1
|
Yun J, Woo HT, Lee S, Cha HJ. Visible light-induced simultaneous bioactive amorphous calcium phosphate mineralization and in situ crosslinking of coacervate-based injectable underwater adhesive hydrogels for enhanced bone regeneration. Biomaterials 2025; 315:122948. [PMID: 39522352 DOI: 10.1016/j.biomaterials.2024.122948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/20/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
The field of bone tissue engineering is vital due to increasing bone disorders and limitations of traditional grafts. Injectable hydrogels offer minimally invasive solutions but often lack mechanical integrity and biological functionality, including osteoinductive capacity and structural stability under physiological conditions. To address these issues, we propose a coacervate-based injectable adhesive hydrogel that utilizes the dual functionality of in situ photocrosslinking and osteoinductive amorphous calcium phosphate formation, both of which are activated simultaneously by visible light irradiation. The developed hydrogel formulation integrated a photoreactive agent with calcium ions and phosphonodiol in a matrix of tyramine-conjugated alginate and RGD peptide-fused bioengineered mussel adhesive protein, promoting rapid setting, robust underwater adhesion, and bioactive mineral deposition. The hydrogel also exhibited superior mechanical properties, including enhanced underwater tissue adhesive strength and compressive resistance. In vivo evaluation using a rat femoral tunnel defect model confirmed the efficacy of the developed adhesive hydrogel in facilitating easy application to irregularly shaped defects through injection, rapid bone regeneration without the addition of bone grafts, and integration within the defect sites. This injectable adhesive hydrogel system holds significant potential for advancing bone tissue engineering, providing a versatile, efficient, and biologically favorable alternative to conventional bone repair methodologies.
Collapse
Affiliation(s)
- Jinyoung Yun
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Hyun Tack Woo
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Sangmin Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Hyung Joon Cha
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea; Medical Science and Engineering, School of Convergence Science and Technology, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.
| |
Collapse
|
2
|
Zaszczyńska A, Gradys A, Kołbuk D, Zabielski K, Szewczyk PK, Stachewicz U, Sajkiewicz P. Poly(L-lactide)/nano-hydroxyapatite piezoelectric scaffolds for tissue engineering. Micron 2025; 188:103743. [PMID: 39532021 DOI: 10.1016/j.micron.2024.103743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
The development of bone tissue engineering, a field with significant potential, requires a biomaterial with high bioactivity. The aim of this manuscript was to fabricate a nanofibrous poly(L-lactide) (PLLA) scaffold containing nano-hydroxyapatite (nHA) to investigate PLLA/nHA composites, particularly the effect of fiber arrangement and the addition of nHA on the piezoelectric phases and piezoelectricity of PLLA samples. In this study, we evaluated the effect of nHA particles on a PLLA-based electrospun scaffold with random and aligned fiber orientations. The addition of nHA increased the surface free energy of PLLA/nHA (42.9 mN/m) compared to PLLA (33.1 mN/m) in the case of aligned fibers. WAXS results indicated that at room temperature, all the fibers are in an amorphous state indicated by a lack of diffraction peaks and amorphous halo. DSC analysis showed that all samples located in the amorphous/disordered alpha' phase crystallize intensively at temperatures just above the Tg and recrystallize on further heating, achieving significantly higher crystallinity for pure PLLA than for doped nHA, 70 % vs 40 %, respectively. Additionally, PLLA/nHA fibers show a lower heat capacity for PLLA in the amorphous state, indicating that nHA reduces the molecular mobility of PLLA. Moreover, piezoelectric constant d33 was found to increase with the addition of nHA and for the aligned orientation of the fibers. In vitro tests confirmed that the addition of nHA and the aligned orientation of nanofibers increased osteoblast proliferation.
Collapse
Affiliation(s)
- Angelika Zaszczyńska
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, Warsaw 02-105, Poland
| | - Arkadiusz Gradys
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, Warsaw 02-105, Poland
| | - Dorota Kołbuk
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, Warsaw 02-105, Poland
| | - Konrad Zabielski
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, Warsaw 02-105, Poland
| | - Piotr K Szewczyk
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, Krakow 30-059, Poland
| | - Urszula Stachewicz
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, Krakow 30-059, Poland
| | - Paweł Sajkiewicz
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, Warsaw 02-105, Poland.
| |
Collapse
|
3
|
Lu X, Zhao Y, Peng X, Lu C, Wu Z, Xu H, Qin Y, Xu Y, Wang Q, Hao Y, Geng D. Comprehensive Overview of Interface Strategies in Implant Osseointegration. ADVANCED FUNCTIONAL MATERIALS 2024. [DOI: 10.1002/adfm.202418849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Indexed: 01/05/2025]
Abstract
AbstractWith the improvement of implant design and the expansion of application scenarios, orthopedic implants have become a common surgical option for treating fractures and end‐stage osteoarthritis. Their common goal is rapidly forming and long‐term stable osseointegration. However, this fixation effect is limited by implant surface characteristics and peri‐implant bone tissue activity. Therefore, this review summarizes the strategies of interface engineering (osteogenic peptides, growth factors, and metal ions) and treatment methods (porous nanotubes, hydrogel embedding, and other load‐release systems) through research on its biological mechanism, paving the way to achieve the adaptation of both and coordination between different strategies. With the transition of the osseointegration stage, interface engineering strategies have demonstrated varying therapeutic effects. Especially, the activity of osteoblasts runs almost through the entire process of osseointegration, and their physiological activities play a dominant role in bone formation. Furthermore, diseases impacting bone metabolism exacerbate the difficulty of achieving osseointegration. This review aims to assist future research on osseointegration engineering strategies to improve implant‐bone fixation, promote fracture healing, and enhance post‐implantation recovery.
Collapse
Affiliation(s)
- Xiaoheng Lu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yuhu Zhao
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Xiaole Peng
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University 1 Youyi Street Chongqing 400016 China
| | - Chengyao Lu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Zebin Wu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Hao Xu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yi Qin
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yaozeng Xu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Qing Wang
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yuefeng Hao
- Orthopedics and Sports Medicine Center The Affiliated Suzhou Hospital of Nanjing Medical University 242 Guangji Street Suzhou Jiangsu 215006 China
| | - Dechun Geng
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| |
Collapse
|
4
|
Yan C, Zhang P, Qin Q, Jiang K, Luo Y, Xiang C, He J, Chen L, Jiang D, Cui W, Li Y. 3D-printed bone regeneration scaffolds modulate bone metabolic homeostasis through vascularization for osteoporotic bone defects. Biomaterials 2024; 311:122699. [PMID: 38981153 DOI: 10.1016/j.biomaterials.2024.122699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/07/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
The treatment of osteoporotic bone defects poses a challenge due to the degradation of the skeletal vascular system and the disruption of local bone metabolism within the osteoporotic microenvironment. However, it is feasible to modulate the disrupted local bone metabolism imbalance through enhanced vascularization, a theory termed "vascularization-bone metabolic balance". This study developed a 3D-printed polycaprolactone (PCL) scaffold modified with EPLQLKM and SVVYGLR peptides (PCL-SE). The EPLQLKM peptide attracts bone marrow-derived mesenchymal stem cells (BMSCs), while the SVVYGLR peptide enhances endothelial progenitor cells (EPCs) vascular differentiation, thus regulating bone metabolism and fostering bone regeneration through the paracrine effects of EPCs. Further mechanistic research demonstrated that PCL-SE promoted the vascularization of EPCs, activating the Notch signaling pathway in BMSCs, leading to the upregulation of osteogenesis-related genes and the downregulation of osteoclast-related genes, thereby restoring bone metabolic balance. Furthermore, PCL-SE facilitated the differentiation of EPCs into "H"-type vessels and the recruitment of BMSCs to synergistically enhance osteogenesis, resulting in the regeneration of normal microvessels and bone tissues in cases of femoral condylar bone defects in osteoporotic SD rats. This study suggests that PCL-SE supports in-situ vascularization, remodels bone metabolic translational balance, and offers a promising therapeutic regimen for osteoporotic bone defects.
Collapse
Affiliation(s)
- Caiping Yan
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Orthopedic Laboratory of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, PR China; Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, PR China
| | - Pengrui Zhang
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, No. 1 The South of Maoyuan Road, Nanchong, Sichuan, 637000, PR China
| | - Qiwei Qin
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, No. 1 The South of Maoyuan Road, Nanchong, Sichuan, 637000, PR China
| | - Ke Jiang
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, No. 1 The South of Maoyuan Road, Nanchong, Sichuan, 637000, PR China
| | - Yue Luo
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, No. 1 The South of Maoyuan Road, Nanchong, Sichuan, 637000, PR China
| | - Chao Xiang
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, No. 1 The South of Maoyuan Road, Nanchong, Sichuan, 637000, PR China; Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, PR China
| | - Jiangtao He
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, No. 1 The South of Maoyuan Road, Nanchong, Sichuan, 637000, PR China
| | - Lu Chen
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, No. 1 The South of Maoyuan Road, Nanchong, Sichuan, 637000, PR China
| | - Dianming Jiang
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, PR China
| | - Wenguo Cui
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China.
| | - Yuling Li
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Orthopedic Laboratory of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, PR China; Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, No. 1 The South of Maoyuan Road, Nanchong, Sichuan, 637000, PR China.
