1
|
Regiart M, Fernández-Baldo MA, Navarrete BA, Morales García C, Gómez B, Tortella GR, Valero T, Ortega FG. Five years of advances in electrochemical analysis of protein biomarkers in lung cancer: a systematic review. Front Chem 2024; 12:1390050. [PMID: 38764920 PMCID: PMC11099832 DOI: 10.3389/fchem.2024.1390050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/01/2024] [Indexed: 05/21/2024] Open
Abstract
Lung cancer is the leading cause of cancer death in both men and women. It represents a public health problem that must be addressed through the early detection of specific biomarkers and effective treatment. To address this critical issue, it is imperative to implement effective methodologies for specific biomarker detection of lung cancer in real clinical samples. Electrochemical methods, including microfluidic devices and biosensors, can obtain robust results that reduce time, cost, and assay complexity. This comprehensive review will explore specific studies, methodologies, and detection limits and contribute to the depth of the discussion, making it a valuable resource for researchers and clinicians interested in lung cancer diagnosis.
Collapse
Affiliation(s)
- Matías Regiart
- Instituto de Química San Luis (INQUISAL), Departamento de Química, Universidad Nacional de San Luis, CONICET, San Luis, Argentina
| | - Martín A. Fernández-Baldo
- Instituto de Química San Luis (INQUISAL), Departamento de Química, Universidad Nacional de San Luis, CONICET, San Luis, Argentina
| | - Bernardino Alcázar Navarrete
- IBS Granada, Institute of Biomedical Research, Granada, Spain
- Pulmonology Unit, Hospital Universitario Virgen de las Nieves, Granada, Spain
- CIBERES, Instituto de Salud Carlos III, Madrid, Spain
| | - Concepción Morales García
- IBS Granada, Institute of Biomedical Research, Granada, Spain
- Pulmonology Unit, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Beatriz Gómez
- IBS Granada, Institute of Biomedical Research, Granada, Spain
- Pulmonology Unit, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Gonzalo R. Tortella
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Teresa Valero
- IBS Granada, Institute of Biomedical Research, Granada, Spain
- Department of Medicinal and Organic Chemistry and Excellence Research Unit of “Chemistry Applied to Biomedicine and the Environment”, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Francisco Gabriel Ortega
- IBS Granada, Institute of Biomedical Research, Granada, Spain
- Pulmonology Unit, Hospital Universitario Virgen de las Nieves, Granada, Spain
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain
- UGC Cartuja, Distrito Sanitario Granada Metropolitano, Granada, Spain
| |
Collapse
|
2
|
Aydın EB, Aydın M, Sezgintürk MK. Label-Free Electrochemical Immunosensor Based on Conjugated Polymer Film Coated Disposable Electrode for Ultrasensitive Determination of Resistin Potential Obesity Biomarker. ACS APPLIED BIO MATERIALS 2024; 7:1820-1830. [PMID: 38395746 PMCID: PMC10952011 DOI: 10.1021/acsabm.3c01231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024]
Abstract
A new label-free immunosensor was designed for sensitive detection of resistin obesity biomarker in human biological fluids. To construct a sensing interface, the monomer of double epoxy groups-substituted thiophene (TdiEpx) was synthesized for the fabrication of the biosensing system. A disposable indium tin oxide sheet was first modified by electrochemical polymerization of the TdiEpx monomer, and this robust and novel surface was characterized using different spectroscopic and electrochemical analyses. The double epoxy ends were linked to the amino ends of anti-resistin, and they served as binding points for the covalent binding of biomolecules. The double epoxy ends present in each TdiEpx monomer ensured an extensive surface area, which improved the quantity of attached anti-resistin. The determination of resistin antigen was based on the specific coupling of resistin with anti-resistin, and this interaction hindered the electron transfer reaction. The immunosensor introduced a wide linear range of 0.0125-15 pg/mL, a low detection limit of 4.17 fg/mL, and an excellent sensitivity of 1.38 kohm pg mL-1 cm2. In this study, a sandwich enzyme-linked immunosorbent assay spectrophotometric method was utilized as a reference technique for the quantitative analysis of resistin in human serum and saliva samples. Both measurements in clinical samples displayed correlations and high-correlation coefficients. In addition, this immunosensor had good storage stability, acceptable repeatability and reproducibility, high specificity, and good accuracy. The proposed immunosensor provided a simple and versatile impedimetric immunosensing platform and a promisingly sensitive way for clinical applications.
