of vascular stenosis, existence of thrombi, and poor graft patency. A total of 92 original articles involving human patients and animal models were analyzed. A meta-analysis of the influence of the vascular graft diameter on the occurrence of thrombosis and graft patency was performed for the different models analyzed. Although there is no ideal animal model for TEVG research, the murine model is the most extensively used. Hybrid grafting, electrospinning, and cell seeding are currently the most promising technologies. The results showed that there is a tendency for thrombosis and non-patency in small-diameter grafts. TEVGs are under constant development, and research is oriented towards the search for safe devices.
Collapse
Affiliation(s)
- David Durán-Rey
- Laparoscopy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Verónica Crisóstomo
- Cardiovascular Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain.,Centro de Investigacion Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan A Sánchez-Margallo
- Bioengineering and Health Technologies Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Francisco M Sánchez-Margallo
- Centro de Investigacion Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Scientific Direction, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| |
Collapse
|
18
|
Domínguez-Robles J, Shen T, Cornelius VA, Corduas F, Mancuso E, Donnelly RF, Margariti A, Lamprou DA, Larrañeta E. Development of drug loaded cardiovascular prosthesis for thrombosis prevention using 3D printing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112375. [PMID: 34579894 PMCID: PMC8505756 DOI: 10.1016/j.msec.2021.112375] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/22/2021] [Accepted: 08/10/2021] [Indexed: 12/11/2022]
Abstract
Cardiovascular disease (CVD) is a general term for conditions which are the leading cause of death in the world. Quick restoration of tissue perfusion is a key factor to combat these diseases and improve the quality and duration of patients' life. Revascularization techniques include angioplasty, placement of a stent, or surgical bypass grafting. For the latter technique, autologous vessels remain the best clinical option; however, many patients lack suitable autogenous due to previous operations and they are often unsuitable. Therefore, synthetic vascular grafts providing antithrombosis, neointimal hyperplasia inhibition and fast endothelialization are still needed. To address these limitations, 3D printed dipyridamole (DIP) loaded biodegradable vascular grafts were developed. Polycaprolactone (PCL) and DIP were successfully mixed without solvents and then vascular grafts were 3D printed. A mixture of high and low molecular weight PCL was used to better ensure the integration of DIP, which would offer the biological functions required above. Moreover, 3D printing technology provides the ability to fabricate structures of precise geometries from a 3D model, enabling to customize the vascular grafts' shape or size. The produced vascular grafts were fully characterized through multiple techniques and the last step was to evaluate their drug release, antiplatelet effect and cytocompatibility. The results suggested that DIP was properly mixed and integrated within the PCL matrix. Moreover, these materials can provide a sustained and linear drug release without any obvious burst release, or any faster initial release rates for 30 days. Compared to PCL alone, a clear reduced platelet deposition in all the DIP-loaded vascular grafts was evidenced. The hemolysis percentage of both materials PCL alone and PCL containing 20% DIP were lower than 4%. Moreover, PCL and 20% DIP loaded grafts were able to provide a supportive environment for cellular attachment, viability, and growth.
Collapse
Affiliation(s)
- Juan Domínguez-Robles
- School of Pharmacy, Queen's University Belfast, Lisburn Road 97, Belfast BT9 7BL, UK
| | - Tingjun Shen
- School of Pharmacy, Queen's University Belfast, Lisburn Road 97, Belfast BT9 7BL, UK
| | - Victoria A Cornelius
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Francesca Corduas
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Jordanstown Campus, Newtownabbey BT37 0QB, UK
| | - Elena Mancuso
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Jordanstown Campus, Newtownabbey BT37 0QB, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Lisburn Road 97, Belfast BT9 7BL, UK
| | - Andriana Margariti
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Dimitrios A Lamprou
- School of Pharmacy, Queen's University Belfast, Lisburn Road 97, Belfast BT9 7BL, UK
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, Lisburn Road 97, Belfast BT9 7BL, UK.