| |
Collapse
|
5
|
Trzaskowska M, Vivcharenko V, Benko A, Franus W, Goryczka T, Barylski A, Palka K, Przekora A. Biocompatible nanocomposite hydroxyapatite-based granules with increased specific surface area and bioresorbability for bone regenerative medicine applications. Sci Rep 2024; 14:28137. [PMID: 39548237 PMCID: PMC11568164 DOI: 10.1038/s41598-024-79822-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024] Open
Abstract
Hydroxyapatite (HA) granules are frequently used in orthopedics and maxillofacial surgeries to fill bone defects and stimulate the regeneration process. Optimal HA granules should have high biocompatibility, high microporosity and/or mesoporosity, and high specific surface area (SSA), which are essential for their bioabsorbability, high bioactivity (ability to form apatite layer on their surfaces) and good osseointegration with the host tissue. Commercially available HA granules that are sintered at high temperatures (≥ 900 °C) are biocompatible but show low porosity and SSA (2-5 m2/g), reduced bioactivity, poor solubility and thereby, low bioabsorbability. HA granules of high microporosity and SSA can be produced by applying low sintering temperatures (below 900 °C). Nevertheless, although HA sintered at low temperatures shows significantly higher SSA (10-60 m2/g) and improved bioabsorbability, it also exhibits high ion reactivity and cytotoxicity under in vitro conditions. The latter is due to the presence of reaction by-products. Thus, the aim of this study was to fabricate novel biomaterials in the form of granules, composed of hydroxyapatite nanopowder sintered at a high temperature (1100 °C) and a biopolymer matrix: chitosan/agarose or chitosan/β-1,3-glucan (curdlan). It was hypothesized that appropriately selected ingredients would ensure high biocompatibility and microstructural properties comparable to HA sintered at low temperatures. Synthesized granules were subjected to the evaluation of their biological, microstructural, physicochemical, and mechanical properties. The obtained results showed that the developed nanocomposite granules were characterized by a lack of cytotoxicity towards both mouse preosteoblasts and normal human fetal osteoblasts, and supported cell adhesion to their surface. Moreover, produced biomaterials had the ability to induce precipitation of apatite crystals after immersion in simulated body fluid, which, combined with high biocompatibility, should ensure good osseointegration after implantation. Additionally, nanocomposite granules possessed microstructural parameters similar to HA sintered at a low temperature (porosity approx. 50%, SSA approx. 30 m²/g), Young's modulus (5-8 GPa) comparable to cancellous bone, and high fluid absorption capacity. Moreover, the nanocomposites were prone to biodegradation under the influence of enzymatic solution and in an acidic environment. Additionally, it was noted that the hydroxyapatite nanoparticles remaining after the physicochemical dissolution of the biomaterial were easily phagocytosed by mouse macrophages, mouse preosteoblasts, and normal human fetal osteoblasts (in vitro studies). The obtained materials show great potential as bone tissue implantation biomaterials with improved bioresorbability. The obtained materials show great potential as bone tissue implantation biomaterials with improved bioresorbability.
Collapse
Affiliation(s)
- Marta Trzaskowska
- Department of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland
| | - Vladyslav Vivcharenko
- Department of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland
| | - Aleksandra Benko
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059, Krakow, Poland
| | - Wojciech Franus
- Department of Construction Materials Engineering and Geoengineering, Lublin University of Technology, Nadbystrzycka 38 D, 20-618, Lublin, Poland
| | - Tomasz Goryczka
- Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500, Chorzów, Poland
| | - Adrian Barylski
- Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500, Chorzów, Poland
| | - Krzysztof Palka
- Department of Materials Engineering, Lublin University of Technology, Nadbystrzycka 36, 20- 618, Lublin, Poland
| | - Agata Przekora
- Department of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland.
| |
Collapse
|
6
|
Coppola B, Menotti F, Longo F, Banche G, Mandras N, Palmero P, Allizond V. New Generation of Osteoinductive and Antimicrobial Polycaprolactone-Based Scaffolds in Bone Tissue Engineering: A Review. Polymers (Basel) 2024; 16:1668. [PMID: 38932017 PMCID: PMC11207319 DOI: 10.3390/polym16121668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
With respect to other fields, bone tissue engineering has significantly expanded in recent years, leading not only to relevant advances in biomedical applications but also to innovative perspectives. Polycaprolactone (PCL), produced in the beginning of the 1930s, is a biocompatible and biodegradable polymer. Due to its mechanical and physicochemical features, as well as being easily shapeable, PCL-based constructs can be produced with different shapes and degradation kinetics. Moreover, due to various development processes, PCL can be made as 3D scaffolds or fibres for bone tissue regeneration applications. This outstanding biopolymer is versatile because it can be modified by adding agents with antimicrobial properties, not only antibiotics/antifungals, but also metal ions or natural compounds. In addition, to ameliorate its osteoproliferative features, it can be blended with calcium phosphates. This review is an overview of the current state of our recent investigation into PCL modifications designed to impair microbial adhesive capability and, in parallel, to allow eukaryotic cell viability and integration, in comparison with previous reviews and excellent research papers. Our recent results demonstrated that the developed 3D constructs had a high interconnected porosity, and the addition of biphasic calcium phosphate improved human cell attachment and proliferation. The incorporation of alternative antimicrobials-for instance, silver and essential oils-at tuneable concentrations counteracted microbial growth and biofilm formation, without affecting eukaryotic cells' viability. Notably, this challenging research area needs the multidisciplinary work of material scientists, biologists, and orthopaedic surgeons to determine the most suitable modifications on biomaterials to design favourable 3D scaffolds based on PCL for the targeted healing of damaged bone tissue.
Collapse
Affiliation(s)
- Bartolomeo Coppola
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy; (B.C.); (P.P.)
| | - Francesca Menotti
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (N.M.); (V.A.)
| | - Fabio Longo
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (N.M.); (V.A.)
| | - Giuliana Banche
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (N.M.); (V.A.)
| | - Narcisa Mandras
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (N.M.); (V.A.)
| | - Paola Palmero
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy; (B.C.); (P.P.)
| | - Valeria Allizond
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (N.M.); (V.A.)
| |
Collapse
|
7
|
Majidian H, Ghalandarzadeh A, Kaboosi M, Nikzad L, Ganjali M. Influence of laser intensity and BaTiO 3 content on the surface properties of 3YSZ. Odontology 2024; 112:408-427. [PMID: 37792126 DOI: 10.1007/s10266-023-00853-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 09/06/2023] [Indexed: 10/05/2023]
Abstract
Zirconia-based dental implants are in direct contact with living tissues and any improvements in their bioactivity and adhesion to the tissues are highly welcome. In this study, different ratios of barium titanate (BT) were added to 3 mol% yttria-stabilized zirconia (3YSZ) through conventional sintering. The laser-texturing technique was also conducted to improve the biological performance of 3YSZ ceramics. The composition and the surface of the prepared composites were characterized by X-ray diffraction and scanning electron microscopy (SEM), respectively. The roughness and surface wettability of the composites were also measured. Furthermore, MC3T3-E1 pre-osteoblast cells were used for the in vitro experiments. Cell viability was evaluated using a commercial resazurin-based method. Morphology and cellular adhesion were observed using SEM. Based on the results, the laser texturing and the barium titanate content influenced the surface characteristics of the prepared composites. The laser-textured 3YSZ/7 mol% BT composites showed a lower water contact angle compared to the other samples, which indicated superior surface hydrophilicity. The cell viability and cell adhesion of 3YSZ/BT composites increased with the rise in the barium titanate content and laser power. An elongated cell morphology and apatite nucleation were also observed by the BT content. Overall, the laser-treated 3YSZ/5 and 7 mol% BT composites may be promising candidates in hard tissue repair due to their good cell response.
Collapse
Affiliation(s)
- Hudsa Majidian
- Department of Ceramic, Materials and Energy Research Center, Karaj, Iran.
| | - Arash Ghalandarzadeh
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Majid Kaboosi
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Leila Nikzad
- Department of Ceramic, Materials and Energy Research Center, Karaj, Iran
| | - Monireh Ganjali
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| |
Collapse
|
8
|
Tan J, Li J, Zhang Y, Li X, Han S, Li Z, Zhou X. Application of photocrosslinked gelatin, alginate and dextran hydrogels in the in vitro culture of testicular tissue. Int J Biol Macromol 2024; 260:129498. [PMID: 38232872 DOI: 10.1016/j.ijbiomac.2024.129498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/19/2024]
Abstract
Testicular tissue culture in vitro is considered an important tool for the study of spermatogenesis and the treatment of male infertility. Although agarose hydrogel is commonly used in testicular tissue culture, the efficiency of spermatogenesis in vitro is limited. In this study, testicular tissues from adult mice were cultured using a gas-liquid interphase method based on agarose (Agarose), gelatin methacryloyl (GelMA), alginate methacryloyl (AlgMA), dextran methacryloyl (DexMA), and mixture GelMA-Agarose, AlgMA-Agarose, and DexMA-Agarose hydrogels, respectively, for 32 days in vitro. The integrity of the seminiferous tubules, the density and proportions of spermatogonia, spermatocytes, Sertoli cells, and testosterone concentrations were quantified and compared between groups. Properties of different hydrogels including compression modulus, Fourier Infrared Spectroscopy (FITR) spectra, pore size, water absorption, and water retention were tested to investigate how biochemical and physical properties of hydrogels affect the results of testicular tissue culture. The results indicate that testicular tissues cultured on AlgMA exhibited the highest seminiferous tubule integrity rate (0.835 ± 0.021), the presence of a high density of spermatocytes (2107.627 ± 232.082/mm2), and a high proportion of SOX9-positive well-preserved seminiferous tubules (0.473 ± 0.047) compared to all remaining experimental groups on day 32. This may be due to the high water content of AlgMA reducing the toxic effect of oxygen on testicular tissue. In the later period of culture, testicular tissues cultured on DexMA, not DexMA-Agarose, produced significantly more testosterone (18.093 ± 3.302 ng/mL) than the other groups, suggesting that DexMA is friendly to Leydig cells. Our study provides a new idea for the optimization of the gas-liquid interphase method for achieving in vitro spermatogenesis, facilitating the future achievement of efficient in vitro spermatogenesis in more species, including humans.
