1
|
Khan S, Do CW, Ho EA. Recent updates on drug delivery approaches for improved ocular delivery with an insight into nanostructured drug delivery carriers for anterior and posterior segment disorders. Drug Deliv Transl Res 2024:10.1007/s13346-024-01756-x. [PMID: 39674854 DOI: 10.1007/s13346-024-01756-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 12/16/2024]
Abstract
Ocular diseases have a major impact on patient's vision and quality of life, with approximately 2.2 billion people have visual impairment worldwide according to the findings from the World Health Organization (WHO). The eye is a complex organ with unique morphology and physiology consisting of numerous ocular barriers which hinders the entry of exogenous substances and impedes drug absorption. This in turn has a substantial impact on effective drug delivery to treat ocular diseases, especially intraocular disorders which has consistently presented a challenge to eye care professionals. The most common method of delivering medications to the eye is topical instillation of eye drops. Although this approach is a viable option for treating many ocular diseases remains a major challenge for the effective treatment of posterior ocular conditions. Up till now, incessant efforts have been committed to design innovative drug delivery systems with the hopes of potential clinical application. Modern developments in nanocarrier's technology present a potential chance to overcome these obstacles by enabling targeted delivery of the loaded medication to the eyes with improved solubility, delayed release, higher penetration and increased retention. This review covers the anatomy of eye with associated ocular barriers, ocular diseases and administration routes. In addition it primarily focuses on the latest progress and contemporary applications of ophthalmic formulations providing specific insight on nanostructured drug delivery carriers reported over the past 5 years highlighting their values in achieving efficient ocular drug delivery to both anterior and posterior segments. Most importantly, we outlined in this review the macro and nanotechnology based ophthalmic drug formulations that are being patented or marketed so far for treating ocular diseases. Finally, based on current trends and therapeutic concepts, we highlighted the challenges faced by novel ocular drug delivery systems and provided prospective future developments for further research in these directions. We hope that this review will serve as a source of motivation and ideas for formulation scientists in improving the design of innovative ophthalmic formulations.
Collapse
Affiliation(s)
- Samiullah Khan
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, Hong Kong
| | - Chi-Wai Do
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, Hong Kong.
- School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.
| | - Emmanuel A Ho
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, Hong Kong.
- School of Pharmacy, University of Waterloo, Waterloo, Canada.
- Waterloo Institute for Nanotechnology, Waterloo, Canada.
| |
Collapse
|
2
|
Liu Y, Liu XX, Wang SY, Pan XY, Wang ZH, Wei YX, Zhou ZM, Nan K, Wang JJ. In Situ Gelling Eye Drops of Tacrolimus with Improved Ocular Delivery and Therapeutic Efficacy. Biomacromolecules 2024; 25:7518-7528. [PMID: 39484724 DOI: 10.1021/acs.biomac.4c01259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
In situ gelling eye drops of tacrolimus (FK506 Gel) were developed to address the formulation challenge of tacrolimus for anterior ocular inflammatory diseases. Both in silico and in vitro investigations were conducted to screen a suitable cyclodextrin species to increase the drug solubility. Guanosine was employed as the gelator and combined with inclusion complexes of tacrolimus in the presence of borate anions to obtain FK506 Gel, which gelated when came into contact with cations in tear fluid and led to the formation of a nanofibrous hydrogel. The versatility of our design to improve the solubility and ocular retention of the hydrophobic drug was demonstrated in vivo with coumarin 6 as a model drug. A mouse dry eye model was used to evaluate the therapeutic effects of FK506 Gel, which, in combination with the biocompatibility study, suggested that FK506 Gel served as a superior treatment for anterior ocular inflammatory diseases.