| |
Collapse
|
19
|
Alvino VV, Thomas AC, Ghorbel MT, Rapetto F, Narayan SA, Kilcooley M, Iacobazzi D, Carrabba M, Fagnano M, Cathery W, Avolio E, Caputo M, Madeddu P. Reconstruction of the Swine Pulmonary Artery Using a Graft Engineered With Syngeneic Cardiac Pericytes. Front Bioeng Biotechnol 2021; 9:715717. [PMID: 34568300 PMCID: PMC8459923 DOI: 10.3389/fbioe.2021.715717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022] Open
Abstract
The neonatal heart represents an attractive source of regenerative cells. Here, we report the results of a randomized, controlled, investigator-blinded preclinical study, which assessed the safety and effectiveness of a matrix graft cellularized with cardiac pericytes (CPs) in a piglet model of pulmonary artery (PA) reconstruction. Within each of five trios formed by 4-week-old female littermate piglets, one element (the donor) was sacrificed to provide a source of CPs, while the other two elements (the graft recipients) were allowed to reach the age of 10 weeks. During this time interval, culture-expanded donor CPs were seeded onto swine small intestinal submucosa (SIS) grafts, which were then shaped into conduits and conditioned in a flow bioreactor. Control unseeded SIS conduits were subjected to the same procedure. Then, recipient piglets were randomized to surgical reconstruction of the left PA (LPA) with unseeded or CP-seeded SIS conduits. Doppler echocardiography and cardiac magnetic resonance imaging (CMRI) were performed at baseline and 4-months post-implantation. Vascular explants were examined using histology and immunohistochemistry. All animals completed the scheduled follow-up. No group difference was observed in baseline imaging data. The final Doppler assessment showed that the LPA’s blood flow velocity was similar in the treatment groups. CMRI revealed a mismatch in the average growth of the grafted LPA and contralateral branch in both treatment groups. Histology of explanted arteries demonstrated that the CP-seeded grafts had a thicker luminal cell layer, more intraparietal arterioles, and a higher expression of endothelial nitric oxide synthase (eNOS) compared with unseeded grafts. Moreover, the LPA stump adjacent to the seeded graft contained more elastin and less collagen than the unseeded control. Syngeneic CP engineering did not accomplish the primary goal of supporting the graft’s growth but was able to improve secondary outcomes, such as the luminal cellularization and intraparietal vascularization of the graft, and elastic remodeling of the recipient artery. The beneficial properties of neonatal CPs may be considered in future bioengineering applications aiming to reproduce the cellular composition of native arteries.
Collapse
Affiliation(s)
- Valeria Vincenza Alvino
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Anita C Thomas
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Mohamed T Ghorbel
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Filippo Rapetto
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Srinivas A Narayan
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Michael Kilcooley
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Dominga Iacobazzi
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Michele Carrabba
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Marco Fagnano
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - William Cathery
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Elisa Avolio
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Massimo Caputo
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Paolo Madeddu
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
20
|
Yu C, Yang H, Wang L, Thomson JA, Turng LS, Guan G. Surface modification of polytetrafluoroethylene (PTFE) with a heparin-immobilized extracellular matrix (ECM) coating for small-diameter vascular grafts applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112301. [PMID: 34474852 PMCID: PMC8417426 DOI: 10.1016/j.msec.2021.112301] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/08/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022]
Abstract
Intimal hyperplasia, thrombosis formation, and delayed endothelium regeneration are the main causes that restrict the clinical applications of PTFE small-diameter vascular grafts (inner diameter < 6 mm). An ideal strategy to solve such problems is to facilitate in situ endothelialization. Since the natural vascular endothelium adheres onto the basement membrane, which is a specialized form of extracellular matrix (ECM) secreted by endothelial cells (ECs) and smooth muscle cells (SMCs), functionalizing PTFE with an ECM coating was proposed. However, besides ECs, the ECM-modified PTFE improved SMC growth as well, thereby increasing the risk of intimal hyperplasia. In the present study, heparin was immobilized on the ECM coating at different densities (4.89 ± 1.02 μg/cm2, 7.24 ± 1.56 μg/cm2, 15.63 ± 2.45 μg/cm2, and 26.59 ± 3.48 μg/cm2), aiming to develop a bio-favorable environment that possessed excellent hemocompatibility and selectively inhibited SMC growth while promoting endothelialization. The results indicated that a low heparin density (4.89 ± 1.02 μg/cm2) was not enough to restrict platelet adhesion, whereas a high heparin density (26.59 ± 3.48 μg/cm2) resulted in decreased EC growth and enhanced SMC proliferation. Therefore, a heparin density at 7.24 ± 1.56 μg/cm2 was the optimal level in terms of antithrombogenicity, endothelialization, and SMC inhibition. Collectively, this study proposed a heparin-immobilized ECM coating to modify PTFE, offering a promising means to functionalize biomaterials for developing small-diameter vascular grafts.