Collapse
Affiliation(s)
- Jia Tan
- Institute of Biothermal Science and Technology, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jiahui Li
- Institute of Biothermal Science and Technology, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuqi Zhang
- Institute of Biothermal Science and Technology, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xin Li
- Institute of Biothermal Science and Technology, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Sha Han
- Department of Andrology, the Center for Men's Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zheng Li
- Department of Andrology, the Center for Men's Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xinli Zhou
- Institute of Biothermal Science and Technology, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
9
|
Yang SY, Zhou YN, Yu XG, Fu ZY, Zhao CC, Hu Y, Lin KL, Xu YJ. A xonotlite nanofiber bioactive 3D-printed hydrogel scaffold based on osteo-/angiogenesis and osteoimmune microenvironment remodeling accelerates vascularized bone regeneration. J Nanobiotechnology 2024; 22:59. [PMID: 38347563 PMCID: PMC10863132 DOI: 10.1186/s12951-024-02323-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/30/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Coordination between osteo-/angiogenesis and the osteoimmune microenvironment is essential for effective bone repair with biomaterials. As a highly personalized and precise biomaterial suitable for repairing complex bone defects in clinical practice, it is essential to endow 3D-printed scaffold the above key capabilities. RESULTS Herein, by introducing xonotlite nanofiber (Ca6(Si6O17) (OH)2, CS) into the 3D-printed silk fibroin/gelatin basal scaffold, a novel bone repair system named SGC was fabricated. It was noted that the incorporation of CS could greatly enhance the chemical and mechanical properties of the scaffold to match the needs of bone regeneration. Besides, benefiting from the addition of CS, SGC scaffolds could accelerate osteo-/angiogenic differentiation of bone mesenchymal stem cells (BMSCs) and meanwhile reprogram macrophages to establish a favorable osteoimmune microenvironment. In vivo experiments further demonstrated that SGC scaffolds could efficiently stimulate bone repair and create a regeneration-friendly osteoimmune microenvironment. Mechanistically, we discovered that SGC scaffolds may achieve immune reprogramming in macrophages through a decrease in the expression of Smad6 and Smad7, both of which participate in the transforming growth factor-β (TGF-β) signaling pathway. CONCLUSION Overall, this study demonstrated the clinical potential of the SGC scaffold due to its favorable pro-osteo-/angiogenic and osteoimmunomodulatory properties. In addition, it is a promising strategy to develop novel bone repair biomaterials by taking osteoinduction and osteoimmune microenvironment remodeling functions into account.
Collapse
Affiliation(s)
- Shi-Yuan Yang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yu-Ning Zhou
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Xing-Ge Yu
- College of Stomatology, National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ze-Yu Fu
- College of Stomatology, National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Can-Can Zhao
- College of Stomatology, National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Hu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Kai-Li Lin
- College of Stomatology, National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, China.
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yuan-Jin Xu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
- College of Stomatology, National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
10
|
Insua A, Galindo-Moreno P, Miron RJ, Wang HL, Monje A. Emerging factors affecting peri-implant bone metabolism. Periodontol 2000 2024; 94:27-78. [PMID: 37904311 DOI: 10.1111/prd.12532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/05/2023] [Accepted: 09/10/2023] [Indexed: 11/01/2023]
Abstract
Implant dentistry has evolved to the point that standard implant osseointegration is predictable. This is attributed in part to the advancements in material sciences that have led toward improvements in implant surface technology and characteristics. Nonetheless, there remain several cases where implant therapy fails (specifically at early time points), most commonly attributed to factors affecting bone metabolism. Among these patients, smokers are known to have impaired bone metabolism and thus be subject to higher risks of early implant failure and/or late complications related to the stability of the peri-implant bone and mucosal tissues. Notably, however, emerging data have unveiled other critical factors affecting osseointegration, namely, those related to the metabolism of bone tissues. The aim of this review is to shed light on the effects of implant-related factors, like implant surface or titanium particle release; surgical-related factors, like osseodensification or implanted biomaterials; various drugs, like selective serotonin reuptake inhibitors, proton pump inhibitors, anti-hypertensives, nonsteroidal anti-inflammatory medication, and statins, and host-related factors, like smoking, diet, and metabolic syndrome on bone metabolism, and aseptic peri-implant bone loss. Despite the infectious nature of peri-implant biological complications, these factors must be surveyed for the effective prevention and management of peri-implantitis.
Collapse
Affiliation(s)
- Angel Insua
- Department of Periodontology and Oral Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Pablo Galindo-Moreno
- Department of Periodontology and Oral Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Oral Surgery and Implant Dentistry, University of Granada, Granada, Spain
| | - Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Hom-Lay Wang
- Department of Periodontology and Oral Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Alberto Monje
- Department of Periodontology and Oral Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Periodontology, University of Bern, Bern, Switzerland
- Department of Periodontology, Universitat Internacional de Catalunya, Barcelona, Spain
| |
Collapse
|
11
|
Wang A, Ma X, Bian J, Jiao Z, Zhu Q, Wang P, Zhao Y. Signalling pathways underlying pulsed electromagnetic fields in bone repair. Front Bioeng Biotechnol 2024; 12:1333566. [PMID: 38328443 PMCID: PMC10847561 DOI: 10.3389/fbioe.2024.1333566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Abstract
Pulsed electromagnetic field (PEMF) stimulation is a prospective non-invasive and safe physical therapy strategy for accelerating bone repair. PEMFs can activate signalling pathways, modulate ion channels, and regulate the expression of bone-related genes to enhance osteoblast activity and promote the regeneration of neural and vascular tissues, thereby accelerating bone formation during bone repair. Although their mechanisms of action remain unclear, recent studies provide ample evidence of the effects of PEMF on bone repair. In this review, we present the progress of research exploring the effects of PEMF on bone repair and systematically elucidate the mechanisms involved in PEMF-induced bone repair. Additionally, the potential clinical significance of PEMF therapy in fracture healing is underscored. Thus, this review seeks to provide a sufficient theoretical basis for the application of PEMFs in bone repair.
Collapse
Affiliation(s)
- Aoao Wang
- Medical School of Chinese PLA, Beijing, China
| | - Xinbo Ma
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Jiaqi Bian
- Senior Department of Orthopaedics, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | | | - Qiuyi Zhu
- Medical School of Chinese PLA, Beijing, China
| | - Peng Wang
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yantao Zhao
- Senior Department of Orthopaedics, The Fourth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
12
|
Menotti F, Scutera S, Coppola B, Longo F, Mandras N, Cavallo L, Comini S, Sparti R, Fiume E, Cuffini AM, Banche G, Palmero P, Allizond V. Tuning of Silver Content on the Antibacterial and Biological Properties of Poly(ɛ-caprolactone)/Biphasic Calcium Phosphate 3D-Scaffolds for Bone Tissue Engineering. Polymers (Basel) 2023; 15:3618. [PMID: 37688244 PMCID: PMC10489712 DOI: 10.3390/polym15173618] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
There is a growing interest in tissue engineering, in which biomaterials play a pivotal role in promoting bone regeneration. Furthermore, smart functionalization can provide biomaterials with the additional role of preventing orthopedic infections. Due to the growing microbial resistance to antimicrobials used to treat those infections, metal ions, such as silver, thanks to their known wide range of bactericidal properties, are believed to be promising additives in developing antibacterial biomaterials. In this work, novel poly(ε-caprolactone) (PCL)-based 3D scaffolds have been designed and developed, where the polymer matrix was modified with both silver (Ag), to supply antibacterial behavior, and calcium phosphates (biphasic calcium phosphate, BCP) particles to impart bioactive/bioresorbable properties. The microstructural analysis showed that constructs were characterized by square-shaped macropores, in line with the morphology and size of the templating salts used as pore formers. Degradation tests demonstrated the important role of calcium phosphates in improving PCL hydrophilicity, leading to a higher degradation degree for BCP/PCL composites compared to the neat polymer after 18 days of soaking. The appearance of an inhibition halo around the silver-functionalized PCL scaffolds for assayed microorganisms and a significant (p < 0.05) decrease in both adherent and planktonic bacteria demonstrate the Ag+ release from the 3D constructs. Furthermore, the PCL scaffolds enriched with the lowest silver percentages did not hamper the viability and proliferation of Saos-2 cells. A synergic combination of antimicrobial, osteoproliferative and biodegradable features provided to 3D scaffolds the required potential for bone tissue engineering, beside anti-microbial properties for reduction in prosthetic joints infections.