Collapse
Affiliation(s)
- Yan Liu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Xin-Xin Liu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Si-Yu Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Xin-Yang Pan
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Zi-Han Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yu-Xin Wei
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Zhi-Min Zhou
- Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Kaihui Nan
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Jing-Jie Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
3
|
Wang TJ, Rethi L, Ku MY, Nguyen HT, Chuang AEY. A review on revolutionizing ophthalmic therapy: Unveiling the potential of chitosan, hyaluronic acid, cellulose, cyclodextrin, and poloxamer in eye disease treatments. Int J Biol Macromol 2024; 273:132700. [PMID: 38879998 DOI: 10.1016/j.ijbiomac.2024.132700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/18/2024]
Abstract
Ocular disorders, encompassing both common ailments like dry eye syndrome and more severe situations for instance age-related macular degeneration, present significant challenges to effective treatment due to the intricate architecture and physiological barriers of the eye. Polysaccharides are emerging as potential solutions for drug delivery to the eyes due to their compatibility with living organisms, natural biodegradability, and adhesive properties. In this review, we explore not only the recent advancements in polysaccharide-based technologies and their transformative potential in treating ocular illnesses, offering renewed optimism for both patients and professionals but also anatomy of the eye and the significant obstacles hindering drug transportation, followed by an investigation into various drug administration methods and their ability to overcome ocular-specific challenges. Our focus lies on biological adhesive polymers, including chitosan, hyaluronic acid, cellulose, cyclodextrin, and poloxamer, known for their adhesive characteristics enhancing drug retention on ocular surfaces and increasing bioavailability. A detailed analysis of material designs used in ophthalmic formulations, such as gels, lenses, eye drops, nanofibers, microneedles, microspheres, and nanoparticles, their advantages and limitations, the potential of formulations in improving therapeutic outcomes for various eye conditions. Moreover, we underscore the discovery of novel polysaccharides and their potential uses in ocular drug delivery.
Collapse
Affiliation(s)
- Tsung-Jen Wang
- Department of Ophthalmology, Taipei Medical University Hospital, Taipei 11031, Taiwan; Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Lekshmi Rethi
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Min-Yi Ku
- School of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Andrew E-Y Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei 11696, Taiwan.
| |
Collapse
|
4
|
Xiong H, Zhang P, Wang D, Zhou Z, Sun J, Diao M. A silk-based hydrogel containing dexamethasone and lipoic acid microcrystals for local delivery to the inner ear. Colloids Surf B Biointerfaces 2024; 237:113855. [PMID: 38513298 DOI: 10.1016/j.colsurfb.2024.113855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
Local drug delivery has been exploited recently to treat hearing loss, as this method can both bypass the blood-labyrinth barrier and provide sustained drug release. Combined drug microcrystals (MCs) offer additional advantages for sensorineural hearing loss treatment via intratympanic (IT) injection due to their shape effect and combination strategy. In this study, to endow viscous effects of hydrogels, nonspherical dexamethasone (DEX) and lipoic acid (LA) MCs were incorporated into silk fibroin (SF) hydrogels, which were subsequently administered to the tympanic cavity to investigate their pharmaceutical properties. First, we prepared DEX and LA MCs by a traditional precipitation technique followed by SF hydrogel incorporation (SF+DEX+LA). After characterization of the physicochemical features, including morphology, rheology, and dissolution, both a suspension of combined DEX and LA MCs (DEX+LA) and SF+DEX+LA were administered to guinea pigs by IT injection, after which the pharmacokinetics, biodegradation and biocompatibility were evaluated. To our surprise, compared to the DEX+LA group, the pharmacokinetics of the SF+DEX+LA hydrogel group did not improve significantly, which may be ascribed to their nonspherical shape and deposition effects of the drugs MCs. The cochlear tissue in each group displayed good morphology, with no obvious inflammatory reactions. This combined MC suspension has the clear advantages of no vehicle, easy scale-up preparation, and good biocompatibility and outcomes, which paves the way for practical treatment of hearing loss via local drug delivery.