Collapse
Affiliation(s)
- Chenglong Yu
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, College of Textiles, Donghua University, Shanghai 201620, China; Engineering Research Center of Technical Textiles of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, United States; Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Huaguang Yang
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, United States; Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Lu Wang
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, College of Textiles, Donghua University, Shanghai 201620, China; Engineering Research Center of Technical Textiles of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - James A Thomson
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53715, United States
| | - Lih-Sheng Turng
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, United States; Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States.
| | - Guoping Guan
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, College of Textiles, Donghua University, Shanghai 201620, China; Engineering Research Center of Technical Textiles of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| |
Collapse
|
21
|
Ye L, Takagi T, Tu C, Hagiwara A, Geng X, Feng Z. The performance of heparin modified poly(ε-caprolactone) small diameter tissue engineering vascular graft in canine-A long-term pilot experiment in vivo. J Biomed Mater Res A 2021; 109:2493-2505. [PMID: 34096176 DOI: 10.1002/jbm.a.37243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 05/12/2021] [Accepted: 05/28/2021] [Indexed: 01/22/2023]
Abstract
Long-term in vivo observation in large animal model is critical for evaluating the potential of small diameter tissue engineering vascular graft (SDTEVG) in clinical application, but is rarely reported. In this study, a SDTEVG is fabricated by the electrospinning of poly(ε-caprolactone) and subsequent heparin modification. SDTEVG is implanted into canine's abdominal aorta for 511 days in order to investigate its clinical feasibility. An active and robust remodeling process was characterized by a confluent endothelium, macrophage infiltrate, extracellular matrix deposition and remodeling on the explanted graft. The immunohistochemical and immunofluorescence analysis further exhibit the regeneration of endothelium and smooth muscle layer on tunica intima and tunica media, respectively. Thus, long-term follow-up reveals viable neovessel formation beyond graft degradation. Furthermore, the von Kossa staining exhibits no occurrence of calcification. However, although no TEVG failure or rupture happens during the follow-up, the aneurysm is found by both Doppler ultrasonic and gross observation. Consequently, as-prepared TEVG shows promising potential in vascular tissue engineering if it can be appropriately strengthened to prevent the occurrence of aneurysm.
Collapse
Affiliation(s)
- Lin Ye
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China.,Department of Medical Life System, Doshisha University, Kyoto, Japan
| | - Toshitaka Takagi
- Department of Medical Life System, Doshisha University, Kyoto, Japan
| | - Chengzhao Tu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Akeo Hagiwara
- Department of Medical Life System, Doshisha University, Kyoto, Japan
| | - Xue Geng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China.,Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing, China
| | - Zengguo Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China.,Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing, China
| |
Collapse
|
22
|
Heparin-Eluting Tissue-Engineered Bioabsorbable Vascular Grafts. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The creation of small-diameter tissue-engineered vascular grafts using biodegradable materials has the potential to change the quality of cardiovascular surgery in the future. The implantation of these tissue-engineered arterial grafts has yet to reach clinical application. One of the reasons for this is thrombus occlusion of the graft in the acute phase. In this paper, we first describe the causes of accelerated thrombus formation and discuss the drugs that are thought to inhibit thrombus formation. We then review the latest research on methods to locally bind the anticoagulant heparin to biodegradable materials and methods to extend the duration of sustained heparin release. We also discuss the results of studies using large animal models and the challenges that need to be overcome for future clinical applications.
Collapse
|
23
|
Yan K, Yang C, Zhong W, Lu Z, Li X, Shi X, Wang D. Wire templated electrodeposition of vessel-like structured chitosan hydrogel by using a pulsed electrical signal. SOFT MATTER 2020; 16:9471-9478. [PMID: 32955063 DOI: 10.1039/d0sm01134g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Herein, by performing a templated electrodeposition process with an oscillating electrical signal stimulation, a vessel-like structured chitosan hydrogel (diameter about 0.4 mm) was successfully prepared in the absence of salt conditions. Experimental results demonstrated that the hydrogel growth (e.g. the thickness) is linearly correlated with the imposed charge transfer and can be well quantified by using a theoretical moving front model. Morphological observations indicated that the heterogeneous multilayer structure was spatially and temporally controlled by an externally employed electrical signal sequence while the channel structure could be determined by the shaped electrode. Moreover, the oscillating ON-OFF cycles were proved to strongly affect the film structure, leading to a more compact hydrogel coating with a lower water content, higher crystallinity, complex layer architecture and relatively strong mechanical properties that could be easily peeled off as a free-standing hollow tube. Importantly, all the experiments were conducted under mild conditions that allowed additional enhancing materials to be added in to further improve the mechanical and/or biological properties. Thus, this work advances a very promising self-assembly technology for the construction of a multi-functional hydrogel coating and artificial blood vessel regeneration.