Collapse
Affiliation(s)
- Francesca Menotti
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (S.S.); (F.L.); (N.M.); (L.C.); (R.S.); (A.M.C.); (V.A.)
| | - Sara Scutera
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (S.S.); (F.L.); (N.M.); (L.C.); (R.S.); (A.M.C.); (V.A.)
| | - Bartolomeo Coppola
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy; (B.C.); (P.P.)
| | - Fabio Longo
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (S.S.); (F.L.); (N.M.); (L.C.); (R.S.); (A.M.C.); (V.A.)
| | - Narcisa Mandras
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (S.S.); (F.L.); (N.M.); (L.C.); (R.S.); (A.M.C.); (V.A.)
| | - Lorenza Cavallo
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (S.S.); (F.L.); (N.M.); (L.C.); (R.S.); (A.M.C.); (V.A.)
| | - Sara Comini
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (S.S.); (F.L.); (N.M.); (L.C.); (R.S.); (A.M.C.); (V.A.)
| | - Rosaria Sparti
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (S.S.); (F.L.); (N.M.); (L.C.); (R.S.); (A.M.C.); (V.A.)
| | - Elisa Fiume
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy; (B.C.); (P.P.)
| | - Anna Maria Cuffini
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (S.S.); (F.L.); (N.M.); (L.C.); (R.S.); (A.M.C.); (V.A.)
| | - Giuliana Banche
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (S.S.); (F.L.); (N.M.); (L.C.); (R.S.); (A.M.C.); (V.A.)
| | - Paola Palmero
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy; (B.C.); (P.P.)
| | - Valeria Allizond
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (S.S.); (F.L.); (N.M.); (L.C.); (R.S.); (A.M.C.); (V.A.)
| |
Collapse
|
13
|
Trzaskowska M, Vivcharenko V, Franus W, Goryczka T, Barylski A, Przekora A. Optimization of the Composition of Mesoporous Polymer-Ceramic Nanocomposite Granules for Bone Regeneration. Molecules 2023; 28:5238. [PMID: 37446899 DOI: 10.3390/molecules28135238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Difficult-to-treat bone damage resulting from metabolic bone diseases, mechanical injuries, or tumor resection requires support in the form of biomaterials. The aim of this research was to optimize the concentration of individual components of polymer-ceramic nanocomposite granules (nanofilled polymer composites) for application in orthopedics and maxillofacial surgery to fill small bone defects and stimulate the regeneration process. Two types of granules were made using nanohydroxyapatite (nanoHA) and chitosan-based matrix (agarose/chitosan or curdlan/chitosan), which served as binder for ceramic nanopowder. Different concentrations of the components (nanoHA and curdlan), foaming agent (sodium bicarbonate-NaHCO3), and chitosan solvent (acetic acid-CH3COOH) were tested during the production process. Agarose and chitosan concentrations were fixed to be 5% w/v and 2% w/v, respectively, based on our previous research. Subsequently, the produced granules were subjected to cytotoxicity testing (indirect and direct contact methods), microhardness testing (Young's modulus evaluation), and microstructure analysis (porosity, specific surface area, and surface roughness) in order to identify the biomaterial with the most favorable properties. The results demonstrated only slight differences among the resultant granules with respect to their microstructural, mechanical, and biological properties. All variants of the biomaterials were non-toxic to a mouse preosteoblast cell line (MC3T3-E1), supported cell growth on their surface, had high porosity (46-51%), and showed relatively high specific surface area (25-33 m2/g) and Young's modulus values (2-10 GPa). Apart from biomaterials containing 8% w/v curdlan, all samples were predominantly characterized by mesoporosity. Nevertheless, materials with the greatest biomedical potential were obtained using 5% w/v agarose, 2% w/v chitosan, and 50% or 70% w/v nanoHA when the chitosan solvent/foaming agent ratio was equal to 2:2. In the case of the granules containing curdlan/chitosan matrix, the most optimal composition was as follows: 2% w/v chitosan, 4% w/v curdlan, and 30% w/v nanoHA. The obtained test results indicate that both manufactured types of granules are promising implantable biomaterials for filling small bone defects that can be used in maxillofacial surgery.
Collapse
Affiliation(s)
- Marta Trzaskowska
- Independent Unit of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Vladyslav Vivcharenko
- Independent Unit of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Wojciech Franus
- Department of Construction Materials Engineering and Geoengineering, Lublin University of Technology, Nadbystrzycka 38 D, 20-618 Lublin, Poland
| | - Tomasz Goryczka
- Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Adrian Barylski
- Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Agata Przekora
- Independent Unit of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| |
Collapse
|
14
|
Chen NX, Su XL, Feng Y, Liu Q, Tan L, Yuan H, Chen Y, Zhao J, Zhao YQ, Dusenge MA, Hu J, Ye Q, Ou-Yang ZY, Zhong MM, Zhang Q, Guo Y, Feng YZ, Peng YB. Chitosan nanoparticles for sustained release of metformin and its derived synthetic biopolymer for bone regeneration. Front Bioeng Biotechnol 2023; 11:1169496. [PMID: 37476483 PMCID: PMC10354276 DOI: 10.3389/fbioe.2023.1169496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/21/2023] [Indexed: 07/22/2023] Open
Abstract
Background: There are considerable socioeconomic costs associated with bone defects, making regenerative medicine an increasingly attractive option for treating them. Chitosan is a natural biopolymer; it is used in approaches for sustained slow release and osteogenesis, and metformin has osteoinductivity. Our study aimed to synthesize chitosan and human serum albumin (HSA) with a metformin nanoformulation to evaluate the therapeutic effects of this nanoformulation on bone defects in vitro. Methods: A pluripotent differentiation assay was performed in vitro on mouse bone marrow mesenchymal stem cells (BMSCs). Cell Counting Kit-8 was used to detect whether metformin was toxic to BMSCs. The osteogenesis-related gene expression of osteocalcin (OCN) and osteoprotegerin (OPG) from BMSCs was tested by real-time polymerase chain reaction (PCR). HSA, metformin hydrochloride, and chitosan mixtures were magnetically stirred to finish the assembly of metformin/HSA/chitosan nanoparticles (MHC NPs). The MHC NPs were characterized using transmission electron microscopy (TEM), dynamic light scattering (DLS), and Fourier transform infrared spectroscopy (FT-IR). To test the expression of OCN and OPG, western blot were used. MHC NPs were evaluated in vitro for their osteoinductivity using alkaline phosphatase (ALP). Results: BMSCs successfully differentiated into osteogenic and adipogenic lineages in vitro. According to real-time PCR, a 50 µM concentration of metformin promoted osteogenesis in BMSCs most effectively by upregulating the osteogenic markers OCN and OPG. The microstructure of MHC NPs was spherical with an average nanosize of 20 ± 4.7 nm and zeta potential of -8.3 mV. A blueshift and redshift were observed in MHC NPs following exposure to wavelengths of 1,600-1,900 and 2,000-3,700 nm, respectively. The encapsulation (%) of metformin was more than 90%. The simulation study showed that MHC NPs have good stability and it could release metformin slowly in vitro at room temperature. Upon treatment with the studied MHC NPs for 3 days, ALP was significantly elevated in BMSCs. In addition, the MHC NPs-treated BMSCs upregulated the expression of OPG and OCN, as shown by real-time PCR and western blot. Conclusion: MHC NPs have a stable metformin release effect and osteogenic ability. Therefore, as a derived synthetic biopolymer, it is expected to play a role in bone tissue regeneration.
Collapse
Affiliation(s)
- Ning-Xin Chen
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiao-Lin Su
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yao Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiong Liu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Tan
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Yuan
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yun Chen
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ya-Qiong Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Marie Aimee Dusenge
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Hu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qin Ye
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ze-Yue Ou-Yang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Meng-Mei Zhong
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Zhang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yue Guo
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yun-Zhi Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong-Bo Peng
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, The Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
| |
Collapse
|
15
|
Agnes CJ, Karoichan A, Tabrizian M. The Diamond Concept Enigma: Recent Trends of Its Implementation in Cross-linked Chitosan-Based Scaffolds for Bone Tissue Engineering. ACS APPLIED BIO MATERIALS 2023. [PMID: 37310896 PMCID: PMC10354806 DOI: 10.1021/acsabm.3c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
An increasing number of publications over the past ten years have focused on the development of chitosan-based cross-linked scaffolds to regenerate bone tissue. The design of biomaterials for bone tissue engineering applications relies heavily on the ideals set forth by a polytherapy approach called the "Diamond Concept". This methodology takes into consideration the mechanical environment, scaffold properties, osteogenic and angiogenic potential of cells, and benefits of osteoinductive mediator encapsulation. The following review presents a comprehensive summarization of recent trends in chitosan-based cross-linked scaffold development within the scope of the Diamond Concept, particularly for nonload-bearing bone repair. A standardized methodology for material characterization, along with assessment of in vitro and in vivo potential for bone regeneration, is presented based on approaches in the literature, and future directions of the field are discussed.
Collapse
Affiliation(s)
- Celine J Agnes
- Department of Biomedical Engineering, McGill University, Montreal, Quebec H3A 2B4, Canada
- Shriner's Hospital for Children, Montreal, Quebec H4A 0A9 Canada
| | - Antoine Karoichan
- Shriner's Hospital for Children, Montreal, Quebec H4A 0A9 Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec H3A 1G1 Canada
| | - Maryam Tabrizian
- Department of Biomedical Engineering, McGill University, Montreal, Quebec H3A 2B4, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec H3A 1G1 Canada
| |
Collapse
|
16
|
Zhu Y, Tao C, Goh C, Shrestha A. Innovative biomaterials for the treatment of periodontal disease. FRONTIERS IN DENTAL MEDICINE 2023; 4:1163562. [PMID: 39916927 PMCID: PMC11797777 DOI: 10.3389/fdmed.2023.1163562] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/03/2023] [Indexed: 02/09/2025] Open
Abstract
Periodontitis is a multifactorial disease that involves the destruction of hard and soft tissues surrounding the tooth. Routine periodontal treatment includes mechanical debridement (surgical and non-surgical) and the systemic administration of antibiotics. In contrast, severe and chronic periodontitis involves aggressive tissue destruction and bone resorption, and the damage is usually irreversible. In these severe cases, bone grafts, the delivery of growth hormones, and guided tissue regeneration can all be used to stimulate periodontal regeneration. However, these approaches do not result in consistent and predictable treatment outcomes. As a result, advanced biomaterials have evolved as an adjunctive approach to improve clinical performance. These novel biomaterials are designed to either prolong the release of antibacterial agents or osteogenic molecules, or to act as immunomodulators to promote healing. The first half of this review briefly summarizes the key immune cells and their underlying cellular pathways implicated in periodontitis. Advanced biomaterials designed to promote periodontal regeneration will be highlighted in the second half. Finally, the limitations of the current experimental design and the challenges of translational science will be discussed.
