1
|
Zivari-Ghader T, Rashidi MR, Mehrali M. Biological macromolecule-based hydrogels with antibacterial and antioxidant activities for wound dressing: A review. Int J Biol Macromol 2024; 279:134578. [PMID: 39122064 DOI: 10.1016/j.ijbiomac.2024.134578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Because of the complex symptoms resulting from metabolic dysfunction in the wound microenvironment during bacterial infections, along with the necessity to combat free radicals, achieving prompt and thorough wound healing remains a significant medical challenge that has yet to be fully addressed. Moreover, the misuse of common antibiotics has contributed to the emergence of drug-resistant bacteria, underscoring the need for enhancements in the practical and commonly utilized approach to wound treatment. In this context, hydrogel dressings based on biological macromolecules with antibacterial and antioxidant properties present a promising new avenue for skin wound treatment due to their multifunctional characteristics. Despite the considerable potential of this innovative approach to wound care, comprehensive research on these multifunctional dressings is still insufficient. Consequently, the development of advanced biological macromolecule-based hydrogels, such as chitosan, alginate, cellulose, hyaluronic acid, and others, has been the primary focus of this study. These materials have been enriched with various antibacterial and antioxidant agents to confer multifunctional attributes for wound healing purposes. This review article aims to offer a comprehensive overview of the latest progress in this field, providing a critical theoretical basis for future advancements in the utilization of these advanced biological macromolecule-based hydrogels for wound healing.
Collapse
Affiliation(s)
- Tayebeh Zivari-Ghader
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Mohammad-Reza Rashidi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran.
| | - Mehdi Mehrali
- Department of Civil and Mechanical Engineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
| |
Collapse
|
2
|
Zhang K, Yang Z, Seitz MP, Jain E. Macroporous PEG-Alginate Hybrid Double-Network Cryogels with Tunable Degradation Rates Prepared via Radical-Free Cross-Linking for Cartilage Tissue Engineering. ACS APPLIED BIO MATERIALS 2024; 7:5925-5938. [PMID: 39135543 PMCID: PMC11409214 DOI: 10.1021/acsabm.4c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Trauma or repeated damage to joints can result in focal cartilage defects, significantly elevating the risk of osteoarthritis. Damaged cartilage has an inherently limited self-healing capacity and remains an urgent unmet clinical need. Consequently, there is growing interest in biodegradable hydrogels as potential scaffolds for the repair or reconstruction of cartilage defects. Here, we developed a biodegradable and macroporous hybrid double-network (DN) cryogel by combining two independently cross-linked networks of multiarm polyethylene glycol (PEG) acrylate and alginate.Hybrid DN cryogels are formed using highly biocompatible click reactions for the PEG network and ionic bonding for the alginate network. By judicious selection of various structurally similar cross-linkers to form the PEG network, we can generate hybrid DN cryogels with customizable degradation kinetics. The resulting PEG-alginate hybrid DN cryogels have an interconnected macroporous structure, high mechanical strength, and rapid swelling kinetics. The interconnected macropores in the cryogels support efficient mesenchymal stem cell infiltration at a high density. Finally, we demonstrate that PEG-alginate hybrid DN cryogels allow sustained release of chondrogenic growth factors and support chondrogenic differentiation of mouse mesenchymal stem cells. This study provides a novel method to generate macroporous hybrid DN cryogels with customizable degradation rates and a potential scaffold for cartilage tissue engineering.
