1
|
Barroca N, da Silva DM, Pinto SC, Sousa JPM, Verstappen K, Klymov A, Fernández-San-Argimiro FJ, Madarieta I, Murua O, Olalde B, Papadimitriou L, Karali K, Mylonaki K, Stratakis E, Ranella A, Marques PAAP. Interfacing reduced graphene oxide with an adipose-derived extracellular matrix as a regulating milieu for neural tissue engineering. BIOMATERIALS ADVANCES 2023; 148:213351. [PMID: 36842343 DOI: 10.1016/j.bioadv.2023.213351] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Enthralling evidence of the potential of graphene-based materials for neural tissue engineering is motivating the development of scaffolds using various structures related to graphene such as graphene oxide (GO) or its reduced form. Here, we investigated a strategy based on reduced graphene oxide (rGO) combined with a decellularized extracellular matrix from adipose tissue (adECM), which is still unexplored for neural repair and regeneration. Scaffolds containing up to 50 wt% rGO relative to adECM were prepared by thermally induced phase separation assisted by carbodiimide (EDC) crosslinking. Using partially reduced GO enables fine-tuning of the structural interaction between rGO and adECM. As the concentration of rGO increased, non-covalent bonding gradually prevailed over EDC-induced covalent conjugation with the adECM. Edge-to-edge aggregation of rGO favours adECM to act as a biomolecular physical crosslinker to rGO, leading to the softening of the scaffolds. The unique biochemistry of adECM allows neural stem cells to adhere and grow. Importantly, high rGO concentrations directly control cell fate by inducing the differentiation of both NE-4C cells and embryonic neural progenitor cells into neurons. Furthermore, primary astrocyte fate is also modulated as increasing rGO boosts the expression of reactivity markers while unaltering the expression of scar-forming ones.
Collapse
Affiliation(s)
- Nathalie Barroca
- TEMA - Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal; LASI - Intelligent Systems Associate Laboratory, Portugal.
| | - Daniela M da Silva
- TEMA - Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal; LASI - Intelligent Systems Associate Laboratory, Portugal
| | - Susana C Pinto
- TEMA - Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal; LASI - Intelligent Systems Associate Laboratory, Portugal
| | - Joana P M Sousa
- TEMA - Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal; LASI - Intelligent Systems Associate Laboratory, Portugal
| | - Kest Verstappen
- Radboud University Nijmegen Medical Centre, Department of Regenerative Biomaterials, 6500HB Nijmegen, the Netherlands
| | - Alexey Klymov
- Radboud University Nijmegen Medical Centre, Department of Regenerative Biomaterials, 6500HB Nijmegen, the Netherlands
| | | | - Iratxe Madarieta
- TECNALIA, Basque Research and Technology Alliance (BRTA), E20009 Donostia-San Sebastian, Spain
| | - Olatz Murua
- TECNALIA, Basque Research and Technology Alliance (BRTA), E20009 Donostia-San Sebastian, Spain
| | - Beatriz Olalde
- TECNALIA, Basque Research and Technology Alliance (BRTA), E20009 Donostia-San Sebastian, Spain
| | - Lina Papadimitriou
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH), Heraklion, 71003, Greece
| | - Kanelina Karali
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH), Heraklion, 71003, Greece
| | - Konstantina Mylonaki
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH), Heraklion, 71003, Greece
| | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH), Heraklion, 71003, Greece
| | - Anthi Ranella
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH), Heraklion, 71003, Greece.
| | - Paula A A P Marques
- TEMA - Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal; LASI - Intelligent Systems Associate Laboratory, Portugal.