Collapse
Affiliation(s)
- Yi Zhu
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Chen Tao
- Stomatological Hospital of Chongqing, Key Laboratory of Oral Diseases and Biomaterial Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Cynthia Goh
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON, Canada
| | - Annie Shrestha
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Dentistry, Mt. Sinai Hospital, Toronto, ON, Canada
| |
Collapse
|
17
|
Hanga-Farcaș A, Miere (Groza) F, Filip GA, Clichici S, Fritea L, Vicaș LG, Marian E, Pallag A, Jurca T, Filip SM, Muresan ME. Phytochemical Compounds Involved in the Bone Regeneration Process and Their Innovative Administration: A Systematic Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:2055. [PMID: 37653972 PMCID: PMC10222459 DOI: 10.3390/plants12102055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 09/02/2023]
Abstract
Bone metabolism is a complex process which is influenced by the activity of bone cells (e.g., osteocytes, osteoblasts, osteoclasts); the effect of some specific biomarkers (e.g., parathyroid hormone, vitamin D, alkaline phosphatase, osteocalcin, osteopontin, osteoprotegerin, osterix, RANKL, Runx2); and the characteristic signaling pathways (e.g., RANKL/RANK, Wnt/β, Notch, BMP, SMAD). Some phytochemical compounds-such as flavonoids, tannins, polyphenols, anthocyanins, terpenoids, polysaccharides, alkaloids and others-presented a beneficial and stimulating effect in the bone regeneration process due to the pro-estrogenic activity, the antioxidant and the anti-inflammatory effect and modulation of bone signaling pathways. Lately, nanomedicine has emerged as an innovative concept for new treatments in bone-related pathologies envisaged through the incorporation of medicinal substances in nanometric systems for oral or local administration, as well as in nanostructured scaffolds with huge potential in bone tissue engineering.
Collapse
Affiliation(s)
- Alina Hanga-Farcaș
- Doctoral School of Biomedical Science, University of Oradea, 410087 Oradea, Romania;
| | - Florina Miere (Groza)
- Department of Preclinical Discipline, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania; (F.M.); (L.F.); (M.E.M.)
| | - Gabriela Adriana Filip
- Department of Physiology, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400347 Cluj-Napoca, Romania; (G.A.F.); (S.C.)
| | - Simona Clichici
- Department of Physiology, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400347 Cluj-Napoca, Romania; (G.A.F.); (S.C.)
| | - Luminita Fritea
- Department of Preclinical Discipline, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania; (F.M.); (L.F.); (M.E.M.)
| | - Laura Grațiela Vicaș
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania; (E.M.); (A.P.); (T.J.)
| | - Eleonora Marian
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania; (E.M.); (A.P.); (T.J.)
| | - Annamaria Pallag
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania; (E.M.); (A.P.); (T.J.)
| | - Tunde Jurca
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania; (E.M.); (A.P.); (T.J.)
| | - Sanda Monica Filip
- Department of Physics, Faculty of Informatics and Sciences, University of Oradea, 1 University Street, 410087 Oradea, Romania;
| | - Mariana Eugenia Muresan
- Department of Preclinical Discipline, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania; (F.M.); (L.F.); (M.E.M.)
| |
Collapse
|
18
|
Kim MK, Paek K, Woo SM, Kim JA. Bone-on-a-Chip: Biomimetic Models Based on Microfluidic Technologies for Biomedical Applications. ACS Biomater Sci Eng 2023. [PMID: 37183366 DOI: 10.1021/acsbiomaterials.3c00066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
With the increasing importance of preclinical evaluation of newly developed drugs or treatments, in vitro organ or disease models are necessary. Although various organ-specific on-chip (organ-on-a-chip, or OOC) systems have been developed as emerging in vitro models, bone-on-a-chip (BOC) systems that recapitulate the bone microenvironment have been less developed or reviewed compared with other OOCs. The bone is one of the most dynamic organs and undergoes continuous remodeling throughout its lifetime. The aging population is growing worldwide, and healthcare costs are rising rapidly. Since in vitro BOC models that recapitulate native bone niches and pathological features can be important for studying the underlying mechanism of orthopedic diseases and predicting drug responses in preclinical trials instead of in animals, the development of biomimetic BOCs with high efficiency and fidelity will be accelerated further. Here, we review recently engineered BOCs developed using various microfluidic technologies and investigate their use to model the bone microenvironment. We have also explored various biomimetic strategies based on biological, geometrical, and biomechanical cues for biomedical applications of BOCs. Finally, we addressed the limitations and challenging issues of current BOCs that should be overcome to obtain more acceptable BOCs in the biomedical and pharmaceutical industries.
Collapse
Affiliation(s)
- Min Kyeong Kim
- Center for Scientific Instrumentation, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Kyurim Paek
- Center for Scientific Instrumentation, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
- Program in Biomicro System Technology, Korea University, Seoul 02841, Republic of Korea
| | - Sang-Mi Woo
- Center for Scientific Instrumentation, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Jeong Ah Kim
- Center for Scientific Instrumentation, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, Republic of Korea
- Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul 06973, Republic of Korea
| |
Collapse
|
19
|
Abuarqoub D, Theeb LS, Omari MB, Hamadneh YI, Alrawabdeh JA, Aslam N, Jafar H, Awidi A. The Osteogenic Role of Biomaterials Combined with Human-Derived Dental Stem Cells in Bone Tissue Regeneration. Tissue Eng Regen Med 2023; 20:251-270. [PMID: 36808303 PMCID: PMC10070593 DOI: 10.1007/s13770-022-00514-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 02/23/2023] Open
Abstract
The use of stem cells in regenerative medicine had great potential for clinical applications. However, cell delivery strategies have critical importance in stimulating the differentiation of stem cells and enhancing their potential to regenerate damaged tissues. Different strategies have been used to investigate the osteogenic potential of dental stem cells in conjunction with biomaterials through in vitro and in vivo studies. Osteogenesis has a broad implication in regenerative medicine, particularly for maxillofacial defects. This review summarizes some of the most recent developments in the field of tissue engineering using dental stem cells.
Collapse
Affiliation(s)
- Duaa Abuarqoub
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan.
- Cell Therapy Center, The University of Jordan, Amman, Jordan.
| | - Laith S Theeb
- School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Mohammad B Omari
- School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Yazan I Hamadneh
- School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | | | - Nazneen Aslam
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Hanan Jafar
- Cell Therapy Center, The University of Jordan, Amman, Jordan
- School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Abdalla Awidi
- Cell Therapy Center, The University of Jordan, Amman, Jordan.
- School of Medicine, The University of Jordan, Amman, 11942, Jordan.
| |
Collapse
|
20
|
Impact of In-Process Crystallinity of Biodegradable Scaffolds Fabricated by Material Extrusion on the Micro- and Nanosurface Topography, Viability, Proliferation, and Differentiation of Human Mesenchymal Stromal Cells. Polymers (Basel) 2023; 15:polym15061468. [PMID: 36987248 PMCID: PMC10052033 DOI: 10.3390/polym15061468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Due to affordability, and the ability to parametrically control the vital processing parameters, material extrusion is a widely accepted technology in tissue engineering. Material extrusion offers sufficient control over pore size, geometry, and spatial distribution, and can also yield different levels of in-process crystallinity in the resulting matrix. In this study, an empirical model based on four process parameters—extruder temperature, extrusion speed, layer thickness, and build plate temperature—was used to control the level of in-process crystallinity of polylactic acid (PLA) scaffolds. Two sets of scaffolds were fabricated, with low- and high-crystallinity content, and subsequently seeded with human mesenchymal stromal cells (hMSC). The biochemical activity of hMSC cells was tested by examining the DNA content, lactate dehydrogenase (LDH) activity, and alkaline phosphatase (ALP) tests. The results of this 21-day in vitro experiment showed that high level crystallinity scaffolds performed significantly better in terms of cell response. Follow-up tests revealed that the two types of scaffolds were equivalent in terms of hydrophobicity, and module of elasticity. However, detailed examination of their micro- and nanosurface topographic features revealed that the higher crystallinity scaffolds featured pronounced nonuniformity and a larger number of summits per sampling area, which was the main contributor to a significantly better cell response.
Collapse
|
21
|
Li J, Li K, Du Y, Tang X, Liu C, Cao S, Zhao B, Huang H, Zhao H, Kong W, Xu T, Shao C, Shao J, Zhang G, Lan H, Xi Y. Dual-Nozzle 3D Printed Nano-Hydroxyapatite Scaffold Loaded with Vancomycin Sustained-Release Microspheres for Enhancing Bone Regeneration. Int J Nanomedicine 2023; 18:307-322. [PMID: 36700146 PMCID: PMC9868285 DOI: 10.2147/ijn.s394366] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/24/2022] [Indexed: 01/19/2023] Open
Abstract
Background Successful treatment of infectious bone defect remains a major challenge in the orthopaedic field. At present, the conventional treatment for infectious bone defects is surgical debridement and long-term systemic antibiotic use. It is necessary to develop a new strategy to achieve effective bone regeneration and local anti-infection for infectious bone defects. Methods Firstly, vancomycin / poly (lactic acid-glycolic acid) sustained release microspheres (VAN/PLGA-MS) were prepared. Then, through the dual-nozzle 3D printing technology, VAN/PLGA-MS was uniformly loaded into the pores of nano-hydroxyapatite (n-HA) and polylactic acid (PLA) scaffolds printed in a certain proportion, and a composite scaffold (VAN/MS-PLA/n-HA) was designed, which can not only promote bone repair but also resist local infection. Finally, the performance of the composite scaffold was evaluated by in vivo and in vitro biological evaluation. Results The in vitro release test of microspheres showed that the release of VAN/PLGA-MS was relatively stable from the second day, and the average daily release concentration was about 15.75 μg/mL, which was higher than the minimum concentration specified in the guidelines. The bacteriostatic test in vitro showed that VAN/PLGA-MS had obvious inhibitory effect on Staphylococcus aureus ATCC-29213. Biological evaluation of VAN/MS-PLA/n-HA scaffolds in vitro showed that it can promote the proliferation of adipose stem cells. In vivo biological evaluation showed that VAN/MS-PLA/n-HA scaffold could significantly promote bone regeneration. Conclusion Our research shows that VAN/MS-PLA/n-HA scaffolds have satisfying biomechanical properties, effectively inhibit the growth of Staphylococcus aureus, with good biocompatibility, and effectiveness on repairing bone defects. The VAN/MS-PLA/n-HA scaffold provide the clinic with an application prospect in bone tissue engineering.