Collapse
Affiliation(s)
- Kaixiang Zhang
- Department of Biomedical and Chemical engineering, Syracuse University, Syracuse, New York 13244, United States
- Bioinspired Syracuse: Institute for Material and Living System, Syracuse University, Syracuse, New York 13244, United States
| | - Zining Yang
- Department of Biomedical and Chemical engineering, Syracuse University, Syracuse, New York 13244, United States
- Bioinspired Syracuse: Institute for Material and Living System, Syracuse University, Syracuse, New York 13244, United States
| | - Michael Patrick Seitz
- Department of Biomedical and Chemical engineering, Syracuse University, Syracuse, New York 13244, United States
- Bioinspired Syracuse: Institute for Material and Living System, Syracuse University, Syracuse, New York 13244, United States
| | - Era Jain
- Department of Biomedical and Chemical engineering, Syracuse University, Syracuse, New York 13244, United States
- Bioinspired Syracuse: Institute for Material and Living System, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
3
|
Brown M, Okuyama H, Yamashita M, Tabrizian M, Li-Jessen NYK. Trends in Injectable Biomaterials for Vocal Fold Regeneration and Long-Term Augmentation. TISSUE ENGINEERING. PART B, REVIEWS 2024. [PMID: 39212941 DOI: 10.1089/ten.teb.2024.0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Human vocal folds (VF), a pair of small, soft tissues in the larynx, have a layered mucosal structure with unique mechanical strength to support high-level tissue deformation by phonation. Severe pathological changes to VF have causes including surgery, trauma, age-related atrophy, and radiation, and lead to partial or complete communication loss and difficulty in breathing and swallowing. VF glottal insufficiency requires injectable VF biomaterials such as hyaluronan, calcium hydroxyapatite, and autologous fat to augment VF functions. Although these biomaterials provide an effective short-term solution, significant variations in patient response and requirements of repeat reinjection remain notable challenges in clinical practice. Tissue engineering strategies have been actively explored in the search of an injectable biomaterial that possesses the capacity to match native tissue's material properties while promoting permanent tissue regeneration. This review aims to assess the current status of biomaterial development in VF tissue engineering. The focus will be on examining state-of-the-art techniques including modification with bioactive molecules, cell encapsulation, composite materials, as well as, in situ crosslinking with click chemistry. We will discuss potential opportunities that can further leverage these engineering techniques in the advancement of VF injectable biomaterials.
Collapse
Affiliation(s)
- Mika Brown
- McGill University, Biomedical Engineering, Montreal, Quebec, Canada
- McGill University, Bioengineering, Montreal, Quebec, Canada;
| | - Hideaki Okuyama
- McGill University, School of Communication Sciences and Disorders, Montreal, Quebec, Canada;
| | - Masaru Yamashita
- Kagoshima University Graduate School of Medicine and Dental Sciences, Kagoshima, Kagoshima, Japan;
| | - Maryam Tabrizian
- McGill University, Biomedical Engineering, Montreal, Quebec, Canada
- McGill University, Bioengineering, Montreal, Quebec, Canada
- McGill University, Faculty of Dentistry, Montreal, Quebec, Canada;
| | - Nicole Y K Li-Jessen
- McGill University, School of Communication Sciences and Disorders, Montreal, Quebec, Canada
- McGill University, Department of Otolaryngology - Head and Neck Surgery, Montreal, Quebec, Canada
- McGill University, Biomedical Engineering, Montreal, Quebec, Canada
- McGill University, Research Institute of McGill University Health Center, Montreal, Quebec, Canada;
| |
Collapse
|
4
|
Hebner TS, Kirkpatrick BE, Fairbanks BD, Bowman CN, Anseth KS, Benoit DS. Radical-Mediated Degradation of Thiol-Maleimide Hydrogels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402191. [PMID: 38582514 PMCID: PMC11220706 DOI: 10.1002/advs.202402191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/22/2024] [Indexed: 04/08/2024]
Abstract
Michael addition between thiol- and maleimide-functionalized molecules is a long-standing approach used for bioconjugation, hydrogel crosslinking, and the functionalization of other advanced materials. While the simplicity of this chemistry enables facile synthesis of hydrogels, network degradation is also desirable in many instances. Here, the susceptibility of thiol-maleimide bonds to radical-mediated degradation is reported. Irreversible degradation in crosslinked materials is demonstrated using photoinitiated and chemically initiated radicals in hydrogels and linear polymers. The extent of degradation is shown to be dependent on initiator concentration. Using a model linear polymer system, the radical-mediated mechanism of degradation is elucidated, in which the thiosuccinimide crosslink is converted to a succinimide and a new thioether formed with an initiator fragment. Using laser stereolithography, high-fidelity spatiotemporal control over degradation in crosslinked gels is demonstrated. Ultimately, this work establishes a platform for controllable, radical-mediated degradation in thiol-maleimide hydrogels, further expanding their versatility as functional materials.