Collapse
Affiliation(s)
- Haixia Xiong
- Department of Otolaryngology, School of Medicine, South China University of Technology, Guangzhou 510006, China; Department of Endoscopic Ear Surgery, Senior Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing 100048, China
| | - Peili Zhang
- Department of Otolaryngology, School of Medicine, South China University of Technology, Guangzhou 510006, China; Department of Endoscopic Ear Surgery, Senior Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing 100048, China
| | - Dongcheng Wang
- Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Zhimin Zhou
- Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Jianjun Sun
- Department of Otorhinolaryngology Head and Neck Surgery, Peking University International Hospital, Beijing 102206, China.
| | - Mingfang Diao
- Department of Otolaryngology, School of Medicine, South China University of Technology, Guangzhou 510006, China; Department of Endoscopic Ear Surgery, Senior Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing 100048, China.
| |
Collapse
|
5
|
Liu Y, Xu H, Yan N, Tang Z, Wang Q. Research progress of ophthalmic preparations of immunosuppressants. Drug Deliv 2023; 30:2175925. [PMID: 36762580 DOI: 10.1080/10717544.2023.2175925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Immune ophthalmopathy is a collection of autoimmune eye diseases. Immunosuppressants are drugs that can inhibit the body's immune response. Considering drug side effects such as hepatorenal toxicity and the unique structure of the eye, incorporating immunosuppressants into ophthalmic nanodrug delivery systems, such as microparticles, nanoparticles, liposomes, micelles, implants, and in situ gels, has the advantages of improving solubility, increasing bioavailability, high eye-target specificity, and reducing side effects. This study reviews recent research and applications of this aspect to provide a reference for the development of an ophthalmic drug delivery system.
Collapse
Affiliation(s)
- Ye Liu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China
| | - Haonan Xu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China
| | - Na Yan
- Department of Pharmacy, Jin Hua Municipal Maternal and Child Health Care Hospital, Jinhua, Zhejiang, 321000, China
| | - Zhan Tang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China.,Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China
| | - Qiao Wang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China.,Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China
| |
Collapse
|
6
|
Mostafa M, Al Fatease A, Alany RG, Abdelkader H. Recent Advances of Ocular Drug Delivery Systems: Prominence of Ocular Implants for Chronic Eye Diseases. Pharmaceutics 2023; 15:1746. [PMID: 37376194 PMCID: PMC10302848 DOI: 10.3390/pharmaceutics15061746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic ocular diseases can seriously impact the eyes and could potentially result in blindness or serious vision loss. According to the most recent data from the WHO, there are more than 2 billion visually impaired people in the world. Therefore, it is pivotal to develop more sophisticated, long-acting drug delivery systems/devices to treat chronic eye conditions. This review covers several drug delivery nanocarriers that can control chronic eye disorders non-invasively. However, most of the developed nanocarriers are still in preclinical or clinical stages. Long-acting drug delivery systems, such as inserts and implants, constitute the majority of the clinically used methods for the treatment of chronic eye diseases due to their steady state release, persistent therapeutic activity, and ability to bypass most ocular barriers. However, implants are considered invasive drug delivery technologies, especially those that are nonbiodegradable. Furthermore, in vitro characterization approaches, although useful, are limited in mimicking or truly representing the in vivo environment. This review focuses on long-acting drug delivery systems (LADDS), particularly implantable drug delivery systems (IDDS), their formulation, methods of characterization, and clinical application for the treatment of eye diseases.