| |
Collapse
|
2
|
Yao X, Zhan L, Yan Z, Li J, Kong L, Wang X, Xiao H, Jiang H, Huang C, Ouyang Y, Qian Y, Fan C. Non-electric bioelectrical analog strategy by a biophysical-driven nano-micro spatial anisotropic scaffold for regulating stem cell niche and tissue regeneration in a neuronal therapy. Bioact Mater 2023; 20:319-338. [PMID: 36380746 PMCID: PMC9640298 DOI: 10.1016/j.bioactmat.2022.05.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 12/20/2022] Open
Abstract
The slow regenerating rate and misdirected axonal growth are primary concerns that disturb the curative outcome of peripheral nerve repair. Biophysical intervention through nerve scaffolds can provide efficient, tunable and sustainable guidance for nerve regrowth. Herein, we fabricate the reduced graphene oxide (rGO)/polycaprolactone (PCL) scaffold characterized with anisotropic microfibers and oriented nanogrooves by electrospinning technique. Adipose-derived stem cells (ADSCs) are seeded on the scaffolds in vitro and the viability, neural differentiation efficiency and neurotrophic potential are investigated. RGO/PCL conduits reprogram the phenotype of seeded cells and efficiently repair 15 mm sciatic nerve defect in rats. In summary, biophysical cues on nerve scaffolds are key determinants to stem cell phenotype, and ADSC-seeded rGO/PCL oriented scaffolds are promising, controllable and sustainable approaches to enable peripheral nerve regeneration.
Collapse
Affiliation(s)
- Xiangyun Yao
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China
- Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Lei Zhan
- Key Laboratory of Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Zhiwen Yan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China
- Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Juehong Li
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China
- Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Lingchi Kong
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China
- Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xu Wang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China
- Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Huimin Xiao
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Huiquan Jiang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Chen Huang
- Key Laboratory of Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Yuanming Ouyang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China
- Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yun Qian
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China
- Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China
- Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
3
|
Mantecón-Oria M, Rivero MJ, Diban N, Urtiaga A. On the quest of reliable 3D dynamic in vitro blood-brain barrier models using polymer hollow fiber membranes: Pitfalls, progress, and future perspectives. Front Bioeng Biotechnol 2022; 10:1056162. [PMID: 36483778 PMCID: PMC9723404 DOI: 10.3389/fbioe.2022.1056162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/07/2022] [Indexed: 09/10/2024] Open
Abstract
With the increasing concern of neurodegenerative diseases, the development of new therapies and effective pharmaceuticals targeted to central nervous system (CNS) illnesses is crucial for ensuring social and economic sustainability in an ageing world. Unfortunately, many promising treatments at the initial stages of the pharmaceutical development process, that is at the in vitro screening stages, do not finally show the expected results at the clinical level due to their inability to cross the human blood-brain barrier (BBB), highlighting the inefficiency of in vitro BBB models to recapitulate the real functionality of the human BBB. In the last decades research has focused on the development of in vitro BBB models from basic 2D monolayer cultures to 3D cell co-cultures employing different system configurations. Particularly, the use of polymeric hollow fiber membranes (HFs) as scaffolds plays a key role in perfusing 3D dynamic in vitro BBB (DIV-BBB) models. Their incorporation into a perfusion bioreactor system may potentially enhance the vascularization and oxygenation of 3D cell cultures improving cell communication and the exchange of nutrients and metabolites through the microporous membranes. The quest for developing a benchmark 3D dynamic in vitro blood brain barrier model requires the critical assessment of the different aspects that limits the technology. This article will focus on identifying the advantages and main limitations of the HFs in terms of polymer materials, microscopic porous morphology, and other practical issues that play an important role to adequately mimic the physiological environment and recapitulate BBB architecture. Based on this study, we consider that future strategic advances of this technology to become fully implemented as a gold standard DIV-BBB model will require the exploration of novel polymers and/or composite materials, and the optimization of the morphology of the membranes towards thinner HFs (<50 μm) with higher porosities and surface pore sizes of 1-2 µm to facilitate the intercommunication via regulatory factors between the cell co-culture models of the BBB.