Collapse
Affiliation(s)
- Tayler S. Hebner
- Department of BioengineeringUniversity of Oregon6231 University of OregonEugeneOR97403USA
| | - Bruce E. Kirkpatrick
- Department of Chemical and Biological EngineeringUniversity of Colorado Boulder596 UCBBoulderCO80309USA
- BioFrontiers InstituteUniversity of Colorado Boulder596 UCBBoulderCO80309USA
- BioFrontiers Institute Medical Scientist Training ProgramUniversity of Colorado Anschutz Medical Campus13001 East 17th PlaceAuroraCO80045USA
| | - Benjamin D. Fairbanks
- Department of Chemical and Biological EngineeringUniversity of Colorado Boulder596 UCBBoulderCO80309USA
| | - Christopher N. Bowman
- Department of Chemical and Biological EngineeringUniversity of Colorado Boulder596 UCBBoulderCO80309USA
| | - Kristi S. Anseth
- Department of Chemical and Biological EngineeringUniversity of Colorado Boulder596 UCBBoulderCO80309USA
- BioFrontiers InstituteUniversity of Colorado Boulder596 UCBBoulderCO80309USA
| | - Danielle S.W. Benoit
- Department of BioengineeringUniversity of Oregon6231 University of OregonEugeneOR97403USA
| |
Collapse
|
5
|
Schmitz TC, van Genabeek B, Pouderoijen MJ, Janssen HM, van Doeselaar M, Crispim JF, Tryfonidou MA, Ito K. Semi-synthetic degradable notochordal cell-derived matrix hydrogel for use in degenerated intervertebral discs: Initial in vitro characterization. J Biomed Mater Res A 2023; 111:1903-1915. [PMID: 37539663 DOI: 10.1002/jbm.a.37594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 08/05/2023]
Abstract
Low back pain is the leading cause of disability worldwide, but current therapeutic interventions are palliative or surgical in nature. Loss of notochordal cells (NCs) and degradation of the healthy matrix in the nucleus pulposus (NP), the central tissue of intervertebral discs (IVDs), has been associated with onset of degenerative disc changes. Recently, we established a protocol for decellularization of notochordal cell derived matrix (NCM) and found that it can provide regenerative cues to nucleus pulposus cells of the IVD. Here, we combined the biologically regenerative properties of decellularized NCM with the mechanical tunability of a poly(ethylene glycol) hydrogel to additionally address biomechanics in the degenerate IVD. We further introduced a hydrolysable PEG-diurethane crosslinker for slow degradation of the gels in vivo. The resulting hydrogels were tunable over a broad range of stiffness's (0.2 to 4.5 kPa), matching that of NC-rich and -poor NP tissues, respectively. Gels formed within 30 min, giving ample time for handling, and remained shear-thinning post-polymerization. Gels also slowly released dNCM over 28 days as measured by GAG effusion. Viability of encapsulated bone marrow stromal cells after extrusion through a needle remained high. Although encapsulated NCs stayed viable over two weeks, their metabolic activity decreased, and their phenotype was lost in physiological medium conditions in vitro. Overall, the obtained gels hold promise for application in degenerated IVDs but require further tuning for combined use with NCs.