Collapse
Affiliation(s)
- Mahmoud Mostafa
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minya 61519, Egypt;
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62223, Saudi Arabia;
| | - Raid G. Alany
- School of Pharmacy, Kingston University London, Kingston Upon Tames KT1 2EE, UK;
- School of Pharmacy, The University of Auckland, Auckland 1010, New Zealand
| | - Hamdy Abdelkader
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62223, Saudi Arabia;
| |
Collapse
|
7
|
Tang X, Liu J, Yan R, Peng Q. Carbohydrate polymer-based bioadhesive formulations and their potentials for the treatment of ocular diseases: A review. Int J Biol Macromol 2023; 242:124902. [PMID: 37210054 DOI: 10.1016/j.ijbiomac.2023.124902] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/27/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
Eyes are directly exposed to the outer environment and susceptible to infections, leading to various ocular disorders. Local medication is preferred to treat eye diseases due to its convenience and compliance. However, the rapid clearance of the local formulations highly limits the therapeutic efficacy. In the past decades, several carbohydrate bioadhesive polymers (CBPs), such as chitosan and hyaluronic acid, have been used in ophthalmology for sustained ocular drug delivery. These CBP-based delivery systems have improved the treatment of ocular diseases to a large extent but also caused some undesired effects. Herein, we aim to summarize the applications of some typical CBPs (including chitosan, hyaluronic acid, cellulose, cyclodextrin, alginate and pectin) in treating ocular diseases from the general view of ocular physiology, pathophysiology and drug delivery, and to provide a comprehensive understanding of the design of the CBP-based formulations for ocular use. The patents and clinical trials of CBPs for ocular management are also discussed. In addition, a discussion on the concerns of CBPs in clinical use and the possible solutions is presented.
Collapse
Affiliation(s)
- Xuelin Tang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jianhong Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ruijiao Yan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
8
|
Wang JJ, Liu XX, Zhu CC, Wang TZ, Wang SY, Liu Y, Pan XY, Liu MH, Chen D, Li LL, Zhou ZM, Nan KH. Improving ocular bioavailability of hydrophilic drugs through dynamic covalent complexation. J Control Release 2023; 355:395-405. [PMID: 36739907 DOI: 10.1016/j.jconrel.2023.01.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/07/2023]
Abstract
The clinical benefits of diquafosol tetrasodium (DQS), a hydrophilic P2Y2 receptor agonist for dry eye, have been hindered by a demanding dosing regimen. Nevertheless, it is challenging to achieve sustained release of DQS with conventional drug delivery vehicles which are mainly designed for hydrophobic small molecule drugs. To address this, we developed an affinity hydrogel for DQS by taking advantage of borate-mediated dynamic covalent complexation between DQS and hydroxypropyl guar. The resultant formulation (3% DQS Gel) was characterized by sustained release, low corneal permeation, and extended ocular retention, which were desirable attributes for ocular surface drug delivery. Both in vitro and in vivo studies had been carried out to verify the biocompatibility of 3% DQS Gel. Using corneal fluorescein staining, the Schirmer's test, PAS staining, quantitative PCR and immunohistological analyses as outcome measures, the superior therapeutic effects of 3% DQS Gel over PBS, the hydrogel vehicle and free DQS were demonstrated in a mouse dry eye model. Our DQS delivery strategy reported herein is readily applicable to other hydrophilic small molecule drugs with cis-diol moieties, thus providing a general solution to improve clinical outcomes of numerous diseases.
Collapse
Affiliation(s)
- Jing-Jie Wang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China; National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China.
| | - Xin-Xin Liu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Chen-Chen Zhu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Tian-Zuo Wang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Si-Yu Wang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Yan Liu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Xin-Yang Pan
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Min-Hua Liu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Ding Chen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Ling-Li Li
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China; National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Zhi-Min Zhou
- Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Kai-Hui Nan
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China; National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
9
|
Wang X, Xiong H, Zhang P, Liu Y, Gao C, Zhou Z, Sun J, Diao M. Intratympanic microcrystals of dexamethasone and lipoic acid for the treatment of cisplatin-induced inner ear injury. Colloids Surf B Biointerfaces 2023; 223:113191. [PMID: 36739674 DOI: 10.1016/j.colsurfb.2023.113191] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023]
Abstract
Steroids (anti-inflammatory drugs) combined with antioxidants are frequently prescribed to treat cisplatin (CP)-induced hearing loss in the clinic. Compared to systemic administration of free drugs, local drug delivery systems offer better therapeutic qualities and patient compliance since they not only can bypass the blood-labyrinth barrier but also can perform sustained release. In this work, dexamethasone (DEX) and lipoic acid (LA) non-spherical microcrystals (MCs) were prepared without complicated chemical modification. Following a series of physical characterizations, including morphology, stability and injectability, dissolution and round window membrane distribution of MCs, DEX MCs, LA MCs and the simple mixture of DEX MCs + LA MCs (combination group) were administered in guinea pigs by intratympanic injection. We found that LA MCs enabled improvement of DEX absorption in the combination group compared to a single dose. In addition, no significant morphological changes or inflammatory responses were observed in cochlear tissue, indicating good biocompatibility. Finally, the combination group also demonstrated synergistic therapeutic effect for protecting hair cells against CP-induced damage. The local co delivery of DEX MCs and LA MCs offers a new strategy for the treatment of CP-induced inner ear injury since they provide sustained anti-inflammatory and antioxidant effects simultaneously.