Collapse
Affiliation(s)
- Jianyi Li
- Department of Orthopaedic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Keke Li
- Yantai Campus of Binzhou Medical University, Yantai, People’s Republic of China
| | - Yukun Du
- Department of Orthopaedic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Xiaojie Tang
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, People’s Republic of China
| | - Chenjing Liu
- Department of Orthopaedic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Shannan Cao
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, People’s Republic of China
| | - Baomeng Zhao
- Yantai Campus of Binzhou Medical University, Yantai, People’s Republic of China
| | - Hai Huang
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, People’s Republic of China
| | - Hongri Zhao
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, People’s Republic of China
| | - Weiqing Kong
- Department of Orthopaedic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Tongshuai Xu
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, People’s Republic of China
| | - Cheng Shao
- Department of Orthopaedic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Jiale Shao
- Department of Orthopaedic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Guodong Zhang
- Tengzhou Central People’s Hospital, Tengzhou, People’s Republic of China
| | - Hongbo Lan
- Shandong Engineering Research Center for Additive Manufacturing Qingdao University of Technology, Qingdao, People’s Republic of China,Hongbo Lan, Shandong Engineering Research Center for Additive Manufacturing Qingdao University of Technology, Qingdao, 266520, People’s Republic of China, Email
| | - Yongming Xi
- Department of Orthopaedic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China,Correspondence: Yongming Xi, Department of Orthopaedic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266071, People’s Republic of China, Email
| |
Collapse
|
22
|
Gaussian curvature-driven direction of cell fate toward osteogenesis with triply periodic minimal surface scaffolds. Proc Natl Acad Sci U S A 2022; 119:e2206684119. [PMID: 36191194 PMCID: PMC9564829 DOI: 10.1073/pnas.2206684119] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Leaf photosynthesis, coral mineralization, and trabecular bone growth depend on triply periodic minimal surfaces (TPMSs) with hyperboloidal structure on every surface point with varying Gaussian curvatures. However, translation of this structure into tissue-engineered bone grafts is challenging. This article reports the design and fabrication of high-resolution three-dimensional TPMS scaffolds embodying biomimicking hyperboloidal topography with different Gaussian curvatures, composed of body inherent β-tricalcium phosphate, by stereolithography-based three-dimensional printing and sintering. The TPMS bone scaffolds show high porosity and interconnectivity. Notably, compared with conventional scaffolds, they can reduce stress concentration, leading to increased mechanical strength. They are also found to support the attachment, proliferation, osteogenic differentiation, and angiogenic paracrine function of human mesenchymal stem cells (hMSCs). Through transcriptomic analysis, we theorize that the hyperboloid structure induces cytoskeleton reorganization of hMSCs, expressing elongated morphology on the convex direction and strengthening the cytoskeletal contraction. The clinical therapeutic efficacy of the TPMS scaffolds assessed by rabbit femur defect and mouse subcutaneous implantation models demonstrate that the TPMS scaffolds augment new bone formation and neovascularization. In comparison with conventional scaffolds, our TPMS scaffolds successfully guide the cell fate toward osteogenesis through cell-level directional curvatures and demonstrate drastic yet quantifiable improvements in bone regeneration.
Collapse
|
23
|
Paladini F, Pollini M. Novel Approaches and Biomaterials for Bone Tissue Engineering: A Focus on Silk Fibroin. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6952. [PMID: 36234293 PMCID: PMC9572978 DOI: 10.3390/ma15196952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 05/16/2023]
Abstract
Bone tissue engineering (BTE) represents a multidisciplinary research field involving many aspects of biology, engineering, material science, clinical medicine and genetics to create biological substitutes to promote bone regeneration. The definition of the most appropriate biomaterials and structures for BTE is still a challenge for researchers, aiming at simultaneously combining different features such as tissue generation properties, biocompatibility, porosity and mechanical strength. In this scenario, among the biomaterials for BTE, silk fibroin represents a valuable option for the development of functional devices because of its unique biological properties and the multiple chances of processing. This review article aims at providing the reader with a general overview of the most recent progresses in bone tissue engineering in terms of approaches and materials with a special focus on silk fibroin and the related mechanisms involved in bone regeneration, and presenting interesting results obtained by different research groups, which assessed the great potential of this protein for bone tissue engineering.
Collapse
Affiliation(s)
- Federica Paladini
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Caresilk S.r.l.s., Via Monteroni c/o Technological District DHITECH, 73100 Lecce, Italy
| | - Mauro Pollini
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Caresilk S.r.l.s., Via Monteroni c/o Technological District DHITECH, 73100 Lecce, Italy
| |
Collapse
|
24
|
Suzuki S, Venkataiah VS, Yahata Y, Kitagawa A, Inagaki M, Njuguna MM, Nozawa R, Kakiuchi Y, Nakano M, Handa K, Yamada M, Egusa H, Saito M. Correction of large jawbone defect in the mouse using immature osteoblast-like cells and a 3D polylactic acid scaffold. PNAS NEXUS 2022; 1:pgac151. [PMID: 36714858 PMCID: PMC9802318 DOI: 10.1093/pnasnexus/pgac151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/30/2022] [Accepted: 08/03/2022] [Indexed: 02/01/2023]
Abstract
Bone tissue engineering has been developed using a combination of mesenchymal stem cells (MSCs) and calcium phosphate-based scaffolds. However, these complexes cannot regenerate large jawbone defects. To overcome this limitation of MSCs and ceramic scaffolds, a novel bone regeneration technology must be developed using cells possessing high bone forming ability and a scaffold that provides space for vertical bone augmentation. To approach this problem in our study, we developed alveolar bone-derived immature osteoblast-like cells (HAOBs), which have the bone regenerative capacity to correct a large bone defect when used as a grafting material in combination with polylactic acid fibers that organize the 3D structure and increase the strength of the scaffold material (3DPL). HAOB-3DPL constructs could not regenerate bone via xenogeneic transplantation in a micromini pig alveolar bone defect model. However, the autogenic transplantation of mouse calvaria-derived immature osteoblast-like cells (MCOBs) isolated using the identical protocol for HAOBs and mixed with 3DPL scaffolds successfully regenerated the bone in a large jawbone defect mouse model, compared to the 3DPL scaffold alone. Nanoindentation analysis indicated that the regenerated bone had a similar micromechanical strength to native bone. In addition, this MCOB-3DPL regenerated bone possesses osseointegration ability wherein a direct structural connection is established with the titanium implant surface. Hence, a complex formed between a 3DPL scaffold and immature osteoblast-like cells such as MCOBs represents a novel bone tissue engineering approach that enables the formation of vertical bone with the micromechanical properties required to treat large bone defects.
Collapse
Affiliation(s)
| | | | - Yoshio Yahata
- Division of Operative Dentistry, Department of Ecological Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Akira Kitagawa
- Division of Operative Dentistry, Department of Ecological Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi 980-8575, Japan,OsteRenatos Ltd. Sendai Capital Tower 2F, 4-10-3 Central, Aoba-ku, Sendai, Miyagi 980-0021, Japan
| | - Masahiko Inagaki
- National Institute of Advanced Industrial Science and Technology, 2266-98 Anagahora, Nagoya, Aichi 463-8560, Japan
| | - Mary M Njuguna
- Division of Operative Dentistry, Department of Ecological Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Risako Nozawa
- Division of Operative Dentistry, Department of Ecological Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Yusuke Kakiuchi
- Division of Operative Dentistry, Department of Ecological Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Masato Nakano
- Division of Operative Dentistry, Department of Ecological Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Keisuke Handa
- Division of Operative Dentistry, Department of Ecological Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi 980-8575, Japan,Department of Oral Science, Division of Oral Biochemistry, Graduate School of Dentistry, Kanagawa Dental University, Yokosuka, Kanagawa 238-8580, Japan
| | - Masahiro Yamada
- Division of Molecular and Regenerative Prosthodontics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | | |
Collapse
|
25
|
Yoshikawa C, Sakakibara K, Nonsuwan P, Shobo M, Yuan X, Matsumura K. Cellular Flocculation Driven by Concentrated Polymer Brush-Modified Cellulose Nanofibers with Different Surface Charges. Biomacromolecules 2022; 23:3186-3197. [DOI: 10.1021/acs.biomac.2c00294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chiaki Yoshikawa
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0047, Japan
| | - Keita Sakakibara
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Punnida Nonsuwan
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0047, Japan
| | - Miwako Shobo
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0047, Japan
| | - Xida Yuan
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Kazuaki Matsumura
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| |
Collapse
|
26
|
Yuan J, Ye Z, Zeng Y, Pan Z, Feng Z, Bao Y, Li Y, Liu X, He Y, Feng Q. Bifunctional scaffolds for tumor therapy and bone regeneration: Synergistic effect and interplay between therapeutic agents and scaffold materials. Mater Today Bio 2022; 15:100318. [PMID: 35734197 PMCID: PMC9207581 DOI: 10.1016/j.mtbio.2022.100318] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 10/26/2022] Open
Abstract
Bone tumor patients often face the problems with cancer cell residues and bone defects after the operation. Therefore, researchers have developed many bifunctional scaffolds with both tumor treatment and bone repair functions. Therapeutic agents are usually combined with bioactive scaffolds to achieve the "bifunctional". However, the synergistic effect of bifunctional scaffolds on tumor therapy and bone repair, as well as the interplay between therapeutic agents and scaffold materials in bifunctional scaffolds, have not been emphasized and discussed. This review proposes a promising design scheme for bifunctional scaffolds: the synergistic effect and interplay between the therapeutic agents and scaffold materials. This review summarizes the latest research progress in bifunctional scaffolds for therapeutic applications and regeneration. In particular, it summarizes the role of tumor therapeutic agents in bone regeneration and the role of scaffold materials in tumor treatment. Finally, a perspective on the future development of bifunctional scaffolds for tumor therapy and bone regeneration is discussed.