Collapse
Affiliation(s)
- Elif Burcu Aydın
- Scientific
and Technological Research Center, Tekirdaǧ
Namık Kemal University, Tekirdaǧ, Turkey 59030
| | - Muhammet Aydın
- Scientific
and Technological Research Center, Tekirdaǧ
Namık Kemal University, Tekirdaǧ, Turkey 59030
| | - Mustafa Kemal Sezgintürk
- Bioengineering
Department, Faculty of Engineering, Çanakkale
Onsekiz Mart University, Çanakkale, Turkey 17100
| |
Collapse
|
3
|
Acharya R, Dutta SD, Patil TV, Ganguly K, Randhawa A, Lim KT. A Review on Electroactive Polymer-Metal Composites: Development and Applications for Tissue Regeneration. J Funct Biomater 2023; 14:523. [PMID: 37888188 PMCID: PMC10607043 DOI: 10.3390/jfb14100523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/28/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023] Open
Abstract
Electroactive polymer-metal composites (EAPMCs) have gained significant attention in tissue engineering owing to their exceptional mechanical and electrical properties. EAPMCs develop by combining an electroactive polymer matrix and a conductive metal. The design considerations include choosing an appropriate metal that provides mechanical strength and electrical conductivity and selecting an electroactive polymer that displays biocompatibility and electrical responsiveness. Interface engineering and surface modification techniques are also crucial for enhancing the adhesion and biocompatibility of composites. The potential of EAPMC-based tissue engineering revolves around its ability to promote cellular responses, such as cell adhesion, proliferation, and differentiation, through electrical stimulation. The electrical properties of these composites can be used to mimic natural electrical signals within tissues and organs, thereby aiding tissue regeneration. Furthermore, the mechanical characteristics of the metallic components provide structural reinforcement and can be modified to align with the distinct demands of various tissues. EAPMCs have extraordinary potential as regenerative biomaterials owing to their ability to promote beneficial effects in numerous electrically responsive cells. This study emphasizes the characteristics and applications of EAPMCs in tissue engineering.
Collapse
Affiliation(s)
- Rumi Acharya
- Department of Biosystems Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Tejal V. Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
4
|
Wang C, Tang Y, Zhang B, Zhong Z, Zhao F, Zeng B. Sensitive photoelectrochemical immunosensor for carcinoembryonic antigen detection based on copolymer of thiophene and thiophene-3-acetic acid modified phosphate-doped Bi 2WO 6. Anal Chim Acta 2023; 1262:341243. [PMID: 37179060 DOI: 10.1016/j.aca.2023.341243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
In this study, PO43- doped Bi2WO6 (BWO-PO) was prepared by hydrothermal method, and then copolymer of thiophene and thiophene-3-acetic acid (P(Th-T3A)) was chemically deposited on the BWO-PO surface. The introduction of PO43- created point defects, greatly improving the photoelectric catalytic performance of Bi2WO6; the copolymer semiconductor could form heterojunction with Bi2WO6 to promote the separation of photo-generated carriers, due to its proper band gap. Furthermore, the copolymer could enhance the light absorption ability and photo-electronic conversion efficiency. Hence, the composite had good photoelectrochemical properties. When it was combined with carcinoembryonic antibody through the interaction of -COOH groups of the copolymer and the end groups of antibody for constructing ITO-based PEC immunosensor, the resulting sensor exhibited superb response to carcinoembryonic antigen (CEA), with a wide linear range of 1 pg/mL-20 ng/mL, and a relatively low detection limit of 0.41 pg/mL. It also showed high anti-interference ability, stability, and simplicity. The sensor has been successfully applied to monitor the concentration of CEA in serum. The sensing strategy can also be applied to the detection of other markers by changing the recognition elements, hence it has good application potential.
Collapse
Affiliation(s)
- Chunfang Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei Province, 430072, PR China
| | - Yun Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei Province, 430072, PR China
| | - Bihong Zhang
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang Province, 310018, PR China
| | - Ziying Zhong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei Province, 430072, PR China
| | - Faqiong Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei Province, 430072, PR China.
| | - Baizhao Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei Province, 430072, PR China.
| |
Collapse
|
5
|
Aydın EB, Aydın M, Sezgintürk MK. A novel electrochemical impedance immunosensor for the quantification of CYFRA 21-1 in human serum. Mikrochim Acta 2023; 190:235. [PMID: 37219635 DOI: 10.1007/s00604-023-05813-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023]
Abstract
A sensitive, simple, and reliable immunosensor was constructed to detect the lowest alteration of a fragment of cytokeratin subunit 19 (CYFRA 21-1), a protein lung carcinoma biomarker. The proposed immunosensor was manufactured with a carbon black C45/polythiophene polymer-containing amino terminal groups (C45-PTNH2) conductive nanocomposite, resulting in an excellent, biocompatible, low-cost, and electrically conductive electrode surface. Anti-CYFRA 21-1 biorecognition molecules were attached to the electrode thanks to the amino terminal groups of the used PTNH2 polymer with a relatively simple procedure. All electrode surfaces after modifications were characterized by electrochemical, chemical, and microscopic techniques. Electrochemical impedance spectroscopy (EIS) was also utilized for the evaluation of the analytical feature of the immunosensor. The charge transfer resistance of the immunosensor signal was correlated with the CYFRA 21-1 concentration in the concentration range 0.03 to 90 pg/mL. The limit of detection (LOD) and the limit of quantification (LOQ) of the suggested system were 4.7 fg/mL and 14.1 fg/mL, respectively. The proposed biosensor had favorable repeatability and reproducibility, long storage stability, excellent selectivity, and low cost. Furthermore, it was applied to determine CYFRA 21-1 in commercial serum samples, and satisfactory recovery results (98.63-106.18%) were obtained. Thus, this immunosensor can be offered for clinical purposes as a rapid, stable, low-cost, selective, reproducible, and reusable tool.