Collapse
Affiliation(s)
- Tara C Schmitz
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | | | | | - Marina van Doeselaar
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - João F Crispim
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Marianna A Tryfonidou
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
6
|
Flanagan M, Gan Q, Sheth S, Schafer R, Ruesing S, Winter LE, Toth K, Zustiak SP, Montaño AM. Hydrogel Delivery Device for the In Vitro and In Vivo Sustained Release of Active rhGALNS Enzyme. Pharmaceuticals (Basel) 2023; 16:931. [PMID: 37513843 PMCID: PMC10384033 DOI: 10.3390/ph16070931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Morquio A disease is a genetic disorder resulting in N-acetylgalactosamine-6-sulfate sulfatase (GALNS) deficiency, and patients are currently treated with enzyme replacement therapy via weekly intravenous enzyme infusions. A means of sustained enzyme delivery could improve patient quality of life by reducing the administration time, frequency of hospital visits, and treatment cost. In this study, we investigated poly(ethylene-glycol) (PEG) hydrogels as a tunable, hydrolytically degradable drug delivery system for the encapsulation and sustained release of recombinant human GALNS (rhGALNS). We evaluated hydrogel formulations that optimized hydrogel gelation and degradation time while retaining rhGALNS activity and sustaining rhGALNS release. We observed the release of active rhGALNS for up to 28 days in vitro from the optimized formulation. rhGALNS activity was preserved in the hydrogel relative to buffer over the release window, and encapsulation was found to have no impact on the rhGALNS structure when measured by intrinsic fluorescence, circular dichroism, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). In vivo, we monitored the retention of fluorescently labeled rhGALNS in C57BL/6 albino mice when administered via subcutaneous injection and observed rhGALNS present for up to 20 days when delivered in a hydrogel versus 7 days in the buffer control. These results indicate that PEG hydrogels are suitable for the encapsulation, preservation, and sustained release of recombinant enzymes and may present an alternative method of delivering enzyme replacement therapies that improve patient quality of life.
Collapse
Affiliation(s)
- Michael Flanagan
- Department of Pediatrics, School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
| | - Qi Gan
- Department of Pediatrics, School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
| | - Saahil Sheth
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO 63103, USA
| | - Rachel Schafer
- School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
| | - Samuel Ruesing
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO 63103, USA
| | - Linda E Winter
- Department of Pediatrics, School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
| | - Karoly Toth
- Department of Microbiology and Molecular Immunology, School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
| | - Silviya P Zustiak
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO 63103, USA
| | - Adriana M Montaño
- Department of Pediatrics, School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
- Department of Biochemistry and Molecular Biology, School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
| |
Collapse
|
7
|
Wang Z, Hu Y, Xue Y, Zhu Z, Wu Y, Zeng Q, Wang Y, Han H, Zhang H, Shen C, Yi K, Jiang C, Liu L, Zhu H, Li H, Liu Q, Shen Q. Mechanism insight on licorice flavonoids release from Carbopol hydrogels: Role of “release steric hindrance” and drug solubility in the release medium. Eur J Pharm Sci 2022; 179:106307. [DOI: 10.1016/j.ejps.2022.106307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/16/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022]
|
8
|
Dimmitt NH, Arkenberg MR, de Lima Perini MM, Li J, Lin CC. Hydrolytically Degradable PEG-Based Inverse Electron Demand Diels-Alder Click Hydrogels. ACS Biomater Sci Eng 2022; 8:4262-4273. [PMID: 36074814 PMCID: PMC9554872 DOI: 10.1021/acsbiomaterials.2c00714] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Hydrogels cross-linked by inverse electron demand Diels–Alder
(iEDDA) click chemistry are increasingly used in biomedical applications.
With a few exceptions in naturally derived and chemically modified
macromers, iEDDA click hydrogels exhibit long-term hydrolytic stability,
and no synthetic iEDDA click hydrogels can undergo accelerated and
tunable hydrolytic degradation. We have previously reported a novel
method for synthesizing norbornene (NB)-functionalized multiarm poly(ethylene
glycol) (PEG), where carbic anhydride (CA) was used to replace 5-norbornene-2-carboxylic
acid. The new PEGNBCA-based thiol-norbornene hydrogels
exhibited unexpected fast yet highly tunable hydrolytic degradation.
In this contribution, we leveraged the new PEGNBCA macromer
for forming iEDDA click hydrogels with [methyl]tetrazine ([m]Tz)-modified
macromers, leading to the first group of synthetic iEDDA click hydrogels
with highly tunable hydrolytic degradation kinetics. We further exploited
Tz and mTz dual conjugation to achieve tunable hydrolytic degradation
with an in vitro degradation time ranging from 2 weeks to 3 months.
Finally, we demonstrated the excellent in vitro cytocompatibility
and in vivo biocompatibility of the new injectable PEGNBCA-based iEDDA click cross-linked hydrogels.