Collapse
Affiliation(s)
- Jiongpeng Yuan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhaoyi Ye
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yaoxun Zeng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhenxing Pan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - ZhenZhen Feng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ying Bao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yushan Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xujie Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yan He
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qingling Feng
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
27
|
Current Knowledge on Biomaterials for Orthopedic Applications Modified to Reduce Bacterial Adhesive Ability. Antibiotics (Basel) 2022; 11:antibiotics11040529. [PMID: 35453280 PMCID: PMC9024841 DOI: 10.3390/antibiotics11040529] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023] Open
Abstract
A significant challenge in orthopedics is the design of biomaterial devices that are able to perform biological functions by substituting or repairing various tissues and controlling bone repair when required. This review presents an overview of the current state of our recent research into biomaterial modifications to reduce bacterial adhesive ability, compared with previous reviews and excellent research papers, but it is not intended to be exhaustive. In particular, we investigated biomaterials for replacement, such as metallic materials (titanium and titanium alloys) and polymers (ultra-high-molecular-weight polyethylene), and biomaterials for regeneration, such as poly(ε-caprolactone) and calcium phosphates as composites. Biomaterials have been designed, developed, and characterized to define surface/bulk features; they have also been subjected to bacterial adhesion assays to verify their potential capability to counteract infections. The addition of metal ions (e.g., silver), natural antimicrobial compounds (e.g., essential oils), or antioxidant agents (e.g., vitamin E) to different biomaterials conferred strong antibacterial properties and anti-adhesive features, improving their capability to counteract prosthetic joint infections and biofilm formation, which are important issues in orthopedic surgery. The complexity of biological materials is still far from being reached by materials science through the development of sophisticated biomaterials. However, close interdisciplinary work by materials scientists, engineers, microbiologists, chemists, physicists, and orthopedic surgeons is indeed necessary to modify the structures of biomaterials in order to achieve implant integration and tissue regeneration while avoiding microbial contamination.
Collapse
|
28
|
Tang S, Wang L, Zhang Y, Zhang F. A Biomimetic Platelet-Rich Plasma-Based Interpenetrating Network Printable Hydrogel for Bone Regeneration. Front Bioeng Biotechnol 2022; 10:887454. [PMID: 35497349 PMCID: PMC9041706 DOI: 10.3389/fbioe.2022.887454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/25/2022] [Indexed: 11/20/2022] Open
Abstract
Repair of bone defects caused by trauma or diseases is the primary focus of prosthodontics. Hydrogels are among the most promising candidates for bone tissue regeneration due to their unique features such as excellent biocompatibility, similarities to biological tissues, and plasticity. Herein, we developed a type of novel biomimetic interpenetrating polymeric network (IPN) hydrogel by combining methacrylated alginate and 4-arm poly (ethylene glycol)-acrylate (4A-PEGAcr) through photo-crosslinking. Platelet-rich plasma (PRP), a patient-specific source of autologous growth factors, was incorporated into the hydrogel, and thereafter the hydrogels were biological mineralized by simulated body fluid (SBF). Physical properties of hydrogels were comprehensively characterized. In vitro studies demonstrated that the incorporation of PRP and biomineralization promoted the biocompatibility of hydrogel. Strikingly, the osteogenic bioactivities, including ALP activity, mineralized nodule formation, and expression of osteogenic markers were found substantially enhanced by this biomineralized PRP-hydrogel. Finally, a rabbit model of bone defect was employed to assess in vivo bone regeneration, micro-CT analysis showed that the biomineralized PRP-hydrogels could significantly accelerate bone generation. We believed that this novel biomineralized PRP-incorporated IPN hydrogel could be promising scaffolds for bone tissue regeneration.
Collapse
Affiliation(s)
- Shijia Tang
- Jiangsu Province Key Laboratory of Oral Diseases, Department of Prosthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Lin Wang
- Jiangsu Province Key Laboratory of Oral Diseases, Department of Prosthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Yunyang Zhang
- Center of Modem Analysis, Nanjing University, Nanjing, China
| | - Feimin Zhang
- Jiangsu Province Key Laboratory of Oral Diseases, Department of Prosthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Feimin Zhang,
| |
Collapse
|
29
|
Characterization of Biological Properties of Dental Pulp Stem Cells Grown on an Electrospun Poly(l-lactide- co-caprolactone) Scaffold. MATERIALS 2022; 15:ma15051900. [PMID: 35269131 PMCID: PMC8911644 DOI: 10.3390/ma15051900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/15/2022] [Accepted: 03/01/2022] [Indexed: 02/01/2023]
Abstract
Poly(l-lactide-co-caprolactone) (PLCL) electrospun scaffolds with seeded stem cells have drawn great interest in tissue engineering. This study investigated the biological behavior of human dental pulp stem cells (hDPSCs) grown on a hydrolytically-modified PLCL nanofiber scaffold. The hDPSCs were seeded on PLCL, and their biological features such as viability, proliferation, adhesion, population doubling time, the immunophenotype of hDPSCs and osteogenic differentiation capacity were evaluated on scaffolds. The results showed that the PLCL scaffold significantly supported hDPSC viability/proliferation. The hDPSCs adhesion rate and spreading onto PLCL increased with time of culture. hDPSCs were able to migrate inside the PLCL electrospun scaffold after 7 days of seeding. No differences in morphology and immunophenotype of hDPSCs grown on PLCL and in flasks were observed. The mRNA levels of bone-related genes and their proteins were significantly higher in hDPSCs after osteogenic differentiation on PLCL compared with undifferentiated hDPSCs on PLCL. These results showed that the mechanical properties of a modified PLCL mat provide an appropriate environment that supports hDPSCs attachment, proliferation, migration and their osteogenic differentiation on the PLCL scaffold. The good PLCL biocompatibility with dental pulp stem cells indicates that this mat may be applied in designing a bioactive hDPSCs/PLCL construct for bone tissue engineering.
Collapse
|
30
|
Kim SY, Kim YK, Jang YS, Lee MH. Enhancement of Biofunctionalization by Loading Manuka Oil on TiO 2 Nanotubes. NANOMATERIALS 2022; 12:nano12030569. [PMID: 35159914 PMCID: PMC8838098 DOI: 10.3390/nano12030569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/11/2022] [Accepted: 01/31/2022] [Indexed: 11/16/2022]
Abstract
Metallic implants (mesh) for guided bone regeneration can result in foreign body reactions with surrounding tissues, infection, and inflammatory reactions caused by micro-organisms in the oral cavity after implantation. This study aimed to reduce the possibility of surgical failure caused by microbial infection by loading antibacterial manuka oil in a biocompatible nanostructure surface on Ti and to induce stable bone regeneration in the bone defect. The manuka oil from New Zealand consisted of a rich β-triketone chemotype, leptospermone, which showed strong inhibitory effects against several bacteria, even at very low oil concentrations. The TiO2 nanotubular layer formed by anodization effectively enhanced the surface hydrophilicity, bioactivity, and fast initial bone regeneration. A concentration of manuka oil in the range of 0.02% to less than 1% can have a synergistic effect on antibacterial activity and excellent biocompatibility. A manuka oil coating (especially with a concentration of 0.5%) on the TiO2 nanotube layer can be expected not only to prevent stenosis of the connective tissue around the mesh and inflammation by microbial infection but also to be effective in stable and rapid bone regeneration.
Collapse
Affiliation(s)
| | | | | | - Min-Ho Lee
- Correspondence: ; Tel./Fax: +82-63-270-4040
| |
Collapse
|
31
|
Alvarez Echazú MI, Perna O, Olivetti CE, Antezana PE, Municoy S, Tuttolomondo MV, Galdopórpora JM, Alvarez GS, Olmedo DG, Desimone MF. Recent Advances in Synthetic and Natural Biomaterials-Based Therapy for Bone Defects. Macromol Biosci 2022; 22:e2100383. [PMID: 34984818 DOI: 10.1002/mabi.202100383] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/04/2021] [Indexed: 12/31/2022]
Abstract
Synthetic and natural biomaterials are a promising alternative for the treatment of critical-sized bone defects. Several parameters such as their porosity, surface, and mechanical properties are extensively pointed out as key points to recapitulate the bone microenvironment. Many biomaterials with this pursuit are employed to provide a matrix, which can supply the specific environment and architecture for an adequate bone growth. Nevertheless, some queries remain unanswered. This review discusses the recent advances achieved by some synthetic and natural biomaterials to mimic the native structure of bone and the manufacturing technology applied to obtain biomaterial candidates. The focus of this review is placed in the recent advances in the development of biomaterial-based therapy for bone defects in different types of bone. In this context, this review gives an overview of the potentialities of synthetic and natural biomaterials: polyurethanes, polyesters, hyaluronic acid, collagen, titanium, and silica as successful candidates for the treatment of bone defects.