Collapse
Affiliation(s)
- Elif Burcu Aydın
- Scientific and Technological Research Center, Tekirdağ Namık Kemal University, Tekirdağ, Turkey.
| | - Muhammet Aydın
- Scientific and Technological Research Center, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Mustafa Kemal Sezgintürk
- Bioengineering Department, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
6
|
Yadav AK, Verma D, Kumar A, Bhatt AN, Solanki PR. Biocompatible epoxysilane substituted polymer-based nano biosensing platform for label-free detection of cancer biomarker SP17 in patient serum samples. Int J Biol Macromol 2023; 239:124325. [PMID: 37054852 DOI: 10.1016/j.ijbiomac.2023.124325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/15/2023]
Abstract
Herein, we report the results of the studies relating to developing a simple, sensitive, cost-effective, and disposable electrochemical-based label-free immunosensor for real-time detection of a new cancer biomarker, sperm protein-17 (SP17), in complex serum samples. An indium tin oxide (ITO) coated glass substrate modified with self-assembled monolayers (SAMs) of 3-glycidoxypropyltrimethoxysilane (GPTMS) was functionalized via covalent immobilization of monoclonal anti-SP17 antibodies using EDC(1-(3-(dimethylamine)-propyl)-3-ethylcarbodiimide hydrochloride) - NHS (N-hydroxy succinimide) chemistry. The developed immunosensor platform (BSA/anti-SP17/GPTMS@SAMs/ITO) was characterized via scanning electron microscopy (SEM), atomic force microscopy (AFM), contact angle (CA), Fourier transform infrared (FT-IR) spectroscopic, and electrochemical techniques such as cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS) techniques. The fabricated BSA/anti-SP17/GPTMS@SAMs/ITO immunoelectrode platform was used to measure changes in the magnitude of the current of the electrodes through an electrochemical CV and DPV technique. A calibration curve between current and SP17 concentrations exhibited a broad linear detection range of (100-6000 & 50-5500 pg mL-1), with enhanced sensitivity (0.047 & 0.024 μA pg mL-1 cm-2), limit of detection (LOD) and limit of quantification (LOQ) of 47.57 & 142.9 pg mL-1 and 158.58 & 476.3 pg mL-1, by CV and DPV technique, respectively with a rapid response time of 15 min. It possessed exceptional repeatability, outstanding reproducibility, five-time reusability, and high stability. The biosensor's performance was evaluated in human serum samples, giving satisfactory findings obtained via the commercially available enzyme-linked immunosorbent assay (ELISA) technique, proving the clinical applicability for early diagnosis of cancer patients. Moreover, various in vitro studies in murine fibroblast cell line L929 have been performed to assess the cytotoxicity of GPTMS. The results demonstrated that GPTMS has excellent biocompatibility and can be used for biosensor fabrication.
Collapse
Affiliation(s)
- Amit K Yadav
- Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| | - Damini Verma
- Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| | - Abhishek Kumar
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, New Delhi, India
| | - Anant Narayan Bhatt
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, New Delhi, India
| | - Pratima R Solanki
- Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
7
|
Aydın EB, Aydın M, Sezgintürk MK. Biosensors for saliva biomarkers. Adv Clin Chem 2023; 113:1-41. [PMID: 36858644 DOI: 10.1016/bs.acc.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The analysis of salivary biomarkers has gained interest and is advantageous for simple, safe, and non-invasive testing in diagnosis as well as treatment. This chapter explores the importance of saliva biomarkers and summarizes recent advances in biosensor fabrication. The identification of diagnostic, prognostic and therapeutic markers in this matrix enables more rapid and frequent testing when combined with the use of biosensor technology. Challenges and future goals are highlighted and examined.
Collapse
Affiliation(s)
- Elif Burcu Aydın
- Tekirdağ Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey.
| | - Muhammet Aydın
- Tekirdağ Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey
| | - Mustafa Kemal Sezgintürk
- Bioengineering Department, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
8
|
Bendrea AD, Cianga L, Göen Colak D, Constantinescu D, Cianga I. Thiophene End-Functionalized Oligo-(D,L-Lactide) as a New Electroactive Macromonomer for the "Hairy-Rod" Type Conjugated Polymers Synthesis. Polymers (Basel) 2023; 15:polym15051094. [PMID: 36904339 PMCID: PMC10006927 DOI: 10.3390/polym15051094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
The development of the modern society imposes a fast-growing demand for new advanced functional polymer materials. To this aim, one of the most plausible current methodologies is the end-group functionalization of existing conventional polymers. If the end functional group is able to polymerize, this method enables the synthesis of a molecularly complex, grafted architecture that opens the access to a wider range of material properties, as well as tailoring the special functions required for certain applications. In this context, the present paper reports on α-thienyl-ω-hydroxyl-end-groups functionalized oligo-(D,L-lactide) (Th-PDLLA), which was designed to combine the polymerizability and photophysical properties of thiophene with the biocompatibility and biodegradability of poly-(D,L-lactide). Th-PDLLA was synthesized using the path of "functional initiator" in the ring-opening polymerization (ROP) of (D,L)-lactide, assisted by stannous 2-ethyl hexanoate (Sn(oct)2). The results of NMR and FT-IR spectroscopic methods confirmed the Th-PDLLA's expected structure, while the oligomeric nature of Th-PDLLA, as resulting from the calculations based on 1H-NMR data, is supported by the findings from gel permeation chromatography (GPC) and by the results of the thermal analyses. The behavior of Th-PDLLA in different organic solvents, evaluated by UV-vis and fluorescence spectroscopy, but also by dynamic light scattering (DLS), suggested the presence of colloidal supramolecular structures, underlining the nature of the macromonomer Th-PDLLA as an "shape amphiphile". To test its functionality, the ability of Th-PDLLA to work as a building block for the synthesis of molecular composites was demonstrated by photoinduced oxidative homopolymerization in the presence of diphenyliodonium salt (DPI). The occurrence of a polymerization process, with the formation of a thiophene-conjugated oligomeric main chain grafted with oligomeric PDLLA, was proven, in addition to the visual changes, by the results of GPC, 1H-NMR, FT-IR, UV-vis and fluorescence measurements.
