1
|
Son Y, Lee MS, Hwang DJ, Lee SH, Lee AS, Hwang SS, Choi DH, Jo CH, Yang HS. Fabrication of a micropatterned shape-memory polymer patch with L-DOPA for tendon regeneration. Biomater Sci 2025. [PMID: 39866153 DOI: 10.1039/d4bm00298a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
A scaffold design for tendon regeneration has been proposed, which mimics the microstructural features of tendons and provides appropriate mechanical properties. We synthesized a temperature-triggered shape-memory polymer (SMP) using the ring-opening polymerization of polycaprolactone (PCL) with polyethylene glycol (PEG) as a macroinitiator. We fabricated a micropatterned patch using SMP via capillary force lithography, which mimicked a native tendon, for providing physical cues and guiding effects. The SMP patches (the SMP-flat patch is referred to as SMP-F, and the SMP-patterned patch is referred to as SMP-P) were surface-modified with 3,4-dihydroxy-L-phenylalanine (L-DOPA, referred to as D) for improving cell adhesion. We hypothesized that SMP patches could be applied in minimally invasive surgery and the micropatterned structure would improve tendon regeneration by providing geometrical cues. The SMP patches exhibited excellent shape-memory properties, mechanical performance, and biocompatibility in vitro and in vivo. Especially, SMP-DP demonstrated enhanced cell behaviors in vitro, including cell orientation, elongation, migration, and tenogenic differentiation potential. The in vivo data showed notable biomechanical functionality and histological morphometric findings in various analyses of SMP-DP in the ruptured Achilles tendon model.
Collapse
Affiliation(s)
- Yucheol Son
- Department of Nanobiomedical Science & BK21 FOUR micropatterned shape-memory NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea.
| | - Min Suk Lee
- Department of Nanobiomedical Science & BK21 FOUR micropatterned shape-memory NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea.
- Medical Laser Research Center, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Dong Jun Hwang
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk Gu, Seoul 02972, Republic of Korea
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Sun Hong Lee
- Department of Nanobiomedical Science & BK21 FOUR micropatterned shape-memory NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea.
| | - Albert S Lee
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk Gu, Seoul 02972, Republic of Korea
| | - Seung Sang Hwang
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk Gu, Seoul 02972, Republic of Korea
| | - Dong Hoon Choi
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Chris Hyunchul Jo
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul 07061, Republic of Korea
| | - Hee Seok Yang
- Department of Nanobiomedical Science & BK21 FOUR micropatterned shape-memory NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea.
- School of Biomedical Sciences & Biosystems, College of Bio-convergence, Dankook University, Cheonan, 31116, Republic of Korea
- Center for Bio-Medical Engineering Core-Facility, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
2
|
Wang X, Chen S, Chen X, Wu J, Huang Z, Wang J, Chen F, Liu C. Biomimetic multi-channel nerve conduits with micro/nanostructures for rapid nerve repair. Bioact Mater 2024; 41:577-596. [PMID: 39257673 PMCID: PMC11384339 DOI: 10.1016/j.bioactmat.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/13/2024] [Accepted: 07/13/2024] [Indexed: 09/12/2024] Open
Abstract
Peripheral nervous system (PNS) injuries often lead to significant sensory and motor impairments. Traditional artificial nerve conduits, lacking anisotropic structures, have been associated with prolonged repair time and failures in nerve regeneration. This study aimed to address these challenges by developing a novel approach for rapid repair of peripheral nerve injuries (PNI). A 3D oriented fibers scaffold featuring distinct radial (RFs) and longitudinal (LFs) fibers orientations was engineered using coaxial electrospinning and gas directional foaming techniques. This scaffold was then integrated with a shape memory conduit to form a directional multi-channel nerve conduit with micro/nanostructures. The results revealed that the grooved surface of the fibers significantly improved cellular directional guidance, effectively facilitating the migration of SCs from the periphery towards the center and from the base to the apex of the scaffold. In a rat model with a 10 mm nerve defect, the ND-PLATMC/LF ND-PCL scaffold significantly enhanced nerve regeneration and motor function recovery within 4 weeks. These results suggest the potential of this innovative scaffold for efficient repair of the nerve injuries.
Collapse
Affiliation(s)
- Xinqing Wang
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Shuo Chen
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Xiaolei Chen
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Juan Wu
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Zhenhua Huang
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Jing Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Fangping Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| |
Collapse
|
3
|
Xie C, Chen Y, Wang L, Liao K, Xue B, Han Y, Li L, Jiang Q. Recent research of peptide-based hydrogel in nervous regeneration. Bioact Mater 2024; 40:503-523. [PMID: 39040568 PMCID: PMC11261279 DOI: 10.1016/j.bioactmat.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 07/24/2024] Open
Abstract
Neurological disorders exert significantly affect the quality of life for patients, necessitating effective strategies for nerve regeneration. Both traditional autologous nerve transplantation and emerging therapeutic approaches encounter scientific challenges due to the complex nature of the nervous system and the unsuitability of the surrounding environment for cell transplantation. Tissue engineering techniques offer a promising path for neurotherapy. Successful neural tissue engineering relies on modulating cell differentiation behavior and tissue repair by developing biomaterials that mimic the natural extracellular matrix (ECM) and establish a three-dimensional microenvironment. Peptide-based hydrogels have emerged as a potent option among these biomaterials due to their ability to replicate the structure and complexity of the ECM. This review aims to explore the diverse range of peptide-based hydrogels used in nerve regeneration with a specific focus on dipeptide hydrogels, tripeptide hydrogels, oligopeptide hydrogels, multidomain peptides (MDPs), and amphiphilic peptide hydrogels (PAs). Peptide-based hydrogels offer numerous advantages, including biocompatibility, structural diversity, adjustable mechanical properties, and degradation without adverse effects. Notably, hydrogels formed from self-assembled polypeptide nanofibers, derived from amino acids, show promising potential in engineering neural tissues, outperforming conventional materials like alginate, poly(ε-caprolactone), and polyaniline. Additionally, the simple design and cost-effectiveness of dipeptide-based hydrogels have enabled the creation of various functional supramolecular structures, with significant implications for nervous system regeneration. These hydrogels are expected to play a crucial role in future neural tissue engineering research. This review aims to highlight the benefits and potential applications of peptide-based hydrogels, contributing to the advancement of neural tissue engineering.