Collapse
Affiliation(s)
- Nathan H Dimmitt
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Matthew R Arkenberg
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mariana Moraes de Lima Perini
- Department of Biology, Purdue School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Jiliang Li
- Department of Biology, Purdue School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Chien-Chi Lin
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| |
Collapse
|
9
|
Muralidharan A, Crespo-Cuevas V, Ferguson VL, McLeod RR, Bryant SJ. Effects of Kinetic Chain Length on the Degradation of Poly(β-amino ester)-Based Networks and Use in 3D Printing by Projection Microstereolithography. Biomacromolecules 2022; 23:3272-3285. [PMID: 35793134 DOI: 10.1021/acs.biomac.2c00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Poly(β-amino ester)-diacrylates (PBAE-dAs) are promising resins for three-dimensional (3D) printing. This study investigated the degradation of two PBAEs with different chemistries and kinetic chain lengths. PBAE-dA monomers were synthesized from benzhydrazide and poly(ethylene glycol) (A6) or butanediol (B6) diacrylate and then photopolymerized with pentaerythritol tetrakis(3-mercaptopropionate), which formed thiol-polyacrylate kinetic chains. This tetrathiol acts as a cross-linker and chain-transfer agent that controls the polyacrylate kinetic chain length. A6 networks exhibited bulk degradation, while B6 networks exhibited surface degradation, which transitioned to a combined surface and bulk degradation. Increasing the tetrathiol concentration shortened the polyacrylate kinetic chain and time-to-reverse gelation but degradation mode was unaffected. Hydrolysis occurred primarily through the β-amino ester. As network hydrophilicity increased, the slower degrading ester in the thiol-polyacrylate chains contributed to degradation. Overall, this work demonstrates control over network degradation rate, mode of degradation, and time-to-reverse gelation in PBAE networks and their application in 3D printing.
Collapse
Affiliation(s)
- Archish Muralidharan
- Materials Science & Engineering Program, University of Colorado, 4001 Discovery Dr, Boulder, Colorado 80309, United States
| | - Victor Crespo-Cuevas
- Department of Mechanical Engineering, University of Colorado, 1111 Engineering Dr, Boulder, Colorado 80309, United States
| | - Virginia L Ferguson
- Materials Science & Engineering Program, University of Colorado, 4001 Discovery Dr, Boulder, Colorado 80309, United States.,Department of Mechanical Engineering, University of Colorado, 1111 Engineering Dr, Boulder, Colorado 80309, United States.,BioFrontiers Institute, University of Colorado, 3415 Colorado Ave, Boulder, Colorado 80309, United States
| | - Robert R McLeod
- Materials Science & Engineering Program, University of Colorado, 4001 Discovery Dr, Boulder, Colorado 80309, United States.,Department of Electrical, Computer and Energy Engineering, University of Colorado, 1111 Engineering Dr, Boulder, Colorado 80309, United States
| | - Stephanie J Bryant
- Materials Science & Engineering Program, University of Colorado, 4001 Discovery Dr, Boulder, Colorado 80309, United States.,BioFrontiers Institute, University of Colorado, 3415 Colorado Ave, Boulder, Colorado 80309, United States.,Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Ave, Boulder, Colorado 80309, United States
| |
Collapse
|
10
|
CCL21 and beta-cell antigen releasing hydrogels as tolerance-inducing therapy in Type I diabetes. J Control Release 2022; 348:499-517. [PMID: 35691500 DOI: 10.1016/j.jconrel.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/25/2022] [Accepted: 06/06/2022] [Indexed: 11/20/2022]
Abstract
Type-I Diabetes (T1D) is caused by defective immunotolerance mechanisms enabling autoreactive T cells to escape regulation in lymphoid organs and destroy insulin-producing β-cells in the pancreas, leading to insulin dependence. Strategies to promote β-cell tolerance could arrest T1D. We previously showed that secretion of secondary lymphoid chemokine CCL21 by CCL21 transgenic β-cells induced tolerance and protected non-obese diabetic (NOD) mice from T1D. T1D protection was associated with formation of lymph node-like stromal networks containing tolerogenic fibroblastic reticular cells (FRCs). Here, we developed a polyethylene glycol (PEG) hydrogel platform with hydrolytically degradable PEG-diester dithiol crosslinkers to provide controlled and sustained delivery of CCL21 and β-cell antigens for at least 28 days in vitro and recapitulate properties associated with the tolerogenic environment of CCL21 transgenic β-cells in our previous studies. CCL21 and MHC-II restricted antigens were tethered to gels via simple click-chemistry while MHC-I restricted antigens were loaded in PEG-based polymeric nanovesicles and incorporated in the gel networks. CCL21 and antigen release kinetics depended on the PEG gel tethering strategy and the linkers. Importantly, in vitro functionality, chemotaxis, and activation of antigen-specific T cells were preserved. Implantation of CCL21 and β-cell antigen gels under the kidney capsule of pre-diabetic NOD mice led to enrichment of adoptively transferred antigen-specific T cells, formation of gp38 + FRC-like stromal cell networks, and increased regulation of specific T cells with reduced accumulation within pancreatic islets. Thus, our platform for sustained release of β-cell antigens and CCL21 immunomodulatory molecule could enable the development of antigen-specific tolerance therapies for T1D.
