1
|
Romero‐Cortadellas L, Venturi V, Martín‐Sánchez JC, Toska K, Prince D, Butzeck B, Porto G, Milman NT, Committee HIS, Sánchez M. Haemochromatosis patients' research priorities: Towards an improved quality of life. Health Expect 2023; 26:2293-2301. [PMID: 37503783 PMCID: PMC10632644 DOI: 10.1111/hex.13830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/16/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Chronic diseases are associated with a range of functional and psychosocial consequences that can adversely affect patients' quality of life (QoL). Haemochromatosis (HC) is a genetically heterogeneous disorder characterized by chronic iron overload that can ultimately lead to multiple organ dysfunction. Clinical diagnosis remains challenging due to the nonspecificity of symptoms and a lack of confirmatory genotyping in a substantial proportion of patients. Illness perception among HC patients has not been extensively investigated, lacking relevant information on how to improve their QoL. METHODS We present the results of the first worldwide survey conducted in nearly 1500 HC respondents, in which we collected essential demographic information and identified the aspects that concern HC patients the most. RESULTS Out of all the participants, 45.3% (n = 676) voiced their concern about physical and psychological consequences such as HC-related arthropathies, which can ultimately affect their social functioning. A similar proportion of patients (n = 635, 42.5%) also consider that better-informed doctors are key for improved HC disease management. Taking a patient-centred approach, we expose differences in patients' disease perspective by social and economic influences. CONCLUSIONS We identify potential targets to improve patients' health-related QoL and reflect on strategic measures to foster gender equity in access to health resources. Finally, we make a call for a highly coordinated effort across a range of public policy areas to empower participants in the HC research process and design. PATIENT OR PUBLIC CONTRIBUTION Nearly 1500 patients with hereditary HC responded to an anonymized online survey in which research and clinical priorities were addressed regarding this chronic and rare disease.
Collapse
Affiliation(s)
- Lídia Romero‐Cortadellas
- Department of Basic Sciences, Iron metabolism: Regulation and DiseasesUniversitat Internacional de Catalunya (UIC)Sant Cugat del VallèsBarcelonaSpain
| | - Veronica Venturi
- Department of Basic Sciences, Iron metabolism: Regulation and DiseasesUniversitat Internacional de Catalunya (UIC)Sant Cugat del VallèsBarcelonaSpain
| | - Juan Carlos Martín‐Sánchez
- Group of Evaluation of Health Determinants and Health Policies, Department of Basic SciencesUniversitat Internacional de CatalunyaSant Cugat del VallèsSpain
| | - Ketil Toska
- Norwegian Haemochromatosis AssociationBergenNorway
| | - Dianne Prince
- Haemochromatosis AustraliaMeridan PlainsQueenslandAustralia
| | - Barbara Butzeck
- Hämochromatose‐Vereinigung Deutschland e.V. HVDEuropean Federation of Associations of Patients with Haemochromatosis (EFAPH)HattingenGermany
| | - Graça Porto
- i3S—Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar.Universidade do PortoPortoPortugal
| | | | | | - Mayka Sánchez
- Department of Basic Sciences, Iron metabolism: Regulation and DiseasesUniversitat Internacional de Catalunya (UIC)Sant Cugat del VallèsBarcelonaSpain
- BloodGenetics S.L. Diagnostics in Inherited Blood DiseasesEsplugues de LlobregatSpain
| |
Collapse
|
2
|
Wani AK, Akhtar N, Naqash N, Rahayu F, Djajadi D, Chopra C, Singh R, Mulla SI, Sher F, Américo-Pinheiro JHP. Discovering untapped microbial communities through metagenomics for microplastic remediation: recent advances, challenges, and way forward. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:81450-81473. [PMID: 36637649 PMCID: PMC9838310 DOI: 10.1007/s11356-023-25192-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 01/04/2023] [Indexed: 06/01/2023]
Abstract
Microplastics (MPs) are ubiquitous pollutants persisting almost everywhere in the environment. With the increase in anthropogenic activities, MP accumulation is increasing enormously in aquatic, marine, and terrestrial ecosystems. Owing to the slow degradation of plastics, MPs show an increased biomagnification probability of persistent, bioaccumulative, and toxic substances thereby creating a threat to environmental biota. Thus, remediation of MP-pollutants requires efficient strategies to circumvent the mobilization of contaminants leaching into the water, soil, and ultimately to human beings. Over the years, several microorganisms have been characterized by the potential to degrade different plastic polymers through enzymatic actions. Metagenomics (MGs) is an effective way to discover novel microbial communities and access their functional genetics for the exploration and characterization of plastic-degrading microbial consortia and enzymes. MGs in combination with metatranscriptomics and metabolomics approaches are a powerful tool to identify and select remediation-efficient microbes in situ. Advancement in bioinformatics and sequencing tools allows rapid screening, mining, and prediction of genes that are capable of polymer degradation. This review comprehensively summarizes the growing threat of microplastics around the world and highlights the role of MGs and computational biology in building effective response strategies for MP remediation.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Nafiaah Naqash
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Farida Rahayu
- Research Center for Applied Microbiology, National Research and Innovation Agency, Bogor, 16911, Indonesia
| | - Djajadi Djajadi
- Research Center for Horticulture and Plantation, National Research Innovation Agency, Bogor, 16111, Indonesia
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Sikandar I Mulla
- Department of Biochemistry, School of Allied Health Sciences, REVA University, Bengaluru, 560064, Karnataka, India
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Juliana Heloisa Pinê Américo-Pinheiro
- Department of Forest Science, Soils and Environment, School of Agronomic Sciences, São Paulo State University (UNESP), Ave. Universitária, 3780, Botucatu, SP, 18610-034, Brazil.