Collapse
Affiliation(s)
- Marián Mantecón-Oria
- Departamento de Ingenierias Química y Biomolecular, Universidad de Cantabria, Santander, Spain
- Instituto Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - María J. Rivero
- Departamento de Ingenierias Química y Biomolecular, Universidad de Cantabria, Santander, Spain
| | - Nazely Diban
- Departamento de Ingenierias Química y Biomolecular, Universidad de Cantabria, Santander, Spain
- Instituto Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Ane Urtiaga
- Departamento de Ingenierias Química y Biomolecular, Universidad de Cantabria, Santander, Spain
- Instituto Marqués de Valdecilla (IDIVAL), Santander, Spain
| |
Collapse
|
4
|
Díaz E, León J, Murillo-Marrodán A, Ribeiro S, Lanceros-Méndez S. Influence of rGO on the Crystallization Kinetics, Cytoxicity, and Electrical and Mechanical Properties of Poly (L-lactide-co-ε-caprolactone) Scaffolds. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7436. [PMID: 36363027 PMCID: PMC9658019 DOI: 10.3390/ma15217436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Biodegradable scaffolds of poly (L-lactide-co-ε-caprolactone) (PLCL) and reduced graphene oxide (rGO) were prepared by TIPS (thermally induced phase separation). The nonisothermal cold crystallization kinetics were investigated by differential scanning calorimetry (DSC) with various cooling rates. The experimental values indicate that nonisothermal crystallization improves with cooling rate, but the increasing rGO concentration delays crystallization at higher temperatures. The activation energies were calculated by the Kissinger equation; the values were very similar for PLCL and for its compounds with rGO. The electrical conductivity measurements show that the addition of rGO leads to a rapid transition from insulating to conductive scaffolds with a percolation value of ≈0.4 w/w. Mechanical compression tests show that the addition of rGO improves the mechanical properties of porous substrates. In addition, it is an anisotropic material, especially at compositions of 1% w/w of rGO. All of the samples with different rGO content up to 1% are cytotoxic for C2C12 myoblast cells.
Collapse
Affiliation(s)
- Esperanza Díaz
- Escuela de Ingeniería de Bilbao, Departamento de Ingeniería de Minera, Metalúrgica y Ciencia de Materiales, Universidad del País Vasco (UPV/EHU), 48920 Portugalete, Spain
- BcMaterials, Basque Centre for Materials, Applications and Nanostructures, (UPV/EHU) Science Park, 48940 Leioa, Spain
| | - Joseba León
- Department of Mechanics, Design and Industrial Management, University of Deusto, Avda Universidades 24, 48007 Bilbao, Spain
| | - Alberto Murillo-Marrodán
- Department of Mechanics, Design and Industrial Management, University of Deusto, Avda Universidades 24, 48007 Bilbao, Spain
| | - Sylvie Ribeiro
- Centro de Física, Universidade do Minho, 4710-058 Braga, Portugal
- Centre of Molecular Environmental Biology (CBMA), Universidade do Minho, 4710-057 Braga, Portugal
| | - Senentxu Lanceros-Méndez
- BcMaterials, Basque Centre for Materials, Applications and Nanostructures, (UPV/EHU) Science Park, 48940 Leioa, Spain
- Ikerbasque Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
5
|
Mantecón-Oria M, Tapia O, Lafarga M, Berciano MT, Munuera JM, Villar-Rodil S, Paredes JI, Rivero MJ, Diban N, Urtiaga A. Influence of the properties of different graphene-based nanomaterials dispersed in polycaprolactone membranes on astrocytic differentiation. Sci Rep 2022; 12:13408. [PMID: 35927565 PMCID: PMC9352708 DOI: 10.1038/s41598-022-17697-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/29/2022] [Indexed: 11/23/2022] Open
Abstract
Composites of polymer and graphene-based nanomaterials (GBNs) combine easy processing onto porous 3D membrane geometries due to the polymer and cellular differentiation stimuli due to GBNs fillers. Aiming to step forward to the clinical application of polymer/GBNs composites, this study performs a systematic and detailed comparative analysis of the influence of the properties of four different GBNs: (i) graphene oxide obtained from graphite chemically processes (GO); (ii) reduced graphene oxide (rGO); (iii) multilayered graphene produced by mechanical exfoliation method (Gmec); and (iv) low-oxidized graphene via anodic exfoliation (Ganodic); dispersed in polycaprolactone (PCL) porous membranes to induce astrocytic differentiation. PCL/GBN flat membranes were fabricated by phase inversion technique and broadly characterized in morphology and topography, chemical structure, hydrophilicity, protein adsorption, and electrical properties. Cellular assays with rat C6 glioma cells, as model for cell-specific astrocytes, were performed. Remarkably, low GBN loading (0.67 wt%) caused an important difference in the response of the C6 differentiation among PCL/GBN membranes. PCL/rGO and PCL/GO membranes presented the highest biomolecule markers for astrocyte differentiation. Our results pointed to the chemical structural defects in rGO and GO nanomaterials and the protein adsorption mechanisms as the most plausible cause conferring distinctive properties to PCL/GBN membranes for the promotion of astrocytic differentiation. Overall, our systematic comparative study provides generalizable conclusions and new evidences to discern the role of GBNs features for future research on 3D PCL/graphene composite hollow fiber membranes for in vitro neural models.