Collapse
|
11
|
Development of a nanocapsule-loaded hydrogel for drug delivery for intraperitoneal administration. Int J Pharm 2022; 622:121828. [PMID: 35595041 DOI: 10.1016/j.ijpharm.2022.121828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 05/01/2022] [Accepted: 05/09/2022] [Indexed: 11/22/2022]
Abstract
Intraperitoneal (IP) drug delivery of chemotherapeutic agents, administered through hyperthermal intraperitoneal chemotherapy (HIPEC) and pressurized intraperitoneal aerosolized chemotherapy (PIPAC), is effective for the treatment of peritoneal malignancies. However, these therapeutic interventions are cumbersome in terms of surgical practice and are often associated with the formation of peritoneal adhesions, due to the catheters inserted into the peritoneal cavity during these procedures. Hence, there is a need for the development of drug delivery systems that can be administered into the peritoneal cavity. In this study, we have developed a nanocapsule (NCs)-loaded hydrogel for drug delivery in the peritoneal cavity. The hydrogel has been developed using poly(ethylene glycol) (PEG) and thiol-maleimide chemistry. NCs-loaded hydrogels were characterized by rheology and their resistance to dilution and drug release were determined in vitro. Using IVIS® to measure individual organ and recovered gel fluorescence intensity, an in vivo imaging study was performed and demonstrated that NCs incorporated in the PEG gel were retained in the IP cavity for 24 h after IP administration. NCs-loaded PEG gels could find potential applications as biodegradable, drug delivery systems that could be implanted in the IP cavity, for example at a the tumour resection site to prevent recurrence of microscopic tumours.
Collapse
|
12
|
Stealey S, Khachani M, Zustiak SP. Adsorption and Sustained Delivery of Small Molecules from Nanosilicate Hydrogel Composites. Pharmaceuticals (Basel) 2022; 15:56. [PMID: 35056113 PMCID: PMC8780425 DOI: 10.3390/ph15010056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 12/13/2022] Open
Abstract
Two-dimensional nanosilicate particles (NS) have shown promise for the prolonged release of small-molecule therapeutics while minimizing burst release. When incorporated in a hydrogel, the high surface area and charge of NS enable electrostatic adsorption and/or intercalation of therapeutics, providing a lever to localize and control release. However, little is known about the physio-chemical interplay between the hydrogel, NS, and encapsulated small molecules. Here, we fabricated polyethylene glycol (PEG)-NS hydrogels for the release of model small molecules such as acridine orange (AO). We then elucidated the effect of NS concentration, NS/AO incubation time, and the ability of NS to freely associate with AO on hydrogel properties and AO release profiles. Overall, NS incorporation increased the hydrogel stiffness and decreased swelling and mesh size. When individual NS particles were embedded within the hydrogel, a 70-fold decrease in AO release was observed compared to PEG-only hydrogels, due to adsorption of AO onto NS surfaces. When NS was pre-incubated and complexed with AO prior to hydrogel encapsulation, a >9000-fold decrease in AO release was observed due to intercalation of AO between NS layers. Similar results were observed for other small molecules. Our results show the potential for use of these nanocomposite hydrogels for the tunable, long-term release of small molecules.