Collapse
Affiliation(s)
- Anca-Dana Bendrea
- “PetruPoni” Institute of Macromolecular Chemistry, Centre of Advanced Research in Bionanoconjugates and Biopolymers, 41A, Grigore–GhicaVoda Alley, 700487 Iasi, Romania
| | - Luminita Cianga
- “PetruPoni” Institute of Macromolecular Chemistry, Centre of Advanced Research in Bionanoconjugates and Biopolymers, 41A, Grigore–GhicaVoda Alley, 700487 Iasi, Romania
- Correspondence: (L.C.); (I.C.); Tel.: +40-332-880-220 (L.C. & I.C.)
| | - Demet Göen Colak
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, 34469 Istanbul, Turkey
| | | | - Ioan Cianga
- “PetruPoni” Institute of Macromolecular Chemistry, Centre of Advanced Research in Bionanoconjugates and Biopolymers, 41A, Grigore–GhicaVoda Alley, 700487 Iasi, Romania
- Correspondence: (L.C.); (I.C.); Tel.: +40-332-880-220 (L.C. & I.C.)
| |
Collapse
|
9
|
Frenzel J, Kupferer A, Zink M, Mayr SG. Laminin Adsorption and Adhesion of Neurons and Glial Cells on Carbon Implanted Titania Nanotube Scaffolds for Neural Implant Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3858. [PMID: 36364633 PMCID: PMC9656521 DOI: 10.3390/nano12213858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/17/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Interfacing neurons persistently to conductive matter constitutes one of the key challenges when designing brain-machine interfaces such as neuroelectrodes or retinal implants. Novel materials approaches that prevent occurrence of loss of long-term adhesion, rejection reactions, and glial scarring are highly desirable. Ion doped titania nanotube scaffolds are a promising material to fulfill all these requirements while revealing sufficient electrical conductivity, and are scrutinized in the present study regarding their neuron-material interface. Adsorption of laminin, an essential extracellular matrix protein of the brain, is comprehensively analyzed. The implantation-dependent decline in laminin adsorption is revealed by employing surface characteristics such as nanotube diameter, ζ-potential, and surface free energy. Moreover, the viability of U87-MG glial cells and SH-SY5Y neurons after one and four days are investigated, as well as the material's cytotoxicity. The higher conductivity related to carbon implantation does not affect the viability of neurons, although it impedes glial cell proliferation. This gives rise to novel titania nanotube based implant materials with long-term stability, and could reduce undesirable glial scarring.