Collapse
Affiliation(s)
- Marián Mantecón-Oria
- Departamento de Ingenierias Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros s/n, 39005, Santander, Spain
- Instituto Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Olga Tapia
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011, Santander, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28029, Madrid, Spain
| | - Miguel Lafarga
- Instituto Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28029, Madrid, Spain
- Departamento de Anatomía y Biología Celular, Universidad de Cantabria, 39011, Santander, Spain
| | - María T Berciano
- Instituto Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28029, Madrid, Spain
- Departamento de Biología Molecular, Universidad de Cantabria, 39011, Santander, Spain
| | - Jose M Munuera
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, C/Francisco Pintado Fe 26, 33011, Oviedo, Spain
| | - Silvia Villar-Rodil
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, C/Francisco Pintado Fe 26, 33011, Oviedo, Spain
| | - Juan I Paredes
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, C/Francisco Pintado Fe 26, 33011, Oviedo, Spain
| | - María J Rivero
- Departamento de Ingenierias Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros s/n, 39005, Santander, Spain
| | - Nazely Diban
- Departamento de Ingenierias Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros s/n, 39005, Santander, Spain.
- Instituto Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain.
| | - Ane Urtiaga
- Departamento de Ingenierias Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros s/n, 39005, Santander, Spain
- Instituto Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
| |
Collapse
|
6
|
Diban N, Mantecón-Oria M, Berciano MT, Puente-Bedia A, Rivero MJ, Urtiaga A, Lafarga M, Tapia O. Non-homogeneous dispersion of graphene in polyacrylonitrile substrates induces a migrastatic response and epithelial-like differentiation in MCF7 breast cancer cells. Cancer Nanotechnol 2022. [DOI: 10.1186/s12645-021-00107-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Abstract
Background
Recent advances from studies of graphene and graphene-based derivatives have highlighted the great potential of these nanomaterials as migrastatic agents with the ability to modulate tumor microenvironments. Nevertheless, the administration of graphene nanomaterials in suspensions in vivo is controversial. As an alternative approach, herein, we report the immobilization of high concentrations of graphene nanoplatelets in polyacrylonitrile film substrates (named PAN/G10) and evaluate their potential use as migrastatic agents on cancer cells.
Results
Breast cancer MCF7 cells cultured on PAN/G10 substrates presented features resembling mesenchymal-to-epithelial transition, e.g., (i) inhibition of migratory activity; (ii) activation of the expression of E-cadherin, cytokeratin 18, ZO-1 and EpCAM, four key molecular markers of epithelial differentiation; (iii) formation of adherens junctions with clustering and adhesion of cancer cells in aggregates or islets, and (iv) reorganization of the actin cytoskeleton resulting in a polygonal cell shape. Remarkably, assessment with Raman spectroscopy revealed that the above-mentioned events were produced when MCF7 cells were preferentially located on top of graphene-rich regions of the PAN/G10 substrates.
Conclusions
The present data demonstrate the capacity of these composite substrates to induce an epithelial-like differentiation in MCF7 breast cancer cells, resulting in a migrastatic effect without any chemical agent-mediated signaling. Future works will aim to thoroughly evaluate the mechanisms of how PAN/G10 substrates trigger these responses in cancer cells and their potential use as antimetastatics for the treatment of solid cancers.
Graphical Abstract
Collapse
|
7
|
Fabrication and Characterization of Reduced Graphene Oxide/Polyaniline/Poly(Caprolactone) Electrospun Nanofiber. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-021-05901-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Graphene-Based Materials for Efficient Neurogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1351:43-64. [DOI: 10.1007/978-981-16-4923-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Ławkowska K, Pokrywczyńska M, Koper K, Kluth LA, Drewa T, Adamowicz J. Application of Graphene in Tissue Engineering of the Nervous System. Int J Mol Sci 2021; 23:33. [PMID: 35008456 PMCID: PMC8745025 DOI: 10.3390/ijms23010033] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/07/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
Graphene is the thinnest two-dimensional (2D), only one carbon atom thick, but one of the strongest biomaterials. Due to its unique structure, it has many unique properties used in tissue engineering of the nervous system, such as high strength, flexibility, adequate softness, electrical conductivity, antibacterial effect, and the ability to penetrate the blood-brain barrier (BBB). Graphene is also characterized by the possibility of modifications that allow for even wider application and adaptation to cell cultures of specific cells and tissues, both in vitro and in vivo. Moreover, by using the patient's own cells for cell culture, it will be possible to produce tissues and organs that can be re-transplanted without transplant rejection, the negative effects of taking immunosuppressive drugs, and waiting for an appropriate organ donor.