Collapse
Affiliation(s)
- Kun Yan
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Wuhan Textile University, Wuhan 430200, China. and School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China.
| | - Chenguang Yang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Wuhan Textile University, Wuhan 430200, China.
| | - Weibin Zhong
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Wuhan Textile University, Wuhan 430200, China.
| | - Zhentan Lu
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Wuhan Textile University, Wuhan 430200, China.
| | - Xiufang Li
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Wuhan Textile University, Wuhan 430200, China.
| | - Xiaowen Shi
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China.
| | - Dong Wang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
24
|
Wang Z, Liu L, Mithieux SM, Weiss AS. Fabricating Organized Elastin in Vascular Grafts. Trends Biotechnol 2020; 39:505-518. [PMID: 33019966 DOI: 10.1016/j.tibtech.2020.09.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 01/01/2023]
Abstract
Surgically bypassing or replacing a severely damaged artery using a biodegradable synthetic vascular graft is a promising treatment that allows for the remodeling and regeneration of the graft to form a neoartery. Elastin-based structures, such as elastic fibers, elastic lamellae, and laminae, are key functional components in the arterial extracellular matrix. In this review, we identify the lack of elastin in vascular grafts as a key factor that prevents their long-term success. We further summarize advances in vascular tissue engineering that are focused on either de novo production of organized elastin or incorporation of elastin-based biomaterials within vascular grafts to mitigate failure and enhance enduring in vivo performance.
Collapse
Affiliation(s)
- Ziyu Wang
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Linyang Liu
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Suzanne M Mithieux
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Anthony S Weiss
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia; Sydney Nano Institute, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
25
|
Hu Q, Su C, Zeng Z, Zhang H, Feng R, Feng J, Li S. Fabrication of multilayer tubular scaffolds with aligned nanofibers to guide the growth of endothelial cells. J Biomater Appl 2020; 35:553-566. [DOI: 10.1177/0885328220935090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aligned electrospun fibers used for the fabrication of tubular scaffolds possess the ability to regulate cellular alignment and relevant functional expression, with applications in tissue engineering. Despite significant progress in the fabrication of small-diameter vascular grafts (SDVGs) over the past decade, several challenges remain; one of the most problematic of these is the fabrication of aligned nanofibers for multilayer SDVGs. Furthermore, delamination between each layer is difficult to avoid during the fabrication of multilayer structures. This study introduces a new fabrication method for minute delamination four-layer tubular scaffolds (FLTSs) that consist of an interior layer with highly longitudinal aligned nanofibers, two middle layers composed of electrospun sloped and circumferentially aligned fibers, and an exterior layer comprising random fibers. These FLTSs are used to simulate the structures and functions of native blood vessels. Here, thermoplastic polyurethane (TPU)/polycaprolactone (PCL)/polyethylene glycol (PEG) were electrospun to fabricate FLTSs or tubular scaffolds with completely random fibers layer (RLTSs). The surface wettability of the TPU/PCL/PEG tubular scaffold was tested by water contact angle analysis. In particular, compared with RLTSs, FLTSs showed excellent mechanical properties, with higher circumferential and longitudinal tensile properties. Furthermore, the high viability of the human umbilical vein endothelial cells (HUVECs) on the FLTSs indicated the biocompatibility of the tubular scaffolds comparing to RLTSs. The aligned and random composite structure of the FLTSs are conducive to promoting the growth of HUVECs, and the cell adhesion and proliferation on these scaffolds was found to be superior to that on RLTSs. These results demonstrate that the fabricated FLTSs have the potential for application in vascular tissue regeneration and clinical arterial replacements.
Collapse
Affiliation(s)
- Qingxi Hu
- Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai, China
| | - Caiping Su
- Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
| | - Zhaoxiang Zeng
- National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai, China
| | - Haiguang Zhang
- Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai, China
| | - Rui Feng
- National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai, China
| | - Jiaxuan Feng
- National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai, China
| | - Shuai Li
- Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
| |
Collapse
|
26
|
Liu H, Gough CR, Deng Q, Gu Z, Wang F, Hu X. Recent Advances in Electrospun Sustainable Composites for Biomedical, Environmental, Energy, and Packaging Applications. Int J Mol Sci 2020; 21:E4019. [PMID: 32512793 PMCID: PMC7312508 DOI: 10.3390/ijms21114019] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
Electrospinning has gained constant enthusiasm and wide interest as a novel sustainable material processing technique due to its ease of operation and wide adaptability for fabricating eco-friendly fibers on a nanoscale. In addition, the device working parameters, spinning solution properties, and the environmental factors can have a significant effect on the fibers' morphology during electrospinning. This review summarizes the newly developed principles and influence factors for electrospinning technology in the past five years, including these factors' interactions with the electrospinning mechanism as well as its most recent applications of electrospun natural or sustainable composite materials in biology, environmental protection, energy, and food packaging materials.