Collapse
Affiliation(s)
- Jan Frenzel
- Leibniz Institute of Surface Engineering (IOM), 04318 Leipzig, Germany
- Division of Surface Physics, Faculty of Physics and Earth Sciences, Leipzig University, 04103 Leipzig, Germany
- Research Group Biotechnology and Biomedicine, Faculty of Physics and Earth Sciences, Leipzig University, 04103 Leipzig, Germany
| | - Astrid Kupferer
- Leibniz Institute of Surface Engineering (IOM), 04318 Leipzig, Germany
- Division of Surface Physics, Faculty of Physics and Earth Sciences, Leipzig University, 04103 Leipzig, Germany
| | - Mareike Zink
- Research Group Biotechnology and Biomedicine, Faculty of Physics and Earth Sciences, Leipzig University, 04103 Leipzig, Germany
| | - Stefan G. Mayr
- Leibniz Institute of Surface Engineering (IOM), 04318 Leipzig, Germany
- Division of Surface Physics, Faculty of Physics and Earth Sciences, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
10
|
Saboury A, Mohammadi R, Javanbakht S, Ghorbani M. Doxorubicin imprinted magnetic polymethacrylamide as a pH-sensitive anticancer nanocarrier. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Bendrea AD, Cianga L, Ailiesei GL, Göen Colak D, Popescu I, Cianga I. Thiophene α-Chain-End-Functionalized Oligo(2-methyl-2-oxazoline) as Precursor Amphiphilic Macromonomer for Grafted Conjugated Oligomers/Polymers and as a Multifunctional Material with Relevant Properties for Biomedical Applications. Int J Mol Sci 2022; 23:7495. [PMID: 35886844 PMCID: PMC9317439 DOI: 10.3390/ijms23147495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
Because the combination of π-conjugated polymers with biocompatible synthetic counterparts leads to the development of bio-relevant functional materials, this paper reports a new oligo(2-methyl-2-oxazoline) (OMeOx)-containing thiophene macromonomer, denoted Th-OMeOx. It can be used as a reactive precursor for synthesis of a polymerizable 2,2'-3-OMeOx-substituted bithiophene by Suzuki coupling. Also a grafted polythiophene amphiphile with OMeOx side chains was synthesized by its self-acid-assisted polymerization (SAAP) in bulk. The results showed that Th-OMeOx is not only a reactive intermediate but also a versatile functional material in itself. This is due to the presence of 2-bromo-substituted thiophene and ω-hydroxyl functional end-groups, and due to the multiple functionalities encoded in its structure (photosensitivity, water self-dispersibility, self-assembling capacity). Thus, analysis of its behavior in solvents of different selectivities revealed that Th-OMeOx forms self-assembled structures (micelles or vesicles) by "direct dissolution".Unexpectedly, by exciting the Th-OMeOx micelles formed in water with λabs of the OMeOx repeating units, the intensity of fluorescence emission varied in a concentration-dependent manner.These self-assembled structures showed excitation-dependent luminescence as well. Attributed to the clusteroluminescence phenomenon due to the aggregation and through space interactions of electron-rich groups in non-conjugated, non-aromatic OMeOx, this behavior certifies that polypeptides mimic the character of Th-OMeOx as a non-conventional intrinsic luminescent material.
Collapse
Affiliation(s)
- Anca-Dana Bendrea
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “PetruPoni” Institute of Macromolecular Chemistry, 41 A, Grigore-GhicaVoda Alley, 700487 Iasi, Romania;
| | - Luminita Cianga
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “PetruPoni” Institute of Macromolecular Chemistry, 41 A, Grigore-GhicaVoda Alley, 700487 Iasi, Romania;
| | - Gabriela-Liliana Ailiesei
- NMR Spectroscopy Department, “PetruPoni” Institute of Macromolecular Chemistry, 41 A, Grigore-GhicaVoda Alley, 700487 Iasi, Romania;
| | - Demet Göen Colak
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey;
| | - Irina Popescu
- Department of Natural Polymers, Bioactive and Biocompatible Materials, “PetruPoni” Institute of Macromolecular Chemistry, 41 A, Grigore-GhicaVoda Alley, 700487 Iasi, Romania;
| | - Ioan Cianga
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “PetruPoni” Institute of Macromolecular Chemistry, 41 A, Grigore-GhicaVoda Alley, 700487 Iasi, Romania;
| |
Collapse
|
12
|
Pankratova N, Jović M, Pfeifer ME. Electrochemical sensing of blood proteins for mild traumatic brain injury (mTBI) diagnostics and prognostics: towards a point-of-care application. RSC Adv 2021; 11:17301-17319. [PMID: 34094508 PMCID: PMC8114542 DOI: 10.1039/d1ra00589h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/12/2021] [Indexed: 12/22/2022] Open
Abstract
Traumatic Brain Injury (TBI) being one of the principal causes of death and acquired disability in the world imposes a large burden on the global economy. Mild TBI (mTBI) is particularly challenging to assess due to the frequent lack of well-pronounced post-injury symptoms. However, if left untreated mTBI (especially when repetitive) can lead to serious long-term implications such as cognitive and neuropathological disorders. Computer tomography and magnetic resonance imaging commonly used for TBI diagnostics require well-trained personnel, are costly, difficult to adapt for on-site measurements and are not always reliable in identifying small brain lesions. Thus, there is an increasing demand for sensitive point-of-care (POC) testing tools in order to aid mTBI diagnostics and prediction of long-term effects. Biomarker quantification in body fluids is a promising basis for POC measurements, even though establishing a clinically relevant mTBI biomarker panel remains a challenge. Actually, a minimally invasive, rapid and reliable multianalyte detection device would allow the efficient determination of injury biomarker release kinetics and thus support the preclinical evaluation and clinical validation of a proposed biomarker panel for future decentralized in vitro diagnostics. In this respect electrochemical biosensors have recently attracted great attention and the present article provides a critical study on the electrochemical protocols suggested in the literature for detection of mTBI-relevant protein biomarkers. The authors give an overview of the analytical approaches for transduction element functionalization, review recent technological advances and highlight the key challenges remaining in view of an eventual integration of the proposed concepts into POC diagnostic solutions.