Collapse
Affiliation(s)
- Karolina Ławkowska
- Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Curie-Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (M.P.); (T.D.); (J.A.)
| | - Marta Pokrywczyńska
- Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Curie-Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (M.P.); (T.D.); (J.A.)
| | - Krzysztof Koper
- Department of Clinical Oncology and Nursing, Collegium Medicum, Nicolaus Copernicus University, Curie-Skłodowskiej 9, 85-094 Bydgoszcz, Poland;
| | - Luis Alex Kluth
- Department of Urology, University Medical Center Frankfurt a.M., 60590 Frankfurt am Main, Germany;
| | - Tomasz Drewa
- Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Curie-Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (M.P.); (T.D.); (J.A.)
| | - Jan Adamowicz
- Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Curie-Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (M.P.); (T.D.); (J.A.)
| |
Collapse
|
10
|
Investigation of optical properties, chemical network and electronic environments of polycaprolactone/reduced graphene oxide fiber nanocomposites. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03920-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Su H, Yin S, Yang J, Wu Y, Shi C, Sun H, Wang G. In situ monitoring of circulating tumor cell adhered on three-dimensional graphene/ZnO macroporous structure by resistance change and electrochemical impedance spectroscopy. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Manjunatha B, Seo E, Park SH, Kundapur RR, Lee SJ. Pristine graphene and graphene oxide induce multi-organ defects in zebrafish (Danio rerio) larvae/juvenile: an in vivo study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:34664-34675. [PMID: 33656705 DOI: 10.1007/s11356-021-13058-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 02/16/2021] [Indexed: 05/14/2023]
Abstract
Graphene-based nanomaterials (GBNs) have been widely used in various fields nowadays. However, they are reported to be highly toxic to some aquatic organisms. However, the multi-organ toxicity caused by pristine graphene (pG) and graphene oxide (GO) to the developing zebrafish (Danio rerio) larvae or juvenile and the underlying mechanisms is not fully known. Therefore, in the present study, the effect of pG and GO with environmental concentrations (0, 5, 10, 15, 20, and 25 μg/L of pG; 0, 0.1, 0.2, 0.3, and 0.4 mg/mL of GO) on multi-organ system in developing zebrafish larvae was experimentally assessed. The pG and GO were found to accumulate in the brain tissue that also caused significant changes in the heart beat and survival rate. The sizes of hepatocytes were reduced. Altered axonal integrity, affecting axon length and pattern in "Tg(mbp:eGFP) transgenic lines" was also observed. In addition, the results indicated pathological effects in major organs and with disrupted mitochondrial structure was quite obvious. The pG and GO bioaccumulation leads to multi organ toxicity in zebrafish larvae. In future, the existence of the current study can be extrapolated to other aquatic system in general and in particularly to humans.
Collapse
Affiliation(s)
- Bangeppagari Manjunatha
- Center for Biofluid and Biomimic Research, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Eunseok Seo
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Sung Ho Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | | | - Sang Joon Lee
- Center for Biofluid and Biomimic Research, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea.
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea.