Collapse
Affiliation(s)
| | | | - Silviya Petrova Zustiak
- Biomedical Engineering Program, Parks College of Engineering, Saint Louis University, Saint Louis, MO 63103, USA; (S.S.); (M.K.)
| |
Collapse
|
13
|
Vernerey FJ, Lalitha Sridhar S, Muralidharan A, Bryant SJ. Mechanics of 3D Cell-Hydrogel Interactions: Experiments, Models, and Mechanisms. Chem Rev 2021; 121:11085-11148. [PMID: 34473466 DOI: 10.1021/acs.chemrev.1c00046] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hydrogels are highly water-swollen molecular networks that are ideal platforms to create tissue mimetics owing to their vast and tunable properties. As such, hydrogels are promising cell-delivery vehicles for applications in tissue engineering and have also emerged as an important base for ex vivo models to study healthy and pathophysiological events in a carefully controlled three-dimensional environment. Cells are readily encapsulated in hydrogels resulting in a plethora of biochemical and mechanical communication mechanisms, which recapitulates the natural cell and extracellular matrix interaction in tissues. These interactions are complex, with multiple events that are invariably coupled and spanning multiple length and time scales. To study and identify the underlying mechanisms involved, an integrated experimental and computational approach is ideally needed. This review discusses the state of our knowledge on cell-hydrogel interactions, with a focus on mechanics and transport, and in this context, highlights recent advancements in experiments, mathematical and computational modeling. The review begins with a background on the thermodynamics and physics fundamentals that govern hydrogel mechanics and transport. The review focuses on two main classes of hydrogels, described as semiflexible polymer networks that represent physically cross-linked fibrous hydrogels and flexible polymer networks representing the chemically cross-linked synthetic and natural hydrogels. In this review, we highlight five main cell-hydrogel interactions that involve key cellular functions related to communication, mechanosensing, migration, growth, and tissue deposition and elaboration. For each of these cellular functions, recent experiments and the most up to date modeling strategies are discussed and then followed by a summary of how to tune hydrogel properties to achieve a desired functional cellular outcome. We conclude with a summary linking these advancements and make the case for the need to integrate experiments and modeling to advance our fundamental understanding of cell-matrix interactions that will ultimately help identify new therapeutic approaches and enable successful tissue engineering.
Collapse
Affiliation(s)
- Franck J Vernerey
- Department of Mechanical Engineering, University of Colorado at Boulder, 1111 Engineering Drive, Boulder, Colorado 80309-0428, United States.,Materials Science and Engineering Program, University of Colorado at Boulder, 4001 Discovery Drive, Boulder, Colorado 80309-613, United States
| | - Shankar Lalitha Sridhar
- Department of Mechanical Engineering, University of Colorado at Boulder, 1111 Engineering Drive, Boulder, Colorado 80309-0428, United States
| | - Archish Muralidharan
- Materials Science and Engineering Program, University of Colorado at Boulder, 4001 Discovery Drive, Boulder, Colorado 80309-613, United States
| | - Stephanie J Bryant
- Materials Science and Engineering Program, University of Colorado at Boulder, 4001 Discovery Drive, Boulder, Colorado 80309-613, United States.,Department of Chemical and Biological Engineering, University of Colorado at Boulder, 3415 Colorado Avenue, Boulder, Colorado 80309-0596, United States.,BioFrontiers Institute, University of Colorado at Boulder, 3415 Colorado Avenue, Boulder, Colorado 80309-0596, United States
| |
Collapse
|
14
|
Towards bioengineered skeletal muscle: recent developments in vitro and in vivo. Essays Biochem 2021; 65:555-567. [PMID: 34342361 DOI: 10.1042/ebc20200149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 12/11/2022]
Abstract
Skeletal muscle is a functional tissue that accounts for approximately 40% of the human body mass. It has remarkable regenerative potential, however, trauma and volumetric muscle loss, progressive disease and aging can lead to significant muscle loss that the body cannot recover from. Clinical approaches to address this range from free-flap transfer for traumatic events involving volumetric muscle loss, to myoblast transplantation and gene therapy to replace muscle loss due to sarcopenia and hereditary neuromuscular disorders, however, these interventions are often inadequate. The adoption of engineering paradigms, in particular materials engineering and materials/tissue interfacing in biology and medicine, has given rise to the rapidly growing, multidisciplinary field of bioengineering. These methods have facilitated the development of new biomaterials that sustain cell growth and differentiation based on bionic biomimicry in naturally occurring and synthetic hydrogels and polymers, as well as additive fabrication methods to generate scaffolds that go some way to replicate the structural features of skeletal muscle. Recent advances in biofabrication techniques have resulted in significant improvements to some of these techniques and have also offered promising alternatives for the engineering of living muscle constructs ex vivo to address the loss of significant areas of muscle. This review highlights current research in this area and discusses the next steps required towards making muscle biofabrication a clinical reality.