Collapse
Affiliation(s)
- Nadezda Pankratova
- University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis), School of Engineering, Institute of Life Technologies, Diagnostic Systems Research Group Route du Rawil 64 1950 Sion Switzerland
| | - Milica Jović
- University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis), School of Engineering, Institute of Life Technologies, Diagnostic Systems Research Group Route du Rawil 64 1950 Sion Switzerland
| | - Marc E Pfeifer
- University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis), School of Engineering, Institute of Life Technologies, Diagnostic Systems Research Group Route du Rawil 64 1950 Sion Switzerland
| |
Collapse
|
13
|
Aydin EB, Aydin M, Sezgintürk MK. A Label-free Electrochemical Immunosensor for Highly Sensitive Detection of TNF α, Based on Star Polymer-modified disposable ITO Electrode. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412916999200409111759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Biomarkers are very important disease-related biomolecules which should be
analyzed sensitive and selective in related physiological fluids or tissues. Tumor necrosis factor-α is a
type of cytokine which plays vitlly important roles in different methabolic pathways such as cell death,
survival, differentiation, proliferation and migration, and infectious and inflammatory diseases including
rheumatoid arthritis, diabetes.
Objective:
In this study, it was aimed to develop a reliable tool based on star-shaped poly(glycidyl
methacrylate) polymer coated disposable indium tin oxide electrode for determination of Tumor necrosis
factor-α, an important disease biomarker.
Methods:
Star shaped polymer was used as an interface material for anti- Tumor necrosis factor α antibodies
immobilization. The antibodies were immobilized covalently onto polymer coated indium tin
oxide electrode. Electrochemical impedance spectroscopy and cyclic voltammetry techniques were
used for all electrochemical measurements.
Results:
The suggested immunosensor exhibited a linear range between 0.02 and 4 pg/mL Tumor necrosis
factor-α, and the detection limit was found as 6 fg/mL. Scanning electron microscopy and atomic
force microscopy were used for electrode surface characterization. In addition, the suggested immunosensor
was used for Tumor necrosis factor-α sensing in human serum samples. The results displayed
recoveries between 97.07 and 100.19%. Moreover, this immunosensor had a simple fabrication
procedure and a long storage-stability.
Conclusion:
A new biosensor based on a Star shaped polymer for the ultra sensitive determination of a
biomarker Tumor necrosis factor-α was developed. The biosensor presented excellent repeatability and
reproducubility, and also wide calibration range for Tumor necrosis factor- α.
Collapse
Affiliation(s)
- Elif Burcu Aydin
- Scientific and Technological Research Center, Namik Kemal University, Tekirdag,Turkey
| | - Muhammet Aydin
- Scientific and Technological Research Center, Namik Kemal University, Tekirdag,Turkey
| | - Mustafa Kemal Sezgintürk
- Bioengineering Department, Faculty of Engineering, Canakkale Onsekiz Mart University, Canakkale,Turkey
| |
Collapse
|
14
|
Aydın EB, Aydın M, Yuzer A, Ince M, Ocakoğlu K, Sezgintürk MK. Detection of Kallikrein-Related Peptidase 4 with a Label-free Electrochemical Impedance Biosensor Based on a Zinc(II) Phthalocyanine Tetracarboxylic Acid-Functionalized Disposable Indium Tin Oxide Electrode. ACS Biomater Sci Eng 2021; 7:1192-1201. [DOI: 10.1021/acsbiomaterials.0c01602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Elif Burcu Aydın
- Scientific and Technological Research Center, Tekirdağ Namık Kemal University, Tekirdağ 59030, Turkey
| | - Muhammet Aydın
- Scientific and Technological Research Center, Tekirdağ Namık Kemal University, Tekirdağ 59030, Turkey
| | - Abdulcelil Yuzer
- Department of Natural and Mathematical Sciences, Faculty of Engineering, Tarsus University, Mersin 33400, Turkey
| | - Mine Ince
- Department of Natural and Mathematical Sciences, Faculty of Engineering, Tarsus University, Mersin 33400, Turkey
| | - Kasim Ocakoğlu
- Department of Natural and Mathematical Sciences, Faculty of Engineering, Tarsus University, Mersin 33400, Turkey
| | - Mustafa Kemal Sezgintürk
- Bioengineering Department, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey
| |
Collapse
|
15
|
Aydın EB, Sezgintürk MK. Ultrasensitive detection of interleukin 1α using 3-phosphonopropionic acid modified FTO surface as an effective platform for disposable biosensor fabrication. Bioelectrochemistry 2020; 138:107698. [PMID: 33254051 DOI: 10.1016/j.bioelechem.2020.107698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/21/2020] [Accepted: 10/31/2020] [Indexed: 01/09/2023]
Abstract
In this study, we utilized a carboxyalkylphosphonic acid covered fluorine doped tin oxide (FTO) as an electrode material for fabrication of Interleukin 1α (IL-1α) immunosensor. For this aim, anti-IL-1α antibodies were attached on the 3-phosphonopropionic acid (PHP) modified FTO surface covalently. Electrochemical (electrochemical impedance spectroscopy and cyclic voltammetry) and morphological (scanning electron microscopy and atomic force microscopy) characterizations were performed to monitor the successful fabrication of immunoelectrodes. After incubation of anti-IL-1α antibody immobilized FTO electrodes in IL-1α antigen solutions, increases were seen in impedimetric responses. IL-1α antigen was determined in a linear detection range from 0.02 to 2 pg/mL by EIS. The detection limit of the suggested immunosensor was 6 fg/mL. The applicability of the designed biosensor was tested by using human serum and saliva samples and acceptable results were obtained. In addition, high sensitivity, good specificity, low detection limit made the proposed immunosensor a potential technique for IL-1α antigen determination in routine clinical analysis.