Collapse
Affiliation(s)
- Chunmei Xie
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Yueyang Chen
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Lang Wang
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Kin Liao
- Advanced Digital and Additive Manufacturing Center, Khalifa University of Science and Technology, Po Box 127788, Abu Dhabi, United Arab Emirates
| | - Bin Xue
- National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing, China
| | - Yulong Han
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Lan Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
- Jiangsu Engineering Research Center for 3D Bioprinting, Nanjing, China
- Institute of Medical 3D Printing, Nanjing University, Nanjing, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
- Jiangsu Engineering Research Center for 3D Bioprinting, Nanjing, China
- Institute of Medical 3D Printing, Nanjing University, Nanjing, China
| |
Collapse
|
4
|
Sharifi M, Kamalabadi-Farahani M, Salehi M, Ebrahimi-Barough S, Alizadeh M. Recent advances in enhances peripheral nerve orientation: the synergy of micro or nano patterns with therapeutic tactics. J Nanobiotechnology 2024; 22:194. [PMID: 38643117 PMCID: PMC11031871 DOI: 10.1186/s12951-024-02475-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/11/2024] [Indexed: 04/22/2024] Open
Abstract
Several studies suggest that topographical patterns influence nerve cell fate. Efforts have been made to improve nerve cell functionality through this approach, focusing on therapeutic strategies that enhance nerve cell function and support structures. However, inadequate nerve cell orientation can impede long-term efficiency, affecting nerve tissue repair. Therefore, enhancing neurites/axons directional growth and cell orientation is crucial for better therapeutic outcomes, reducing nerve coiling, and ensuring accurate nerve fiber connections. Conflicting results exist regarding the effects of micro- or nano-patterns on nerve cell migration, directional growth, immunogenic response, and angiogenesis, complicating their clinical use. Nevertheless, advances in lithography, electrospinning, casting, and molding techniques to intentionally control the fate and neuronal cells orientation are being explored to rapidly and sustainably improve nerve tissue efficiency. It appears that this can be accomplished by combining micro- and nano-patterns with nanomaterials, biological gradients, and electrical stimulation. Despite promising outcomes, the unclear mechanism of action, the presence of growth cones in various directions, and the restriction of outcomes to morphological and functional nerve cell markers have presented challenges in utilizing this method. This review seeks to clarify how micro- or nano-patterns affect nerve cell morphology and function, highlighting the potential benefits of cell orientation, especially in combined approaches.
Collapse
Affiliation(s)
- Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
| | | | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
5
|
Lopes B, Coelho A, Alvites R, Sousa AC, Sousa P, Moreira A, Atayde L, Salgado A, Geuna S, Maurício AC. Animal models in peripheral nerve transection studies: a systematic review on study design and outcomes assessment. Regen Med 2024; 19:189-203. [PMID: 37855207 DOI: 10.2217/rme-2023-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023] Open
Abstract
Aim: Peripheral nerve injury regeneration studies using animal models are crucial to different pre-clinical therapeutic approaches efficacy evaluation whatever the surgical technique explored. Materials & methods: A 944 articles systematic review on 'peripheral nerve injury in animal models' over the last 9 years was carried out. Results: It was found that 91% used rodents, and only 9% employed large animals. Different nerves are studied, with generated gaps (10,78 mm) and methods applied for regeneration evaluation uniformed. Sciatic nerve was the most used (88%), followed by median and facial nerves (2.6%), significantly different. Conclusion: There has not been a significant scale-up of the in vivo testing to large animal models (anatomically/physiologically closer to humans), allowing an improvement in translational medicine for clinical cases.
Collapse
Affiliation(s)
- Bruna Lopes
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, 4051-401, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, Porto, 4050-313, Portugal
- Associate Laboratory for Animal & Veterinary Science (AL4AnimalS), Lisboa, 1300-477, Portugal
| | - André Coelho
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, 4051-401, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, Porto, 4050-313, Portugal
- Associate Laboratory for Animal & Veterinary Science (AL4AnimalS), Lisboa, 1300-477, Portugal
| | - Rui Alvites
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, 4051-401, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, Porto, 4050-313, Portugal
- Associate Laboratory for Animal & Veterinary Science (AL4AnimalS), Lisboa, 1300-477, Portugal
- Instituto Universitário de Ciências da Saúde (CESPU), Avenida Central de Gandra 1317, Gandra, Paredes, 4585-116, Portugal
| | - Ana Catarina Sousa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, 4051-401, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, Porto, 4050-313, Portugal
- Associate Laboratory for Animal & Veterinary Science (AL4AnimalS), Lisboa, 1300-477, Portugal
| | - Patrícia Sousa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, 4051-401, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, Porto, 4050-313, Portugal
- Associate Laboratory for Animal & Veterinary Science (AL4AnimalS), Lisboa, 1300-477, Portugal
| | - Alícia Moreira
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, 4051-401, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, Porto, 4050-313, Portugal
- Associate Laboratory for Animal & Veterinary Science (AL4AnimalS), Lisboa, 1300-477, Portugal
| | - Luís Atayde
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, 4051-401, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, Porto, 4050-313, Portugal
- Associate Laboratory for Animal & Veterinary Science (AL4AnimalS), Lisboa, 1300-477, Portugal
| | - António Salgado
- Life & Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal
- ICVS/3B's e PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Stefano Geuna
- Department of Clinical & Biological Sciences, & Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Ospedale San Luigi, Orbassano, Turin, 10043, Italy
| | - Ana Colette Maurício
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, 4051-401, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, Porto, 4050-313, Portugal
- Associate Laboratory for Animal & Veterinary Science (AL4AnimalS), Lisboa, 1300-477, Portugal
| |
Collapse
|
6
|
Sun J, Cao W, Pan S, He L, Ji D, Zheng N, Sun X, Wang R, Niu Y. Porous Organic Materials in Tissue Engineering: Recent Advances and Applications for Severed Facial Nerve Injury Repair. Molecules 2024; 29:566. [PMID: 38338311 PMCID: PMC10856494 DOI: 10.3390/molecules29030566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/12/2024] Open
Abstract
The prevalence of facial nerve injury is substantial, and the restoration of its structure and function remains a significant challenge. Autologous nerve transplantation is a common treatment for severed facial nerve injury; however, it has great limitations. Therefore, there is an urgent need for clinical repair methods that can rival it. Tissue engineering nerve conduits are usually composed of scaffolds, cells and neurofactors. Tissue engineering is regarded as a promising method for facial nerve regeneration. Among different factors, the porous nerve conduit made of organic materials, which has high porosity and biocompatibility, plays an indispensable role. This review introduces facial nerve injury and the existing treatment methods and discusses the necessity of the application of porous nerve conduit. We focus on the application of porous organic polymer materials from production technology and material classification and summarize the necessity and research progress of these in repairing severed facial nerve injury, which is relatively rare in the existing articles. This review provides a theoretical basis for further research into and clinical interventions on facial nerve injury and has certain guiding significance for the development of new materials.
Collapse
Affiliation(s)
- Jingxuan Sun
- The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin Medical University, Harbin 150001, China; (J.S.); (S.P.); (L.H.); (X.S.)
| | - Wenxin Cao
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China; (W.C.); (D.J.)