Collapse
Affiliation(s)
- Xiangxiang Wang
- Department of Otolaryngology, School of Medicine, South China University of Technology, Guangzhou 510006, China; Department of Endoscopic Ear Surgery, Senior Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Haixia Xiong
- Department of Otolaryngology, School of Medicine, South China University of Technology, Guangzhou 510006, China; Department of Endoscopic Ear Surgery, Senior Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Peili Zhang
- Department of Otolaryngology, School of Medicine, South China University of Technology, Guangzhou 510006, China; Department of Endoscopic Ear Surgery, Senior Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Ya Liu
- Department of Endoscopic Ear Surgery, Senior Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China; National Clinical Medical Research Center for Otolaryngology Diseases, Beijing 100048, China
| | - Chang Gao
- Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Zhimin Zhou
- Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Jianjun Sun
- Department of Otorhinolaryngology Head and Neck Surgery, Peking University International Hospital, Beijing 102206, China.
| | - Mingfang Diao
- Department of Otolaryngology, School of Medicine, South China University of Technology, Guangzhou 510006, China; Department of Endoscopic Ear Surgery, Senior Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China; National Clinical Medical Research Center for Otolaryngology Diseases, Beijing 100048, China.
| |
Collapse
|
10
|
Recent advances in novel formulation approaches for tacrolimus delivery in treatment of various ocular diseases. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Modulating surface charge of dexamethasone non-spherical microcrystals for improved inner ear delivery. Colloids Surf B Biointerfaces 2021; 204:111806. [PMID: 33957492 DOI: 10.1016/j.colsurfb.2021.111806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/13/2021] [Accepted: 04/26/2021] [Indexed: 11/24/2022]
Abstract
It is important to achieve precise surface charge manipulation of non-spherical drug microcrystals using facile and time-efficient methods for local drug delivery. In this study, silk-coated dexamethasone (DEX) non-spherical microcrystals were synthesized by precipitation technique followed by alternate deposition of poly(allylamine hydrochloride) (PAH) (or PAH-coated Fe3O4) and silk fibroin (SF) via layer-by-layer assembly. EDC and glutaraldehyde were employed to manipulate positive or negative charge of particles by simple chemical cross-linking reactions, respectively. In vivo assessment was carried out by intratympanic (IT) injection of DEX non-spherical microcrystals in guinea pigs. In vivo pharmacokinetic results demonstrate that negatively charged DEX microcrystals appeared to improve outcomes of inner ear delivery in comparison to positively-charged counterparts. This is partly because of the adhesive features of the SF. The present study may provide new ideas to construct surface charge-tunable drug delivery vehicles that are capable of crossing biological barriers, especially for inner ear delivery due to the simple and practical strategy.
Collapse
|
12
|
Polymeric non-spherical coarse microparticles fabricated by double emulsion-solvent evaporation for simvastatin delivery. Colloids Surf B Biointerfaces 2021; 199:111560. [DOI: 10.1016/j.colsurfb.2021.111560] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/18/2020] [Accepted: 01/03/2021] [Indexed: 01/24/2023]
|