Collapse
Affiliation(s)
- Elif Burcu Aydın
- Tekirdağ Namık Kemal University, Scientific and Technological Research Center, Tekirdağ Turkey.
| | - Mustafa Kemal Sezgintürk
- Çanakkale Onsekiz Mart University, Faculty of Engineering, Bioengineering Department, Çanakkale, Turkey
| |
Collapse
|
16
|
Aydın EB, Aydın M, Sezgintürk MK. Electrochemical Immunosensor for Detection of CCR4 Cancer Biomarker in Human Serum: An Alternative Strategy for Modification of Disposable ITO Electrode. Macromol Biosci 2020; 21:e2000267. [PMID: 33108068 DOI: 10.1002/mabi.202000267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/14/2020] [Indexed: 11/12/2022]
Abstract
Herein, a new strategy for the fabrication of a sensitive immunosensor capable of determination of CC Chemokine receptor 4 (CCR4) in complex serum samples is developed through the polymer modification on the disposable indium tin oxide electrode. Anti-CCR4 antibodies, which are utilized as sensing biomolecules, are covalently attached on the succinimide groups of polypyrrole polymer (PPyr-CSsg). The constructed immunosensor illustrates promising performances for the quantification of CCR4 antigen, with a linear detection range of 0.024-12 pg mL-1 and a low detection limit of 7.3 fg mL-1 , calculated at a signal-to-noise ratio of 3. In addition, the impedimetric immunosensor displays a very successful analytical performance in terms of sensitivity, selectivity, repeatability, reproducibility, and long-term stability as well as successful applicability for the accurate quantification of CCR4 in human serum samples. The constructed immunosensor is successfully used for quantification of CCR4 antigen in human serums. In addition, the immunosensor displays only 27.54% loss in its initial signal after nine weeks storage at 4 °C. Moreover, the fabricated immunosensor is economical, highly sensitive, and selective for CCR4 antigen detection, and suitable for potential application in clinical diagnosis.
Collapse
Affiliation(s)
- Elif Burcu Aydın
- Scientific and Technological Research Center, Tekirdağ Namık Kemal University, Tekirdağ, 59100, Turkey
| | - Muhammet Aydın
- Scientific and Technological Research Center, Tekirdağ Namık Kemal University, Tekirdağ, 59100, Turkey
| | - Mustafa Kemal Sezgintürk
- Faculty of Engineering, Bioengineering Department, Çanakkale Onsekiz Mart University, Çanakkale, 17020, Turkey
| |
Collapse
|
17
|
Aydın EB, Aydın M, Sezgintürk MK. A label-free immunosensor for sensitive detection of RACK 1 cancer biomarker based on conjugated polymer modified ITO electrode. J Pharm Biomed Anal 2020; 190:113517. [PMID: 32784093 DOI: 10.1016/j.jpba.2020.113517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 11/19/2022]
Abstract
A new flexible biosensor based on conjugated polymer functionalized indium tin oxide (ITO) sheet was fabricated for Receptor for Activated C Kinase 1 (RACK 1) determination. Poly(3-thiophene acetic acid) (P(Thi-Ac)) was used as an immobilization matrix for construction of RACK 1 immunosensor. This polymer had a great number of carboxyl groups on its end site and these carboxyl ends provided anchoring points to the anti-RACK 1 antibodies. Anti-RACK 1 antibodies were covalently attached on the ITO electrode and recognized the RACK 1 antigens. Electrochemical characterizations were made by employing electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) techniques. Additionally, single frequency impedance method (SFI) was applied to follow the specific biointeraction between antibody and antigen. As a result of specific biointeraction, the designed immunosensor exhibited a wide linear detection range between 0.01 pg/mL and 2 pg/mL RACK 1 with a detection limit of 3.1 fg/mL. Scanning electron microscopy and atomic force microscopy analyses were employed for electrode surface morphology investigation. The designed RACK 1 biosensor had good repeatability (5.73 %, RSD), excellent reproducibility (2.5 %, RSD), long storage-stability and reusable property. In addition, the fabricated RACK 1 biosensor was applied to determine RACK 1 concentration in human serums and the recovery was ranging from 98.79%-100.22%. This work illustrated a new tool to construct a sensitive and low-cost disposable biosensor for applications in clinical monitoring.
Collapse
Affiliation(s)
- Elif Burcu Aydın
- Tekirdağ Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey
| | - Muhammet Aydın
- Tekirdağ Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey
| | - Mustafa Kemal Sezgintürk
- Çanakkale Onsekiz Mart University, Faculty of Engineering, Bioengineering Department, Çanakkale, Turkey.
| |
Collapse
|
18
|
Abstract
In recent years, advances in immunosensor device fabrication have significantly expanded the use of this technology in a broad range of applications including clinical diagnosis, food analysis, quality control, environmental studies and industrial monitoring. The most important aspect in fabrication is to obtain a design that provides a low detection limit. The utilization of nanomaterials as a label, catalyst and biosensing transducer is, perhaps, the most popular approach in ultrasensitive devices. This chapter reviews recent advances in immunosensor fabrication and summarizes the most recent studies. Strategies employed to significantly improve sensitivity and specificity of immunosensor technology and the advantages and limitations thereof are explored.