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
| | - Shuang Pan
- The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin Medical University, Harbin 150001, China; (J.S.); (S.P.); (L.H.); (X.S.)
| | - Lina He
- The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin Medical University, Harbin 150001, China; (J.S.); (S.P.); (L.H.); (X.S.)
| | - Dongchao Ji
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China; (W.C.); (D.J.)
| | - Nannan Zheng
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing (Ministry of Education), School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China;
| | - Xiangyu Sun
- The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin Medical University, Harbin 150001, China; (J.S.); (S.P.); (L.H.); (X.S.)
| | - Ranxu Wang
- The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin Medical University, Harbin 150001, China; (J.S.); (S.P.); (L.H.); (X.S.)
| | - Yumei Niu
- The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin Medical University, Harbin 150001, China; (J.S.); (S.P.); (L.H.); (X.S.)
| |
Collapse
|
7
|
Cao S, Wei Y, Bo R, Yun X, Xu S, Guan Y, Zhao J, Lan Y, Zhang B, Xiong Y, Jin T, Lai Y, Chang J, Zhao Q, Wei M, Shao Y, Quan Q, Zhang Y. Inversely engineered biomimetic flexible network scaffolds for soft tissue regeneration. SCIENCE ADVANCES 2023; 9:eadi8606. [PMID: 37756408 PMCID: PMC10530085 DOI: 10.1126/sciadv.adi8606] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
Graft-host mechanical mismatch has been a longstanding issue in clinical applications of synthetic scaffolds for soft tissue regeneration. Although numerous efforts have been devoted to resolve this grand challenge, the regenerative performance of existing synthetic scaffolds remains limited by slow tissue growth (comparing to autograft) and mechanical failures. We demonstrate a class of rationally designed flexible network scaffolds that can precisely replicate nonlinear mechanical responses of soft tissues and enhance tissue regeneration via reduced graft-host mechanical mismatch. Such flexible network scaffold includes a tubular network frame containing inversely engineered curved microstructures to produce desired mechanical properties, with an electrospun ultrathin film wrapped around the network to offer a proper microenvironment for cell growth. Using rat models with sciatic nerve defects or Achilles tendon injuries, our network scaffolds show regenerative performances evidently superior to that of clinically approved electrospun conduit scaffolds and achieve similar outcomes to autologous nerve transplantation in prevention of target organ atrophy and recovery of static sciatic index.
Collapse
Affiliation(s)
- Shunze Cao
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Yu Wei
- Department of Orthopedic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100142, P.R. China
| | - Renheng Bo
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Xing Yun
- Department of Orthopedic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100142, P.R. China
| | - Shiwei Xu
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Yanjun Guan
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing 100142, P.R. China
- Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing 100142, Beijing, P.R. China
| | - Jianzhong Zhao
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Yu Lan
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Bin Zhang
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
| | - Yingjie Xiong
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing 100142, P.R. China
- Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing 100142, Beijing, P.R. China
| | - Tianqi Jin
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Yuchen Lai
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Jiahui Chang
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
| | - Qing Zhao
- Department of Orthopedic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100142, P.R. China
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing 100142, P.R. China
- Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing 100142, Beijing, P.R. China
| | - Min Wei
- Department of Orthopedic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100142, P.R. China
| | - Yue Shao
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
| | - Qi Quan
- Department of Orthopedic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100142, P.R. China
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing 100142, P.R. China
- Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing 100142, Beijing, P.R. China
| | - Yihui Zhang
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
8
|
Mankavi F, Ibrahim R, Wang H. Advances in Biomimetic Nerve Guidance Conduits for Peripheral Nerve Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2528. [PMID: 37764557 PMCID: PMC10536071 DOI: 10.3390/nano13182528] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023]
Abstract
Injuries to the peripheral nervous system are a common clinical issue, causing dysfunctions of the motor and sensory systems. Surgical interventions such as nerve autografting are necessary to repair damaged nerves. Even with autografting, i.e., the gold standard, malfunctioning and mismatches between the injured and donor nerves often lead to unwanted failure. Thus, there is an urgent need for a new intervention in clinical practice to achieve full functional recovery. Nerve guidance conduits (NGCs), providing physicochemical cues to guide neural regeneration, have great potential for the clinical regeneration of peripheral nerves. Typically, NGCs are tubular structures with various configurations to create a microenvironment that induces the oriented and accelerated growth of axons and promotes neuron cell migration and tissue maturation within the injured tissue. Once the native neural environment is better understood, ideal NGCs should maximally recapitulate those key physiological attributes for better neural regeneration. Indeed, NGC design has evolved from solely physical guidance to biochemical stimulation. NGC fabrication requires fundamental considerations of distinct nerve structures, the associated extracellular compositions (extracellular matrices, growth factors, and cytokines), cellular components, and advanced fabrication technologies that can mimic the structure and morphology of native extracellular matrices. Thus, this review mainly summarizes the recent advances in the state-of-the-art NGCs in terms of biomaterial innovations, structural design, and advanced fabrication technologies and provides an in-depth discussion of cellular responses (adhesion, spreading, and alignment) to such biomimetic cues for neural regeneration and repair.
Collapse
Affiliation(s)
| | | | - Hongjun Wang
- Department of Biomedical Engineering, Semcer Center for Healthcare Innovation, Stevens Institute of Technology, Hoboken, NJ 07030, USA; (F.M.); (R.I.)
| |
Collapse
|
9
|
Sumam P, Parameswaran R. Neuronal cell response on aligned fibroporous electrospun mat generated from silver ion complexed ethylene vinyl alcohol copolymer. J Biomed Mater Res B Appl Biomater 2023; 111:782-794. [PMID: 36333924 DOI: 10.1002/jbm.b.35189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/12/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022]
Abstract
Generating electrospun mats with aligned fibers and obtaining neurite extension in the aligned fiber direction could provide hope for fabricating nerve guidance conduits or wraps through an easy method. The growing interest in generating electrospun mats with aligned fibers for tissue engineering is looking for simple methods to generate the same. Here, in this study, ethylene vinyl alcohol copolymer (EVAL) chains were complexed with silver ions (Ag+ ) to generate aligned fibers during the electrospinning process. The fibers thus produced were subjected to physico-chemical characterization and biological studies to ensure their properties and to examine whether suitable for neuronal cell attachment and neurite extension that may be useful in making nerve guidance conduits or wraps. The presence of silver ions and its complex formation with -OH of EVAL has been confirmed with EDX and XPS analysis respectively. The alignment of fibers was visualized from SEM analysis and confirmed using directionality analysis using Fiji-ImageJ software. Mechanical properties done with dumbbells punched out in longitudinal and transverse directions also substantiated the alignment of fibers. The results obtained from direct contact, MTT, and live/dead assay showed the cells are viable on the material. From the actin staining and immunostaining assays, it was evident that the PC12 cells could attach and extend their neurites in an aligned manner on the fibers. The maximum neurite extension was up to 200 μm in length. These properties of electrospun EVAL-Ag mat with aligned fibers indicated that it could be developed as a biocompatible nerve guidance conduit or wrap.
Collapse
Affiliation(s)
- Prima Sumam
- Division of Polymeric Medical Devices, Department of Medical Devices Engineering, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Ramesh Parameswaran
- Division of Polymeric Medical Devices, Department of Medical Devices Engineering, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| |
Collapse
|
10
|
Smith CS, Orkwis JA, Bryan AE, Xu Z, Harris GM. The impact of physical, biochemical, and electrical signaling on Schwann cell plasticity. Eur J Cell Biol 2022; 101:151277. [PMID: 36265214 DOI: 10.1016/j.ejcb.2022.151277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 12/14/2022] Open
Abstract
Peripheral nervous system (PNS) injuries are an ongoing health care concern. While autografts and allografts are regarded as the current clinical standard for traumatic injury, there are inherent limitations that suggest alternative remedies should be considered for therapeutic purposes. In recent years, nerve guidance conduits (NGCs) have become increasingly popular as surgical repair devices, with a multitude of various natural and synthetic biomaterials offering potential to enhance the design of conduits or supplant existing technologies entirely. From a cellular perspective, it has become increasingly evident that Schwann cells (SCs), the primary glia of the PNS, are a predominant factor mediating nerve regeneration. Thus, the development of severe nerve trauma therapies requires a deep understanding of how SCs interact with their environment, and how SC microenvironmental cues may be engineered to enhance regeneration. Here we review the most recent advancements in biomaterials development and cell stimulation strategies, with a specific focus on how the microenvironment influences the behavior of SCs and can potentially lead to functional repair. We focus on microenvironmental cues that modulate SC morphology, proliferation, migration, and differentiation to alternative phenotypes. Promotion of regenerative phenotypic responses in SCs and other non-neuronal cells that can augment the regenerative capacity of multiple biomaterials is considered along with innovations and technologies for traumatic injury.