Collapse
Affiliation(s)
- Hao Liu
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; (H.L.); (Q.D.)
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China;
| | - Christopher R. Gough
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA;
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA
| | - Qianqian Deng
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; (H.L.); (Q.D.)
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China;
| | - Zhenggui Gu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China;
| | - Fang Wang
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; (H.L.); (Q.D.)
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China;
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA;
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
| |
Collapse
|
27
|
Wang D, Xu Y, Li Q, Turng LS. Artificial small-diameter blood vessels: materials, fabrication, surface modification, mechanical properties, and bioactive functionalities. J Mater Chem B 2020; 8:1801-1822. [PMID: 32048689 PMCID: PMC7155776 DOI: 10.1039/c9tb01849b] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cardiovascular diseases, especially ones involving narrowed or blocked blood vessels with diameters smaller than 6 millimeters, are the leading cause of death globally. Vascular grafts have been used in bypass surgery to replace damaged native blood vessels for treating severe cardio- and peripheral vascular diseases. However, autologous replacement grafts are not often available due to prior harvesting or the patient's health. Furthermore, autologous harvesting causes secondary injury to the patient at the harvest site. Therefore, artificial blood vessels have been widely investigated in the last several decades. In this review, the progress and potential outlook of small-diameter blood vessels (SDBVs) engineered in vitro are highlighted and summarized, including material selection and development, fabrication techniques, surface modification, mechanical properties, and bioactive functionalities. Several kinds of natural and synthetic polymers for artificial SDBVs are presented here. Commonly used fabrication techniques, such as extrusion and expansion, electrospinning, thermally induced phase separation (TIPS), braiding, 3D printing, hydrogel tubing, gas foaming, and a combination of these methods, are analyzed and compared. Different surface modification methods, such as physical immobilization, surface adsorption, plasma treatment, and chemical immobilization, are investigated and are compared here as well. Mechanical requirements of SDBVs are also reviewed for long-term service. In vitro biological functions of artificial blood vessels, including oxygen consumption, nitric oxide (NO) production, shear stress response, leukocyte adhesion, and anticoagulation, are also discussed. Finally, we draw conclusions regarding current challenges and attempts to identify future directions for the optimal combination of materials, fabrication methods, surface modifications, and biofunctionalities. We hope that this review can assist with the design, fabrication, and application of SDBVs engineered in vitro and promote future advancements in this emerging research field.
Collapse
Affiliation(s)
- Dongfang Wang
- Department of Mechanical Engineering, University of Wisconsin, Madison, WI, USA. and Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, USA and School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001, P. R. China and National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yiyang Xu
- Department of Mechanical Engineering, University of Wisconsin, Madison, WI, USA. and Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, USA
| | - Qian Li
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001, P. R. China and National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Lih-Sheng Turng
- Department of Mechanical Engineering, University of Wisconsin, Madison, WI, USA. and Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
28
|
Ilanlou S, Khakbiz M, Amoabediny G, Mohammadi J. Preclinical studies of acellular extracellular matrices as small-caliber vascular grafts. Tissue Cell 2019; 60:25-32. [DOI: 10.1016/j.tice.2019.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/28/2019] [Accepted: 07/30/2019] [Indexed: 01/09/2023]
|
29
|
Abstract
Tissue-engineered vascular grafts (TEVGs) are considered one of the most effective means of fabricating vascular grafts. However, for small-diameter TEVGs, there are ongoing issues regarding long-term patency and limitations related to long-term in vitro culture and immune reactions. The use of acellular TEVG is a more convincing method, which can achieve in situ blood vessel regeneration and better meet clinical needs. This review focuses on the current state of acellular TEVGs based on scaffolds and gives a summary of the methodologies and in vitro/in vivo test results related to acellular TEVGs obtained in recent years. Various strategies for improving the properties of acellular TEVGs are also discussed.
Collapse
|