Collapse
Affiliation(s)
- Muhammet Aydin
- Tekirdağ Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey.
| | - Elif Burcu Aydin
- Tekirdağ Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey
| | - Mustafa Kemal Sezgintürk
- Bioengineering Department, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
19
|
Aydın EB. Highly sensitive impedimetric immunosensor for determination of interleukin 6 as a cancer biomarker by using conjugated polymer containing epoxy side groups modified disposable ITO electrode. Talanta 2020; 215:120909. [DOI: 10.1016/j.talanta.2020.120909] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/04/2020] [Accepted: 03/07/2020] [Indexed: 12/25/2022]
|
20
|
Reddy KK, Bandal H, Satyanarayana M, Goud KY, Gobi KV, Jayaramudu T, Amalraj J, Kim H. Recent Trends in Electrochemical Sensors for Vital Biomedical Markers Using Hybrid Nanostructured Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902980. [PMID: 32670744 PMCID: PMC7341105 DOI: 10.1002/advs.201902980] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/12/2020] [Indexed: 05/09/2023]
Abstract
This work provides a succinct insight into the recent developments in electrochemical quantification of vital biomedical markers using hybrid metallic composite nanostructures. After a brief introduction to the biomarkers, five types of crucial biomarkers, which require timely and periodical monitoring, are shortlisted, namely, cancer, cardiac, inflammatory, diabetic and renal biomarkers. This review emphasizes the usage and advantages of hybrid nanostructured materials as the recognition matrices toward the detection of vital biomarkers. Different transduction methods (fluorescence, electrophoresis, chemiluminescence, electrochemiluminescence, surface plasmon resonance, surface-enhanced Raman spectroscopy) reported for the biomarkers are discussed comprehensively to present an overview of the current research works. Recent advancements in the electrochemical (amperometric, voltammetric, and impedimetric) sensor systems constructed with metal nanoparticle-derived hybrid composite nanostructures toward the selective detection of chosen vital biomarkers are specifically analyzed. It describes the challenges involved and the strategies reported for the development of selective, sensitive, and disposable electrochemical biosensors with the details of fabrication, functionalization, and applications of hybrid metallic composite nanostructures.
Collapse
Affiliation(s)
- K. Koteshwara Reddy
- Smart Living Innovation Technology CentreDepartment of Energy Science and TechnologyMyongji UniversityYonginGyeonggi‐do17058Republic of Korea
- Laboratory of Materials ScienceInstituto de Química de Recursos NaturalesUniversidad de TalcaP.O. Box 747Talca3460000Chile
| | - Harshad Bandal
- Smart Living Innovation Technology CentreDepartment of Energy Science and TechnologyMyongji UniversityYonginGyeonggi‐do17058Republic of Korea
| | - Moru Satyanarayana
- Department of ChemistryNational Institute of Technology WarangalWarangalTelangana506004India
| | - Kotagiri Yugender Goud
- Department of ChemistryNational Institute of Technology WarangalWarangalTelangana506004India
| | | | - Tippabattini Jayaramudu
- Laboratory of Materials ScienceInstituto de Química de Recursos NaturalesUniversidad de TalcaP.O. Box 747Talca3460000Chile
| | - John Amalraj
- Laboratory of Materials ScienceInstituto de Química de Recursos NaturalesUniversidad de TalcaP.O. Box 747Talca3460000Chile
| | - Hern Kim
- Smart Living Innovation Technology CentreDepartment of Energy Science and TechnologyMyongji UniversityYonginGyeonggi‐do17058Republic of Korea
| |
Collapse
|
21
|
Aydın EB, Aydın M, Sezgintürk MK. The development of an ultra-sensitive electrochemical immunosensor using a PPyr-NHS functionalized disposable ITO sheet for the detection of interleukin 6 in real human serums. NEW J CHEM 2020. [DOI: 10.1039/d0nj03183f] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A label-free biosensor based on poly(pyrrole N-hydroxy succinimide) polymer modified ITO electrode was developed for sensitive detection of interleukin 6 antigen. Under optimized conditions, it had a wide detection range (0.03–22.5 pg mL−1).
Collapse
Affiliation(s)
- Elif Burcu Aydın
- Namık Kemal University
- Scientific and Technological Research Center
- Tekirdağ
- Turkey
| | - Muhammet Aydın
- Namık Kemal University
- Scientific and Technological Research Center
- Tekirdağ
- Turkey
| | | |
Collapse
|
22
|
Aydın M. A sensitive and selective approach for detection of IL 1α cancer biomarker using disposable ITO electrode modified with epoxy-substituted polythiophene polymer. Biosens Bioelectron 2019; 144:111675. [DOI: 10.1016/j.bios.2019.111675] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/26/2019] [Accepted: 09/03/2019] [Indexed: 01/05/2023]
|