Collapse
Affiliation(s)
- Corinne S Smith
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Jacob A Orkwis
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Andrew E Bryan
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Zhenyuan Xu
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Greg M Harris
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
11
|
Cai Y, Huang Q, Wang P, Ye K, Zhao Z, Chen H, Liu Z, Liu H, Wong H, Tamtaji M, Zhang K, Xu F, Jin G, Zeng L, Xie J, Du Y, Hu Z, Sun D, Qin J, Lu X, Luo Z. Conductive Hydrogel Conduits with Growth Factor Gradients for Peripheral Nerve Repair in Diabetics with Non-Suture Tape. Adv Healthc Mater 2022; 11:e2200755. [PMID: 35670309 DOI: 10.1002/adhm.202200755] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/11/2022] [Indexed: 01/24/2023]
Abstract
Diabetic patients suffer from peripheral nerve injury with slow and incomplete regeneration owing to hyperglycemia and microvascular complications. This study develops a graphene-based nerve guidance conduit by incorporating natural double network hydrogel and a neurotrophic concentration gradient with non-invasive treatment for diabetics. GelMA/silk fibroin double network hydrogel plays quadruple roles for rapid setting/curing, suitable mechanical supporting, good biocompatibility, and sustainable growth factor delivery. Meanwhile, graphene mesh can improve the toughness of conduit and enhance conductivity of conduit for regeneration. Here, novel silk tapes show quick and tough adhesion of wet tissue by dual mechanism to replace suture step. The in vivo results demonstrate that gradient concentration of netrin-1 in conduit have better performance than uniform concentration caused by chemotaxis phenomenon for axon extension, remyelination, and angiogenesis. Altogether, GelMA/silk graphene conduit with gradient netrin-1 and dry double-sided adhesive tape can significantly promote repairing of peripheral nerve injury and inhibit the atrophy of muscles for diabetics.
Collapse
Affiliation(s)
- Yuting Cai
- Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.,Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Qun Huang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China.,Vascular Center of Shanghai JiaoTong University, Shanghai, 200011, China
| | - Penghui Wang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China
| | - Kaichuang Ye
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China.,Vascular Center of Shanghai JiaoTong University, Shanghai, 200011, China
| | - Zhen Zhao
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China.,Vascular Center of Shanghai JiaoTong University, Shanghai, 200011, China
| | - Haomin Chen
- Department of Materials Science and Engineering, KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Zhenjing Liu
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Hongwei Liu
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Hoilun Wong
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Mohsen Tamtaji
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Kenan Zhang
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, China
| | - Guorui Jin
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, China
| | - Lun Zeng
- Guangzhou Baiyun Medical Adhesive Co. Ltd, Guangzhou, Guangdong, 510405, P. R. China
| | - Jianbo Xie
- Guangzhou Baiyun Medical Adhesive Co. Ltd, Guangzhou, Guangdong, 510405, P. R. China
| | - Yucong Du
- Guangzhou Baiyun Medical Adhesive Co. Ltd, Guangzhou, Guangdong, 510405, P. R. China
| | - Zhigang Hu
- Silver Age Engineering Plastics (Dongguan) Co. Ltd, Dongguan, Guangdong, 523187, P. R. China
| | - Dazhi Sun
- Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Jinbao Qin
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China.,Vascular Center of Shanghai JiaoTong University, Shanghai, 200011, China
| | - Xinwu Lu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China.,Vascular Center of Shanghai JiaoTong University, Shanghai, 200011, China
| | - Zhengtang Luo
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| |
Collapse
|
12
|
Yan Y, Yao R, Zhao J, Chen K, Duan L, Wang T, Zhang S, Guan J, Zheng Z, Wang X, Liu Z, Li Y, Li G. Implantable nerve guidance conduits: Material combinations, multi-functional strategies and advanced engineering innovations. Bioact Mater 2022; 11:57-76. [PMID: 34938913 PMCID: PMC8665266 DOI: 10.1016/j.bioactmat.2021.09.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/17/2021] [Accepted: 09/26/2021] [Indexed: 01/15/2023] Open
Abstract
Nerve guidance conduits (NGCs) have attracted much attention due to their great necessity and applicability in clinical use for the peripheral nerve repair. Great efforts in recent years have been devoted to the development of high-performance NGCs using various materials and strategies. The present review provides a comprehensive overview of progress in the material innovation, structural design, advanced engineering technologies and multi functionalization of state-of-the-art nerve guidance conduits NGCs. Abundant advanced engineering technologies including extrusion-based system, laser-based system, and novel textile forming techniques in terms of weaving, knitting, braiding, and electrospinning techniques were also analyzed in detail. Findings arising from this review indicate that the structural mimetic NGCs combined with natural and synthetic materials using advanced manufacturing technologies can make full use of their complementary advantages, acquiring better biomechanical properties, chemical stability and biocompatibility. Finally, the existing challenges and future opportunities of NGCs were put forward aiming for further research and applications of NGCs.
Collapse
Affiliation(s)
- Yixin Yan
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Ruotong Yao
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Jingyuan Zhao
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Kaili Chen
- Department of Materials, Imperial College London, SW7 2AZ, UK
| | - Lirong Duan
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Tian Wang
- Wilson College of Textiles, North Carolina State University, Raleigh, 27695, USA
| | - Shujun Zhang
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Jinping Guan
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Zhaozhu Zheng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Xiaoqin Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Zekun Liu
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Yi Li
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| |
Collapse
|
13
|
Hibbitts AJ, Kočí Z, Kneafsey S, Matsiko A, Žilić L, Dervan A, Hinton P, Chen G, Cavanagh B, Dowling J, McCoy C, Buckley CT, Archibald SJ, O'Brien FJ. Multi-Factorial Nerve Guidance Conduit Engineering Improves Outcomes in Inflammation, Angiogenesis and Large Defect Nerve Repair. Matrix Biol 2022; 106:34-57. [PMID: 35032612 DOI: 10.1016/j.matbio.2022.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 11/13/2021] [Accepted: 01/05/2022] [Indexed: 12/20/2022]
Abstract
Nerve guidance conduits (NGCs) are sub-optimal for long-distance injuries with inflammation and poor vascularization related to poor axonal repair. This study used a multi-factorial approach to create an optimized biomaterial NGC to address each of these issues. Through stepwise optimization, a collagen-chondroitin-6-sulphate (Coll-CS) biomaterial was functionalized with extracellular matrix (ECM) components; fibronectin, laminin 1 and laminin 2 (FibL1L2) in specific ratios. A snap-cooled freeze-drying process was then developed with optimal pore architecture and alignment to guide axonal bridging. Culture of adult rat dorsal root ganglia on NGCs demonstrated significant improvements in inflammation, neurogenesis and angiogenesis in the specific Fib:L1:L2 ratio of 1:4:1. In clinically relevant, large 15 mm rat sciatic nerve defects, FibL1L2-NGCs demonstrated significant improvements in axonal density and angiogenesis compared to unmodified NGCs with functional equivalence to autografts. Therefore, a multiparameter ECM-driven strategy can significantly improve axonal repair across large defects, without exogenous cells or growth factors.