| |
Collapse
|
13
|
Yao X, Yan Z, Wang X, Jiang H, Qian Y, Fan C. The influence of reduced graphene oxide on stem cells: a perspective in peripheral nerve regeneration. Regen Biomater 2021; 8:rbab032. [PMID: 34188955 PMCID: PMC8226110 DOI: 10.1093/rb/rbab032] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/13/2021] [Accepted: 05/25/2021] [Indexed: 12/18/2022] Open
Abstract
Graphene and its derivatives are fascinating materials for their extraordinary electrochemical and mechanical properties. In recent decades, many researchers explored their applications in tissue engineering and regenerative medicine. Reduced graphene oxide (rGO) possesses remarkable structural and functional resemblance to graphene, although some residual oxygen-containing groups and defects exist in the structure. Such structure holds great potential since the remnant-oxygenated groups can further be functionalized or modified. Moreover, oxygen-containing groups can improve the dispersion of rGO in organic or aqueous media. Therefore, it is preferable to utilize rGO in the production of composite materials. The rGO composite scaffolds provide favorable extracellular microenvironment and affect the cellular behavior of cultured cells in the peripheral nerve regeneration. On the one hand, rGO impacts on Schwann cells and neurons which are major components of peripheral nerves. On the other hand, rGO-incorporated composite scaffolds promote the neurogenic differentiation of several stem cells, including embryonic stem cells, mesenchymal stem cells, adipose-derived stem cells and neural stem cells. This review will briefly introduce the production and major properties of rGO, and its potential in modulating the cellular behaviors of specific stem cells. Finally, we present its emerging roles in the production of composite scaffolds for nerve tissue engineering.
Collapse
Affiliation(s)
- Xiangyun Yao
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, 600 Yishan Road, Shanghai 200233, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
| | - Zhiwen Yan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, 600 Yishan Road, Shanghai 200233, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
| | - Xu Wang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, 600 Yishan Road, Shanghai 200233, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
| | - Huiquan Jiang
- College of Fisheries and Life Science, Shanghai Ocean University, 999 Metro loop Road Shanghai, China
| | - Yun Qian
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, 600 Yishan Road, Shanghai 200233, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, 600 Yishan Road, Shanghai 200233, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
| |
Collapse
|
14
|
Girão AF, Sousa J, Domínguez-Bajo A, González-Mayorga A, Bdikin I, Pujades-Otero E, Casañ-Pastor N, Hortigüela MJ, Otero-Irurueta G, Completo A, Serrano MC, Marques PAAP. 3D Reduced Graphene Oxide Scaffolds with a Combinatorial Fibrous-Porous Architecture for Neural Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38962-38975. [PMID: 32805917 DOI: 10.1021/acsami.0c10599] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Graphene oxide (GO) assists a diverse set of promising routes to build bioactive neural microenvironments by easily interacting with other biomaterials to enhance their bulk features or, alternatively, self-assembling toward the construction of biocompatible systems with specific three-dimensional (3D) geometries. Herein, we first modulate both size and available oxygen groups in GO nanosheets to adjust the physicochemical and biological properties of polycaprolactone-gelatin electrospun nanofibrous systems. The results show that the incorporation of customized GO nanosheets modulates the properties of the nanofibers and, subsequently, markedly influences the viability of neural progenitor cell cultures. Interestingly, the partially reduced GO (rGO) nanosheets with larger dimensions trigger the best cell response, while the rGO nanosheets with smaller size provoke an accentuated decrease in the cytocompatibility of the resulting electrospun meshes. Then, the most auspicious nanofibers are synergistically accommodated onto the surface of 3D-rGO heterogeneous porous networks, giving rise to fibrous-porous combinatorial architectures suitable for enhancing adhesion and differentiation of neural cells. By varying the chemical composition of the nanofibers, it is possible to adapt their performance as physical crosslinkers for the rGO sheets, leading to the modulation of both pore size and structural/mechanical integrity of the scaffold. Importantly, the biocompatibility of the resultant fibrous-porous systems is not compromised after 14 days of cell culture, including standard differentiation patterns of neural progenitor cells. Overall, in light of these in vitro results, the reported scaffolding approach presents not only an indisputable capacity to support highly viable and interconnected neural circuits but also the potential to unlock novel strategies for neural tissue engineering applications.