Collapse
|
15
|
Stealey ST, Gaharwar AK, Pozzi N, Zustiak SP. Development of Nanosilicate-Hydrogel Composites for Sustained Delivery of Charged Biopharmaceutics. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27880-27894. [PMID: 34106676 PMCID: PMC8483607 DOI: 10.1021/acsami.1c05576] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanocomposite hydrogels containing two-dimensional nanosilicates (NS) have emerged as a new technology for the prolonged delivery of biopharmaceuticals. However, little is known about the physical-chemical properties governing the interaction between NS and proteins and the release profiles of NS-protein complexes in comparison to traditional poly(ethylene glycol) (PEG) hydrogel technologies. To fill this gap in knowledge, we fabricated a nanocomposite hydrogel composed of PEG and laponite and identified simple but effective experimental conditions to obtain sustained protein release, up to 23 times slower as compared to traditional PEG hydrogels, as determined by bulk release experiments and fluorescence correlation spectroscopy. Slowed protein release was attributed to the formation of NS-protein complexes, as NS-protein complex size was inversely correlated with protein diffusivity and release rates. While protein electrostatics, protein concentration, and incubation time were important variables to control protein-NS complex formation, we found that one of the most significant and less appreciated variable to obtain a sustained release of bioactive proteins was the buffer chosen for preparing the initial suspension of NS particles. The buffer was found to control the size of nanoparticles, the absorption potential, morphology, and stiffness of hydrogels. From these studies, we conclude that the PEG-laponite composite fabricated is a promising new platform for sustained delivery of positively charged protein therapeutics.
Collapse
Affiliation(s)
- Samuel T Stealey
- Biomedical Engineering Program, School of Engineering, Saint Louis University, Saint Louis, Missouri 63103, United States
| | - Akhilesh K Gaharwar
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Nicola Pozzi
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri 63103, United States
| | - Silviya Petrova Zustiak
- Biomedical Engineering Program, School of Engineering, Saint Louis University, Saint Louis, Missouri 63103, United States
| |
Collapse
|
16
|
Lin FY, Lin CC. Facile Synthesis of Rapidly Degrading PEG-Based Thiol-Norbornene Hydrogels. ACS Macro Lett 2021; 10:341-345. [PMID: 35549061 DOI: 10.1021/acsmacrolett.1c00056] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An alternate synthesis route was developed to prepare norbornene-functionalized poly(ethylene glycol) (PEG) from reacting multiarm PEG with carbic anhydride. The macromer, PEGNBCA, permits photo-cross-linking of thiol-norbornene hydrogels with kinetics comparable to conventional PEGNB macromer. In addition, PEGNBCA provides an additional carboxylate group for further conjugation with amine-bearing molecules. Interestingly, PEGNBCA thiol-norbornene hydrogels are highly susceptible to hydrolytic degradation through enhanced ester hydrolysis. The ester linkage is further weakened after the secondary conjugation, resulting in extremely rapid degradation of PEGNB hydrogels. More importantly, the degradation can be readily adjusted via tuning macromer compositions, with complete degradation time ranging from hours to weeks. The PEGNBCA hydrogels are also highly cytocompatible toward various cell types, providing opportunities for future applications in tissue engineering and advanced biofabrication.
Collapse
Affiliation(s)
- Fang-Yi Lin
- Department of Biomedical Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Chien-Chi Lin
- Department of Biomedical Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| |
Collapse
|