Collapse
Affiliation(s)
- Alan J Hibbitts
- Tissue Engineering Research Group, Dept. of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin, The University of Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Zuzana Kočí
- Tissue Engineering Research Group, Dept. of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin, The University of Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Simone Kneafsey
- Tissue Engineering Research Group, Dept. of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin, The University of Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Amos Matsiko
- Tissue Engineering Research Group, Dept. of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin, The University of Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Leyla Žilić
- Tissue Engineering Research Group, Dept. of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin, The University of Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Adrian Dervan
- Tissue Engineering Research Group, Dept. of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin, The University of Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Paige Hinton
- Tissue Engineering Research Group, Dept. of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin, The University of Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Gang Chen
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders, Microsurgical Research and Training Facility (MRTF), RCSI, Dublin, Ireland
| | | | - Jennifer Dowling
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, D02 YN77 Dublin, Ireland
| | - Claire McCoy
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, D02 YN77 Dublin, Ireland
| | - Conor T Buckley
- Tissue Engineering Research Group, Dept. of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin, The University of Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | | | - Fergal J O'Brien
- Tissue Engineering Research Group, Dept. of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin, The University of Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| |
Collapse
|
14
|
Hayat U, Raza A, Bilal M, Iqbal HM, Wang JY. Biodegradable polymeric conduits: Platform materials for guided nerve regeneration and vascular tissue engineering. J Drug Deliv Sci Technol 2022; 67:103014. [DOI: 10.1016/j.jddst.2021.103014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
15
|
Xu W, Zhang Z, Lu H, Wu Y, Liu J, Liu S, Yang W. Biocompatible Polyurethane Conduit Grafted with Vascular Endothelial Growth Factor-Loaded Hydrogel Repairs the Peripheral Nerve Defect in Rats. Macromol Biosci 2021; 22:e2100397. [PMID: 34863047 DOI: 10.1002/mabi.202100397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/29/2021] [Indexed: 02/06/2023]
Abstract
Artificial nerve guidance conduits (NGCs) can be potentially used to address the problems of peripheral nerve defects. The biomaterial polyurethane (PU) has already been used to construct NGCs. However, the use of a combination of PU-based NGCs and other bioactive cues, such as extracellular matrix proteins and growth factors, has not been reported yet. A PU conduit grafted with a vascular endothelial growth factor (VEGF)-loaded hydrogel (abbreviated as PU/Gel/VEGF conduit) is fabricated. The leachate generated during the use of the PU/Gel/VEGF conduit could facilitate the proliferation, migration, and expression of the neural marker S100β in RSC96 cells (in vitro). The walking track and target muscle are analyzed, and it is observed that PU/Gel/VEGF conduits promote the functional recovery of the injured side. Various histological staining analyses are carried out, and the results reveal that the PU/Gel/VEGF conduit effectively improves the extent of nerve regeneration achieved. The number of blood vessels developed during the regeneration of the axons in the PU/Gel/VEGF group (attributable to the pro-angiogenic effect of the functional NGC) is higher than the number of blood vessels developed in the PU/Gel conduit. Overall, the results indicate that PU/Gel/VEGF conduits could promote the process of peripheral nerve regeneration.
Collapse
Affiliation(s)
- Wanlin Xu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Zhen Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Hao Lu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Yifan Wu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Jia Liu
- School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Shengwen Liu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Wenjun Yang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| |
Collapse
|
16
|
Parker BJ, Rhodes DI, O'Brien CM, Rodda AE, Cameron NR. Nerve guidance conduit development for primary treatment of peripheral nerve transection injuries: A commercial perspective. Acta Biomater 2021; 135:64-86. [PMID: 34492374 DOI: 10.1016/j.actbio.2021.08.052] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022]
Abstract
Commercial nerve guidance conduits (NGCs) for repair of peripheral nerve discontinuities are of little use in gaps larger than 30 mm, and for smaller gaps they often fail to compete with the autografts that they are designed to replace. While recent research to develop new technologies for use in NGCs has produced many advanced designs with seemingly positive functional outcomes in animal models, these advances have not been translated into viable clinical products. While there have been many detailed reviews of the technologies available for creating NGCs, none of these have focussed on the requirements of the commercialisation process which are vital to ensure the translation of a technology from bench to clinic. Consideration of the factors essential for commercial viability, including regulatory clearance, reimbursement processes, manufacturability and scale up, and quality management early in the design process is vital in giving new technologies the best chance at achieving real-world impact. Here we have attempted to summarise the major components to consider during the development of emerging NGC technologies as a guide for those looking to develop new technology in this domain. We also examine a selection of the latest academic developments from the viewpoint of clinical translation, and discuss areas where we believe further work would be most likely to bring new NGC technologies to the clinic. STATEMENT OF SIGNIFICANCE: NGCs for peripheral nerve repairs represent an adaptable foundation with potential to incorporate modifications to improve nerve regeneration outcomes. In this review we outline the regulatory processes that functionally distinct NGCs may need to address and explore new modifications and the complications that may need to be addressed during the translation process from bench to clinic.
Collapse
Affiliation(s)
- Bradyn J Parker
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Research Way, Clayton, Victoria 3168, Australia
| | - David I Rhodes
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia; ReNerve Pty. Ltd., Brunswick East 3057, Australia
| | - Carmel M O'Brien
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Research Way, Clayton, Victoria 3168, Australia; Australian Regenerative Medicine Institute, Science, Technology, Research and innovation Precinct (STRIP), Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Andrew E Rodda
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia
| | - Neil R Cameron
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia; School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom.