Collapse
Affiliation(s)
- André F Girão
- TEMA, Department of Mechanical Engineering, University of Aveiro (UA), Aveiro 3810-193, Portugal
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la Cruz 3, Madrid 28049, Spain
| | - Joana Sousa
- TEMA, Department of Mechanical Engineering, University of Aveiro (UA), Aveiro 3810-193, Portugal
| | - Ana Domínguez-Bajo
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la Cruz 3, Madrid 28049, Spain
| | - Ankor González-Mayorga
- Laboratory of Interfaces for Neural Repair, Hospital Nacional de Parapléjicos, SESCAM, Finca la Peraleda s/n, Toledo 45071, Spain
| | - Igor Bdikin
- TEMA, Department of Mechanical Engineering, University of Aveiro (UA), Aveiro 3810-193, Portugal
| | - Eulalia Pujades-Otero
- Instituto de Ciencia de Materiales de Barcelona (ICMAB), Consejo Superior de Investigaciones Científicas (CSIC), Campus de la Universidad Autónoma de Barcelona, 08193 Barcelona, Spain
| | - Nieves Casañ-Pastor
- Instituto de Ciencia de Materiales de Barcelona (ICMAB), Consejo Superior de Investigaciones Científicas (CSIC), Campus de la Universidad Autónoma de Barcelona, 08193 Barcelona, Spain
| | - María Jesús Hortigüela
- TEMA, Department of Mechanical Engineering, University of Aveiro (UA), Aveiro 3810-193, Portugal
| | - Gonzalo Otero-Irurueta
- TEMA, Department of Mechanical Engineering, University of Aveiro (UA), Aveiro 3810-193, Portugal
| | - António Completo
- TEMA, Department of Mechanical Engineering, University of Aveiro (UA), Aveiro 3810-193, Portugal
| | - María Concepción Serrano
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la Cruz 3, Madrid 28049, Spain
| | - Paula A A P Marques
- TEMA, Department of Mechanical Engineering, University of Aveiro (UA), Aveiro 3810-193, Portugal
| |
Collapse
|
15
|
Mantecón-Oria M, Diban N, Berciano MT, Rivero MJ, David O, Lafarga M, Tapia O, Urtiaga A. Hollow Fiber Membranes of PCL and PCL/Graphene as Scaffolds with Potential to Develop In Vitro Blood-Brain Barrier Models. MEMBRANES 2020; 10:E161. [PMID: 32708027 PMCID: PMC7464335 DOI: 10.3390/membranes10080161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 12/13/2022]
Abstract
There is a huge interest in developing novel hollow fiber (HF) membranes able to modulate neural differentiation to produce in vitro blood-brain barrier (BBB) models for biomedical and pharmaceutical research, due to the low cell-inductive properties of the polymer HFs used in current BBB models. In this work, poly(ε-caprolactone) (PCL) and composite PCL/graphene (PCL/G) HF membranes were prepared by phase inversion and were characterized in terms of mechanical, electrical, morphological, chemical, and mass transport properties. The presence of graphene in PCL/G membranes enlarged the pore size and the water flux and presented significantly higher electrical conductivity than PCL HFs. A biocompatibility assay showed that PCL/G HFs significantly increased C6 cells adhesion and differentiation towards astrocytes, which may be attributed to their higher electrical conductivity in comparison to PCL HFs. On the other hand, PCL/G membranes produced a cytotoxic effect on the endothelial cell line HUVEC presumably related with a higher production of intracellular reactive oxygen species induced by the nanomaterial in this particular cell line. These results prove the potential of PCL HF membranes to grow endothelial cells and PCL/G HF membranes to differentiate astrocytes, the two characteristic cell types that could develop in vitro BBB models in future 3D co-culture systems.
Collapse
Affiliation(s)
- Marián Mantecón-Oria
- Department of Chemical and Biomolecular Engineering, ETSIIyT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain; (M.M.-O.); (M.J.R.); (A.U.)
| | - Nazely Diban
- Department of Chemical and Biomolecular Engineering, ETSIIyT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain; (M.M.-O.); (M.J.R.); (A.U.)
- Instituto de Investigación Marqués de Valdecilla (IDIVAL), Cardenal H. Oria s/n, 39011 Santander, Spain; (M.T.B.); (M.L.); (O.T.)
| | - Maria T. Berciano
- Instituto de Investigación Marqués de Valdecilla (IDIVAL), Cardenal H. Oria s/n, 39011 Santander, Spain; (M.T.B.); (M.L.); (O.T.)
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 528031 Madrid, Spain
- Department of Molecular Biology, University of Cantabria, Cardenal H. Oria s/n, 39011 Santander, Spain
| | - Maria J. Rivero
- Department of Chemical and Biomolecular Engineering, ETSIIyT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain; (M.M.-O.); (M.J.R.); (A.U.)
| | - Oana David
- TECNALIA, Basque Research and Technology Alliance (BRTA), Mikeletegi Pasealekua 2, 20009 San Sebastián, Spain;
| | - Miguel Lafarga
- Instituto de Investigación Marqués de Valdecilla (IDIVAL), Cardenal H. Oria s/n, 39011 Santander, Spain; (M.T.B.); (M.L.); (O.T.)