- Graduate Program in Environmental Sciences, Brazil University, Street Carolina Fonseca, 584, São Paulo, SP, 08230-030, Brazil.
| |
Collapse
|
3
|
Babuka D, Kolouchova K, Loukotova L, Sedlacek O, Groborz O, Skarkova A, Zhigunov A, Pavlova E, Hoogenboom R, Hruby M, Stepanek P. Self-Assembly, Drug Encapsulation, and Cellular Uptake of Block and Gradient Copolymers of 2-Methyl-2-oxazine and 2- n-Propyl/butyl-2-oxazoline. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- David Babuka
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskeho sq. 2, Prague 6 162 06, Czech Republic
- Department of Biophysics, Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, Prague 2 121 16, Czech Republic
| | - Kristyna Kolouchova
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskeho sq. 2, Prague 6 162 06, Czech Republic
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2 128 00, Czech Republic
| | - Lenka Loukotova
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskeho sq. 2, Prague 6 162 06, Czech Republic
| | - Ondrej Sedlacek
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2 128 00, Czech Republic
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Ondrej Groborz
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskeho sq. 2, Prague 6 162 06, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo sq. 542, Prague 6 162 06, Czech Republic
- Institute of Biophysics and Informatics, Charles University, First Faculty of Medicine, Salmovská 1, Prague 2 120 00, Czech Republic
| | - Aneta Skarkova
- Department of Cell Biology, Charles University, Vinicna 7, Prague 12843, Czech Republic
- Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Prumyslova 595, Vestec u Prahy 25242, Czech Republic
| | - Alexander Zhigunov
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskeho sq. 2, Prague 6 162 06, Czech Republic
| | - Ewa Pavlova
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskeho sq. 2, Prague 6 162 06, Czech Republic
| | - Richard Hoogenboom
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Martin Hruby
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskeho sq. 2, Prague 6 162 06, Czech Republic
| | - Petr Stepanek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskeho sq. 2, Prague 6 162 06, Czech Republic
| |
Collapse
|
4
|
Hruby M, Martínez IIS, Stephan H, Pouckova P, Benes J, Stepanek P. Chelators for Treatment of Iron and Copper Overload: Shift from Low-Molecular-Weight Compounds to Polymers. Polymers (Basel) 2021; 13:3969. [PMID: 34833268 PMCID: PMC8618197 DOI: 10.3390/polym13223969] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 12/18/2022] Open
Abstract
Iron and copper are essential micronutrients needed for the proper function of every cell. However, in excessive amounts, these elements are toxic, as they may cause oxidative stress, resulting in damage to the liver and other organs. This may happen due to poisoning, as a side effect of thalassemia infusion therapy or due to hereditary diseases hemochromatosis or Wilson's disease. The current golden standard of therapy of iron and copper overload is the use of low-molecular-weight chelators of these elements. However, these agents suffer from severe side effects, are often expensive and possess unfavorable pharmacokinetics, thus limiting the usability of such therapy. The emerging concepts are polymer-supported iron- and copper-chelating therapeutics, either for parenteral or oral use, which shows vivid potential to keep the therapeutic efficacy of low-molecular-weight agents, while avoiding their drawbacks, especially their side effects. Critical evaluation of this new perspective polymer approach is the purpose of this review article.
Collapse
Affiliation(s)
- Martin Hruby
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic Heyrovského Náměstí 2, 162 06 Prague, Czech Republic;
| | - Irma Ivette Santana Martínez
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research Bautzner Landstraße 400, 01328 Dresden, Germany; (I.I.S.M.); (H.S.)
| | - Holger Stephan
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research Bautzner Landstraße 400, 01328 Dresden, Germany; (I.I.S.M.); (H.S.)
| | - Pavla Pouckova
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University in Prague, Salmovska 1, 120 00 Prague, Czech Republic; (P.P.); (J.B.)
| | - Jiri Benes
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University in Prague, Salmovska 1, 120 00 Prague, Czech Republic; (P.P.); (J.B.)
| | - Petr Stepanek
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic Heyrovského Náměstí 2, 162 06 Prague, Czech Republic;
| |
Collapse
|
5
|
Sorbents for treatment of hereditary hemochromatosis. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02816-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|