| |
Collapse
|
17
|
Yang S, Zhu J, Lu C, Chai Y, Cao Z, Lu J, Zhang Z, Zhao H, Huang YY, Yao S, Kong X, Zhang P, Wang X. Aligned fibrin/functionalized self-assembling peptide interpenetrating nanofiber hydrogel presenting multi-cues promotes peripheral nerve functional recovery. Bioact Mater 2021; 8:529-544. [PMID: 34541418 PMCID: PMC8435993 DOI: 10.1016/j.bioactmat.2021.05.056] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/07/2021] [Accepted: 05/28/2021] [Indexed: 12/19/2022] Open
Abstract
Nerve guidance conduits with hollow lumen fail to regenerate critical-sized peripheral nerve defects (15 mm in rats and 25 mm in humans), which can be improved by a beneficial intraluminal microenvironment. However, individual cues provided by intraluminal filling materials are inadequate to eliminate the functional gap between regenerated nerves and normal nerves. Herein, an aligned fibrin/functionalized self-assembling peptide (AFG/fSAP) interpenetrating nanofiber hydrogel that exerting synergistic topographical and biochemical cues for peripheral nerve regeneration is constructed via electrospinning and molecular self-assembly. The hydrogel possesses an aligned structure, high water content, appropriate mechanical properties and suitable biodegradation capabilities for nerve repair, which enhances the alignment and neurotrophin secretion of primary Schwann cells (SCs) in vitro, and successfully bridges a 15-mm sciatic nerve gap in rats in vivo. The rats transplanted with the AFG/fSAP hydrogel exhibit satisfactory morphological and functional recovery in myelinated nerve fibers and innervated muscles. The motor function recovery facilitated by the AFG/fSAP hydrogel is comparable with that of autografts. Moreover, the AFG/fSAP hydrogel upregulates the regeneration-associated gene expression and activates the PI3K/Akt and MAPK signaling pathways in the regenerated nerve. Altogether, the AFG/fSAP hydrogel represents a promising approach for peripheral nerve repair through an integration of structural guidance and biochemical stimulation. A novel aligned interpenetrating nanofiber hydrogel is first constructed for peripheral nerve regeneration. The aligned hydrogel presents synergistic topographical and biochemical cues for peripheral nerve regeneration. Nerve conduits filled with the aligned hydrogel can repair the long-distance sciatic nerve defects in 12 weeks. The function recovery facilitated by the aligned hydrogel is comparable with that of autografts. The aligned hydrogel upregulates regeneration-related genes and activates the PI3K/Akt and MAPK signaling pathways.
Collapse
Affiliation(s)
- Shuhui Yang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Jinjin Zhu
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, PR China.,Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang, Hangzhou, 310016, PR China
| | - Changfeng Lu
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Ministry of Education, Department of Trauma and Orthopedics, Peking University People's Hospital, Beijing, 100044, PR China
| | - Yi Chai
- School of Clinical Medicine, Tsinghua University, Beijing, 100084, PR China
| | - Zheng Cao
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Jiaju Lu
- School of Materials Science and Engineering, Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Zhe Zhang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, PR China
| | - He Zhao
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Yin-Yuan Huang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Shenglian Yao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Xiangdong Kong
- School of Materials Science and Engineering, Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Peixun Zhang
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Ministry of Education, Department of Trauma and Orthopedics, Peking University People's Hospital, Beijing, 100044, PR China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, PR China
| |
Collapse
|
18
|
Litowczenko J, Woźniak-Budych MJ, Staszak K, Wieszczycka K, Jurga S, Tylkowski B. Milestones and current achievements in development of multifunctional bioscaffolds for medical application. Bioact Mater 2021; 6:2412-2438. [PMID: 33553825 PMCID: PMC7847813 DOI: 10.1016/j.bioactmat.2021.01.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/23/2020] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
Tissue engineering (TE) is a rapidly growing interdisciplinary field, which aims to restore or improve lost tissue function. Despite that TE was introduced more than 20 years ago, innovative and more sophisticated trends and technologies point to new challenges and development. Current challenges involve the demand for multifunctional bioscaffolds which can stimulate tissue regrowth by biochemical curves, biomimetic patterns, active agents and proper cell types. For those purposes especially promising are carefully chosen primary cells or stem cells due to its high proliferative and differentiation potential. This review summarized a variety of recently reported advanced bioscaffolds which present new functions by combining polymers, nanomaterials, bioactive agents and cells depending on its desired application. In particular necessity of study biomaterial-cell interactions with in vitro cell culture models, and studies using animals with in vivo systems were discuss to permit the analysis of full material biocompatibility. Although these bioscaffolds have shown a significant therapeutic effect in nervous, cardiovascular and muscle, tissue engineering, there are still many remaining unsolved challenges for scaffolds improvement.
Collapse
Affiliation(s)
- Jagoda Litowczenko
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Wszechnicy Piastowskiej 3, Poznan, Poland
| | - Marta J. Woźniak-Budych
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Wszechnicy Piastowskiej 3, Poznan, Poland
| | - Katarzyna Staszak
- Institute of Technology and Chemical Engineering, Poznan University of Technology, ul. Berdychowo 4, Poznan, Poland
| | - Karolina Wieszczycka
- Institute of Technology and Chemical Engineering, Poznan University of Technology, ul. Berdychowo 4, Poznan, Poland
| | - Stefan Jurga
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Wszechnicy Piastowskiej 3, Poznan, Poland
| | - Bartosz Tylkowski
- Eurecat, Centre Tecnològic de Catalunya, Chemical Technologies Unit, Marcel·lí Domingo s/n, Tarragona, 43007, Spain
| |
Collapse
|
19
|
Mendibil X, González-Pérez F, Bazan X, Díez-Ahedo R, Quintana I, Rodríguez FJ, Basnett P, Nigmatullin R, Lukasiewicz B, Roy I, Taylor CS, Glen A, Claeyssens F, Haycock JW, Schaafsma W, González E, Castro B, Duffy P, Merino S. Bioresorbable and Mechanically Optimized Nerve Guidance Conduit Based on a Naturally Derived Medium Chain Length Polyhydroxyalkanoate and Poly(ε-Caprolactone) Blend. ACS Biomater Sci Eng 2021; 7:672-689. [DOI: 10.1021/acsbiomaterials.0c01476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xabier Mendibil
- Tekniker, Basque Research and Technology Alliance (BRTA), C/ Iñaki Goenaga 5, 20600 Eibar, Spain
| | - Francisco González-Pérez
- Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, Finca La Peraleda S/n, 45071 Toledo, Spain
| | - Xabier Bazan
- Tekniker, Basque Research and Technology Alliance (BRTA), C/ Iñaki Goenaga 5, 20600 Eibar, Spain
| | - Ruth Díez-Ahedo
- Tekniker, Basque Research and Technology Alliance (BRTA), C/ Iñaki Goenaga 5, 20600 Eibar, Spain
| | - Iban Quintana
- Tekniker, Basque Research and Technology Alliance (BRTA), C/ Iñaki Goenaga 5, 20600 Eibar, Spain
| | - Francisco Javier Rodríguez
- Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, Finca La Peraleda S/n, 45071 Toledo, Spain
| | - Pooja Basnett
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, U.K
| | - Rinat Nigmatullin
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, U.K
| | - Barbara Lukasiewicz
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, U.K
| | - Ipsita Roy
- Department of Materials Science and Engineering, The University of Sheffield, Sheffield S3 7HQ, U.K
| | - Caroline S. Taylor
- Department of Materials Science and Engineering, The University of Sheffield, Sheffield S3 7HQ, U.K
| | - Adam Glen
- Department of Materials Science and Engineering, The University of Sheffield, Sheffield S3 7HQ, U.K
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, The University of Sheffield, Sheffield S3 7HQ, U.K
| | - John W. Haycock
- Department of Materials Science and Engineering, The University of Sheffield, Sheffield S3 7HQ, U.K
| | - Wandert Schaafsma
- Histocell S.L., Parque Tecnológico de Bizkaia, 801 A, 2, 48160 Derio, Spain
| | - Eva González
- Histocell S.L., Parque Tecnológico de Bizkaia, 801 A, 2, 48160 Derio, Spain
| | - Begoña Castro
- Histocell S.L., Parque Tecnológico de Bizkaia, 801 A, 2, 48160 Derio, Spain
| | - Patrick Duffy
- Ashland Specialties Ireland, Synergy Centre, Dublin Road, Petitswood Mullingar, Co. Westmeath N91 F6PD, Ireland
| | - Santos Merino
- Tekniker, Basque Research and Technology Alliance (BRTA), C/ Iñaki Goenaga 5, 20600 Eibar, Spain
- Departamento de Electricidad y Electrónica, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain
| |
Collapse
|
20
|
Wang Z, Wu Y, Xiang Y, Kruth MB, Wei P, Dai G, Xu K, Yin J, Huang Y. Efficacy of Large Groove Texture on Rat Sciatic Nerve Regeneration In Vivo Using Polyacrylonitrile Nerve Conduits. Ann Biomed Eng 2021; 49:394-406. [PMID: 32671626 DOI: 10.1007/s10439-020-02560-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/26/2020] [Indexed: 01/07/2023]
Abstract
Physical guidance cues play an important role in enhancing the efficiency of nerve conduits for peripheral nerve injury repair. However, very few in vivo investigations have been performed to evaluate the repair efficiency of nerve conduits with micro-grooved inner textures. In this study, polyacrylonitrile nerve conduits were prepared using dry-jet wet spinning, and micro-grooved textures were incorporated on the inner surface. The nerve conduits were applied to treat 10 mm sciatic nerve gaps in Sprague-Dawley (SD) rats. Sixteen weeks following implantation, nerve function was evaluated based on heat sensory tests, electrophysiological assessments and gastrocnemius muscle mass measurements. The thermal latency reaction and gastrocnemii weight of SD rats treated with grooved nerve conduits were almost 25% faster and 60% heavier than those of SD rats treated with smooth nerve conduits. The histological and immunohistochemical stain analyses showed the repair capacity of inner grooved conduits was found to be similar to that of autografts. These results suggest that grooved nerve conduits with groove width larger than 300 μm significantly improve peripheral nerve regeneration by introducing physical guidance cues. The obtained results can support the design of nerve conduits and lead to the improvement of nerve tissue engineering strategies.