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 528031 Madrid, Spain
- Department of Anatomy and Cell Biology, University of Cantabria, Cardenal H. Oria s/n, 39011 Santander, Spain
| | - Olga Tapia
- Instituto de Investigación Marqués de Valdecilla (IDIVAL), Cardenal H. Oria s/n, 39011 Santander, Spain; (M.T.B.); (M.L.); (O.T.)
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 528031 Madrid, Spain
- Universidad Europea del Atlántico, Parque Científico y Tecnológico de Cantabria, Isabel Torres 21, 39011 Santander, Spain
| | - Ane Urtiaga
- Department of Chemical and Biomolecular Engineering, ETSIIyT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain; (M.M.-O.); (M.J.R.); (A.U.)
- Instituto de Investigación Marqués de Valdecilla (IDIVAL), Cardenal H. Oria s/n, 39011 Santander, Spain; (M.T.B.); (M.L.); (O.T.)
| |
Collapse
|
16
|
Fang X, Guo H, Zhang W, Fang H, Li Q, Bai S, Zhang P. Reduced graphene oxide–GelMA–PCL hybrid nanofibers for peripheral nerve regeneration. J Mater Chem B 2020; 8:10593-10601. [DOI: 10.1039/d0tb00779j] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Graphene oxide is currently used in peripheral nerve engineering but has certain limitations, such as cytotoxicity and lack of electrical conductivity, both of which are crucial in regulating nerve-associated cell behaviors.
Collapse
Affiliation(s)
- Xingxing Fang
- Department of Orthopedics and Trauma
- Peking University People's Hospital
- Beijing
- China
- Department of Spine Surgery
| | - Haichang Guo
- Department of Materials Science and Engineering, CAPT/HEDPS
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- College of Engineering
- Peking University
- Beijing
| | - Wei Zhang
- Department of Orthopedics and Trauma
- Peking University People's Hospital
- Beijing
- China
- National Center for Trauma Medicine
| | - Haoming Fang
- Department of Materials Science and Engineering, CAPT/HEDPS
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- College of Engineering
- Peking University
- Beijing
| | - Qicheng Li
- Department of Orthopedics and Trauma
- Peking University People's Hospital
- Beijing
- China
- National Center for Trauma Medicine
| | - Shulin Bai
- Department of Materials Science and Engineering, CAPT/HEDPS
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- College of Engineering
- Peking University
- Beijing
| | - Peixun Zhang
- Department of Orthopedics and Trauma
- Peking University People's Hospital
- Beijing
- China
- National Center for Trauma Medicine
| |
Collapse
|
17
|
Kitko KE, Zhang Q. Graphene-Based Nanomaterials: From Production to Integration With Modern Tools in Neuroscience. Front Syst Neurosci 2019; 13:26. [PMID: 31379522 PMCID: PMC6646684 DOI: 10.3389/fnsys.2019.00026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 06/24/2019] [Indexed: 12/02/2022] Open
Abstract
Graphene, a two-dimensional carbon crystal, has emerged as a promising material for sensing and modulating neuronal activity in vitro and in vivo. In this review, we provide a primer for how manufacturing processes to produce graphene and graphene oxide result in materials properties that may be tailored for a variety of applications. We further discuss how graphene may be composited with other bio-compatible materials of interest to make novel hybrid complexes with desired characteristics for bio-interfacing. We then highlight graphene's ever-widen utility and unique properties that may in the future be multiplexed for cross-modal modulation or interrogation of neuronal network. As the biological effects of graphene are still an area of active investigation, we discuss recent development, with special focus on how surface coatings and surface properties of graphene are relevant to its biological effects. We discuss studies conducted in both non-murine and murine systems, and emphasize the preclinical aspect of graphene's potential without undermining its tangible clinical implementation.
Collapse
Affiliation(s)
- Kristina E. Kitko
- Program in Interdisciplinary Materials Science, Vanderbilt University, Nashville, TN, United States
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Qi Zhang
- The Brain Institute, Florida Atlantic University, Jupiter, FL, United States
| |
Collapse
|