Collapse
Affiliation(s)
- Zonghuan Wang
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310028, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310028, China
| | - Yibing Wu
- Department of Plastic and Reconstructive Surgery, Ningbo First Hospital, Ningbo, 315010, China
| | - Yang Xiang
- Department of Plastic and Reconstructive Surgery, Ningbo First Hospital, Ningbo, 315010, China
| | - Marie Beatrix Kruth
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310028, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310028, China
| | - Peng Wei
- Department of Plastic and Reconstructive Surgery, Ningbo First Hospital, Ningbo, 315010, China.
| | - Guangli Dai
- Department of Medical Engineering, Ningbo First Hospital, Ningbo, 315010, China
| | - Kedi Xu
- Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou, 310028, China.
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, 310028, China.
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China.
| | - Jun Yin
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310028, China.
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310028, China.
| | - Yong Huang
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
21
|
Wang J, Xiong H, Zhu T, Liu Y, Pan H, Fan C, Zhao X, Lu WW. Bioinspired Multichannel Nerve Guidance Conduit Based on Shape Memory Nanofibers for Potential Application in Peripheral Nerve Repair. ACS NANO 2020; 14:12579-12595. [PMID: 32786254 DOI: 10.1021/acsnano.0c03570] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Repairing peripheral nerve injury, especially long-range defects of thick nerves, is a great challenge in the clinic due to their limited regeneration capability. Most FDA-approved nerve guidance conduits with large hollow lumen are only suitable for short lesions, and their effects are unsatisfactory in repairing long gaps of thick nerves. Multichannel nerve guidance conduits have been shown to offer better regeneration of long nerve defects. However, existing approaches of fabricating multichannel nerve conduits are usually complicated and time-consuming. Inspired by the intelligent responsive shaping process of shape memory polymers, in this study, a self-forming multichannel nerve guidance conduit with topographical cues was constructed based on a degradable shape memory PLATMC polymer. With an initial tubular shape obtained by a high-temperature molding process, the electrospun shape memory nanofibrous mat could be temporarily formed into a planar shape for cell loading to realize the uniform distribution of cells. Then triggered by a physical temperature around 37 °C, it could automatically restore its permanent tubular shape to form the multichannel conduit. This multichannel conduit exhibits better performance in terms of cell growth and the repair of rat sciatic nerve defects. These results reveal that self-forming nerve conduits can be realized based on shape memory polymers; thus, the fabricated bioinspired multichannel nerve guidance conduit has great potential in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Jing Wang
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P.R. China
| | - Hao Xiong
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Tonghe Zhu
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Yuan Liu
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P.R. China
| | - Haobo Pan
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P.R. China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
- Department of Orthopedics, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai 201306, P.R. China
| | - Xiaoli Zhao
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P.R. China
| | - William Weijia Lu
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P.R. China
- Department of Orthopaedic and Traumatology, The University of Hong Kong, Hong Kong 999077, P.R. China
| |
Collapse
|
22
|
Luo L, He Y, Jin L, Zhang Y, Guastaldi FP, Albashari AA, Hu F, Wang X, Wang L, Xiao J, Li L, Wang J, Higuchi A, Ye Q. Application of bioactive hydrogels combined with dental pulp stem cells for the repair of large gap peripheral nerve injuries. Bioact Mater 2020; 6:638-654. [PMID: 33005828 PMCID: PMC7509005 DOI: 10.1016/j.bioactmat.2020.08.028] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 02/09/2023] Open
Abstract
Due to the limitations in autogenous nerve grafting or Schwann cell transplantation, large gap peripheral nerve injuries require a bridging strategy supported by nerve conduit. Cell based therapies provide a novel treatment for peripheral nerve injuries. In this study, we first experimented an optimal scaffold material synthesis protocol, from where we selected the 10% GFD formula (10% GelMA hydrogel, recombinant human basic fibroblast growth factor and dental pulp stem cells (DPSCs)) to fill a cellulose/soy protein isolate composite membrane (CSM) tube to construct a third generation of nerve regeneration conduit, CSM-GFD. Then this CSM-GFD conduit was applied to repair a 15-mm long defect of sciatic nerve in a rat model. After 12 week post implant surgery, at histologic level, we found CSM-GFD conduit could regenerate nerve tissue like neuron and Schwann like nerve cells and myelinated nerve fibers. At physical level, CSM-GFD achieved functional recovery assessed by a sciatic functional index study. In both levels, CSM-GFD performed like what gold standard, the nerve autograft, could do. Further, we unveiled that almost all newly formed nerve tissue at defect site was originated from the direct differentiation of exogeneous DPSCs in CSM-GFD. In conclusion, we claimed that this third-generation nerve regeneration conduit, CSM-GFD, could be a promising tissue engineering approach to replace the conventional nerve autograft to treat the large gap defect in peripheral nerve injuries. A novel 3rd generation nerve conduit was successfully constructed and applied for repairing peripheral nerve injuries (PNI). Dental pulp stem cells (DPSCs) was optimized as an ideal seeding cells for nerve regeneration. A bioactive system combining GelMA with human bFGF and DPSCs could reconstruct the long gap PNI within 12 weeks in vivo. Our system could achieve the same outcome in nerve repair as that of autografting, a routine treatment for PNI. The proposed bioactive system may trigger an evolutional change into the current clinical practice in managing PNI. The majority of the regenerated nerve tissue was originated from the donor’s dental pulp stem cells.
Collapse
Affiliation(s)
- Lihua Luo
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan He
- Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, 430064, China.,Skeletal Biology Research Center, Massachusetts General Hospital and Harvard School of Dental Medicine, Boston, MA, 02114, USA
| | - Ling Jin
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanni Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fernando P Guastaldi
- Skeletal Biology Research Center, Massachusetts General Hospital and Harvard School of Dental Medicine, Boston, MA, 02114, USA
| | | | - Fengting Hu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoyan Wang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lei Wang
- Wenzhou Institute of Biomaterials and Engineering, Wenzhou, Zhejiang Province, 325000, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, China
| | - Lingli Li
- Wenzhou Institute of Biomaterials and Engineering, Wenzhou, Zhejiang Province, 325000, China.,School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jianming Wang
- Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, 430064, China.,Department of Biliary and Pancreatic Surgery/Cancer Research Center, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Akon Higuchi
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Qingsong Ye
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Skeletal Biology Research Center, Massachusetts General Hospital and Harvard School of Dental Medicine, Boston, MA, 02114, USA.,Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| |
Collapse
|
23
|
Li Q, Li L, Yu M, Zheng M, Li Y, Yang J, Dai M, Zhong L, Sun L, Lu D. Elastomeric polyurethane porous film functionalized with gastrodin for peripheral nerve regeneration. J Biomed Mater Res A 2020; 108:1713-1725. [PMID: 32196902 DOI: 10.1002/jbm.a.36937] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Qing Li
- Science and Technology Achievement Incubation CenterKunming Medical University Kunming China
| | - Limei Li
- Science and Technology Achievement Incubation CenterKunming Medical University Kunming China
| | - Mali Yu
- Science and Technology Achievement Incubation CenterKunming Medical University Kunming China
| | - Meng Zheng
- Science and Technology Achievement Incubation CenterKunming Medical University Kunming China
| | - Yao Li
- Department of StomatologyThe First People's Hospital of Yunnan Provience Kunming China
| | - Jian Yang
- Department of Biomedical EngineeringMaterials Research Institute, The Huck Institutes of The Life Sciences, The Pennsylvania State University University Park Pennsylvania USA
| | - Min Dai
- Department of Second CardiologyThe Third People's Hospital of Kunming Kunming China
| | - Lianmei Zhong
- Department of NeurologyThe First Affiliated Hospital, Kunming Medical University Kunming China
| | - Lin Sun
- Department of CardiologyThe Second Affiliated Hospital, Kunming Medical University Kunming China
| | - Di Lu
- Science and Technology Achievement Incubation CenterKunming Medical University Kunming China
| |
Collapse
|
24
|
Restoration of Neurological Function Following Peripheral Nerve Trauma. Int J Mol Sci 2020; 21:ijms21051808. [PMID: 32155716 PMCID: PMC7084579 DOI: 10.3390/ijms21051808] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
Following peripheral nerve trauma that damages a length of the nerve, recovery of function is generally limited. This is because no material tested for bridging nerve gaps promotes good axon regeneration across the gap under conditions associated with common nerve traumas. While many materials have been tested, sensory nerve grafts remain the clinical “gold standard” technique. This is despite the significant limitations in the conditions under which they restore function. Thus, they induce reliable and good recovery only for patients < 25 years old, when gaps are <2 cm in length, and when repairs are performed <2–3 months post trauma. Repairs performed when these values are larger result in a precipitous decrease in neurological recovery. Further, when patients have more than one parameter larger than these values, there is normally no functional recovery. Clinically, there has been little progress in developing new techniques that increase the level of functional recovery following peripheral nerve injury. This paper examines the efficacies and limitations of sensory nerve grafts and various other techniques used to induce functional neurological recovery, and how these might be improved to induce more extensive functional recovery. It also discusses preliminary data from the clinical application of a novel technique that restores neurological function across long nerve gaps, when repairs are performed at long times post-trauma, and in older patients, even under all three of these conditions. Thus, it appears that function can be restored under conditions where sensory nerve grafts are not effective.
Collapse
|
25
|
Takeuchi H, Ikeguchi R, Aoyama T, Oda H, Yurie H, Mitsuzawa S, Tanaka M, Ohta S, Akieda S, Miyazaki Y, Nakayama K, Matsuda S. A scaffold-free Bio 3D nerve conduit for repair of a 10-mm peripheral nerve defect in the rats. Microsurgery 2019; 40:207-216. [PMID: 31724780 DOI: 10.1002/micr.30533] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 08/13/2019] [Accepted: 10/25/2019] [Indexed: 12/28/2022]
Abstract
INTRODUCTION A Bio 3D printed nerve conduit was reported to promote nerve regeneration in a 5 mm nerve gap model. The purpose of this study was to fabricate Bio 3D nerve conduits suitable for a 10 mm nerve gap and to evaluate their capacity for nerve regeneration in a rat sciatic nerve defect model. MATERIALS AND METHODS Eighteen F344 rats with immune deficiency (9-10 weeks old; weight, 200-250 g) were divided into three groups: a Bio 3D nerve conduit group (Bio 3D, n = 6), a nerve graft group (NG, n = 6), and a silicon tube group (ST, n = 6). A 12-mm Bio 3D nerve conduit or silicon tube was transplanted into the 10-mm defect of the right sciatic nerve. In the nerve graft group, reverse autografting was performed with an excised 10-mm nerve segment. Assessments were performed at 8 weeks after the surgery. RESULTS In the region distal to the suture site, the number of myelinated axons in the Bio 3D group were significantly larger compared with the silicon group (2,548 vs. 950, p < .05). The myelinated axon diameter (MAD) and the myelin thickness (MT) of the regenerated axons in the Bio 3D group were significantly larger compared with those of the ST group (MAD: 3.09 vs. 2.36 μm; p < .01; MT: 0.59 vs. 0.40 μm, p < .01). CONCLUSIONS This study indicates that a Bio 3D nerve conduit can enhance peripheral nerve regeneration even in a 10 mm nerve defect model.
Collapse
Affiliation(s)
- Hisataka Takeuchi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryosuke Ikeguchi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoki Aoyama
- Department of Physical Therapy, Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroki Oda
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hirofumi Yurie
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sadaki Mitsuzawa
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mai Tanaka
- Department of Physical Therapy, Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Souichi Ohta
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | - Koichi Nakayama
- Department of Regenerative Medicine and Biomedical Engineering Faculty of Medicine, Saga University, Saga, Japan
| | - Shuichi Matsuda
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
26
|
Quan Q, Meng H, Chang B, Hong L, Li R, Liu G, Cheng X, Tang H, Liu P, Sun Y, Peng J, Zhao Q, Wang Y, Lu S. Novel 3-D helix-flexible nerve guide conduits repair nerve defects. Biomaterials 2019; 207:49-60. [DOI: 10.1016/j.biomaterials.2019.03.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/17/2019] [Accepted: 03/24/2019] [Indexed: 12/25/2022]
|