Collapse
Affiliation(s)
- María I Alvarez Echazú
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Junín 956, Piso 3°, (1113) Buenos Aires, Argentina., Universidad de Buenos Aires, Junín 956, Piso 3°, Buenos Aires, 1113, Argentina.,Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Anatomía Patológica, Marcelo T. de Alvear 2142 (1122), CABA, Argentina
| | - Oriana Perna
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Junín 956, Piso 3°, (1113) Buenos Aires, Argentina., Universidad de Buenos Aires, Junín 956, Piso 3°, Buenos Aires, 1113, Argentina
| | - Christian E Olivetti
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Junín 956, Piso 3°, (1113) Buenos Aires, Argentina., Universidad de Buenos Aires, Junín 956, Piso 3°, Buenos Aires, 1113, Argentina
| | - Pablo E Antezana
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Junín 956, Piso 3°, (1113) Buenos Aires, Argentina., Universidad de Buenos Aires, Junín 956, Piso 3°, Buenos Aires, 1113, Argentina
| | - Sofia Municoy
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Junín 956, Piso 3°, (1113) Buenos Aires, Argentina., Universidad de Buenos Aires, Junín 956, Piso 3°, Buenos Aires, 1113, Argentina
| | - María V Tuttolomondo
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Junín 956, Piso 3°, (1113) Buenos Aires, Argentina., Universidad de Buenos Aires, Junín 956, Piso 3°, Buenos Aires, 1113, Argentina
| | - Juan M Galdopórpora
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Junín 956, Piso 3°, (1113) Buenos Aires, Argentina., Universidad de Buenos Aires, Junín 956, Piso 3°, Buenos Aires, 1113, Argentina
| | - Gisela S Alvarez
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Junín 956, Piso 3°, (1113) Buenos Aires, Argentina., Universidad de Buenos Aires, Junín 956, Piso 3°, Buenos Aires, 1113, Argentina
| | - Daniel G Olmedo
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Anatomía Patológica, Marcelo T. de Alvear 2142 (1122), CABA, Argentina.,CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz 2290, Buenos Aires, 1425, Argentina
| | - Martín F Desimone
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Junín 956, Piso 3°, (1113) Buenos Aires, Argentina., Universidad de Buenos Aires, Junín 956, Piso 3°, Buenos Aires, 1113, Argentina
| |
Collapse
|
32
|
Gehrke SA, Aramburú Júnior J, Treichel TLE, Rodriguez F, N de Aza P, Dedavid BA. Comparative evaluation of two collagen-based biomaterials with different compositions used for bone graft: An experimental animal study. J Appl Biomater Funct Mater 2022; 20:22808000221119650. [PMID: 35975914 DOI: 10.1177/22808000221119650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A large number of materials with different compositions and shapes have been proposed and studied for the purpose of bone tissue regeneration. Collagen-based materials have shown promising results for this application, with improved physicochemical properties. The aim of the present in vivo animal study was to evaluate and compare two commercially available collagen-based biomaterials for bone regeneration, with these being implanted in circumferential bone defects created in the calvarium of rabbits. Twenty rabbits received bilateral parietal osteotomies, performed with the aid of a 6.5 mm diameter trephine. Two groups were created: the BC group, where the defect was filled with a scaffold composed of 90% bovine bone particles and 10% porcine collagen, and the EG group, where the defect was filled with a scaffold composed of 75% hydroxyapatite particles of bovine origin and 25% bovine collagen. Ten animals were sacrificed at 30 days and another 10 at 45 days after implantation, and the samples were processed and histologically analyzed. In the evaluations of the samples at 30 days, no important differences were found in the results. However, in the samples at 45 days after surgery, the EG group showed better results than the BC group samples, mainly in terms of the amount of bone matrix formation (P < 0.0001) and the volume in area measured in each sample, where the EG group had a value 65% higher than that in the BC group samples. Based on the results obtained, we conclude that the amount of collagen and the particle characteristics present in the composition of the scaffolds can directly influence the amount of neoformation and/or bone regeneration.
Collapse
Affiliation(s)
- Sergio Alexandre Gehrke
- Department of Research, Bioface/PgO/UCAM, Montevideo, Uruguay.,Department of Biotechnology. Universidad Católica de Murcia (UCAM), Murcia, Spain.,Instituto de Bioingenieria, Universidad Miguel Hernández, Elche (Alicante), Spain.,Department of Materials Engineering, Pontificia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | | | - Piedad N de Aza
- Instituto de Bioingenieria, Universidad Miguel Hernández, Elche (Alicante), Spain
| | - Berenice Anina Dedavid
- Department of Materials Engineering, Pontificia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
33
|
Malagón-Escandón A, Hautefeuille M, Jimenez-Díaz E, Arenas-Alatorre J, Saniger JM, Badillo-Ramírez I, Vazquez N, Piñón-Zarate G, Castell-Rodríguez A. Three-Dimensional Porous Scaffolds Derived from Bovine Cancellous Bone Matrix Promote Osteoinduction, Osteoconduction, and Osteogenesis. Polymers (Basel) 2021; 13:4390. [PMID: 34960941 PMCID: PMC8705055 DOI: 10.3390/polym13244390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/28/2021] [Accepted: 12/01/2021] [Indexed: 11/30/2022] Open
Abstract
The use of three-dimensional porous scaffolds derived from decellularized extracellular matrix (ECM) is increasing for functional repair and regeneration of injured bone tissue. Because these scaffolds retain their native structures and bioactive molecules, in addition to showing low immunogenicity and good biodegradability, they can promote tissue repair and regeneration. Nonetheless, imitating these features in synthetic materials represents a challenging task. Furthermore, due to the complexity of bone tissue, different processes are necessary to maintain these characteristics. We present a novel approach using decellularized ECM material derived from bovine cancellous bone by demineralization, decellularization, and hydrolysis of collagen to obtain a three-dimensional porous scaffold. This study demonstrates that the three-dimensional porous scaffold obtained from bovine bone retained its osteoconductive and osteoinductive properties and presented osteogenic potential when seeded with human Wharton's jelly mesenchymal stromal cells (hWJ-MSCs). Based on its characteristics, the scaffold described in this work potentially represents a therapeutic strategy for bone repair.
Collapse
Affiliation(s)
- Alda Malagón-Escandón
- Facultad de Medicina, UNAM, Mexico City C.P. 04510, Mexico; (A.M.-E.); (N.V.); (G.P.-Z.)
| | | | - Edgar Jimenez-Díaz
- Facultad de Ciencias, UNAM, Mexico City C.P. 04510, Mexico; (M.H.); (E.J.-D.)
| | | | - José Manuel Saniger
- Instituto de Ciencias Aplicadas y Tecnología (ICAT), UNAM, Mexico City C.P. 04510, Mexico; (J.M.S.); (I.B.-R.)
| | - Isidro Badillo-Ramírez
- Instituto de Ciencias Aplicadas y Tecnología (ICAT), UNAM, Mexico City C.P. 04510, Mexico; (J.M.S.); (I.B.-R.)
| | - Nadia Vazquez
- Facultad de Medicina, UNAM, Mexico City C.P. 04510, Mexico; (A.M.-E.); (N.V.); (G.P.-Z.)
| | - Gabriela Piñón-Zarate
- Facultad de Medicina, UNAM, Mexico City C.P. 04510, Mexico; (A.M.-E.); (N.V.); (G.P.-Z.)
| | | |
Collapse
|
34
|
Karimzadeh Bardeei L, Seyedjafari E, Hossein G, Nabiuni M, Majles Ara MH, Salber J. Regeneration of Bone Defects in a Rabbit Femoral Osteonecrosis Model Using 3D-Printed Poly (Epsilon-Caprolactone)/Nanoparticulate Willemite Composite Scaffolds. Int J Mol Sci 2021; 22:10332. [PMID: 34638673 PMCID: PMC8508893 DOI: 10.3390/ijms221910332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 01/12/2023] Open
Abstract
Steroid-associated osteonecrosis (SAON) is a chronic disease that leads to the destruction and collapse of bone near the joint that is subjected to weight bearing, ultimately resulting in a loss of hip and knee function. Zn2+ ions, as an essential trace element, have functional roles in improving the immunophysiological cellular environment, accelerating bone regeneration, and inhibiting biofilm formation. In this study, we reconstruct SAON lesions with a three-dimensional (3D)-a printed composite made of poly (epsilon-caprolactone) (PCL) and nanoparticulate Willemite (npW). Rabbit bone marrow stem cells were used to evaluate the cytocompatibility and osteogenic differentiation capability of the PCL/npW composite scaffolds. The 2-month bone regeneration was assessed by a Micro-computed tomography (micro-CT) scan and the expression of bone regeneration proteins by Western blot. Compared with the neat PCL group, PCL/npW scaffolds exhibited significantly increased cytocompatibility and osteogenic activity. This finding reveals a new concept for the design of a 3D-printed PCL/npW composite-based bone substitute for the early treatment of osteonecrosis defects.
Collapse
Affiliation(s)
- Latifeh Karimzadeh Bardeei
- Developmental Biology Laboratory, Animal Biology Department, School of Biology, College of Science, University of Tehran, Tehran 1417935840, Iran;
| | - Ehsan Seyedjafari
- Department of Biotechnology, College of Science, University of Tehran, Tehran 1417935840, Iran
| | - Ghamartaj Hossein
- Developmental Biology Laboratory, Animal Biology Department, School of Biology, College of Science, University of Tehran, Tehran 1417935840, Iran;
| | - Mohammad Nabiuni
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran;
| | - Mohammad Hosein Majles Ara
- Photonics Laboratory, Physics Department, Kharazmi University, Tehran 15719-14911, Iran;
- Applied Science Research Centre, Kharazmi University, Tehran 15719-14911, Iran
| | - Jochen Salber
- Salber Laboratory, Centre for Clinical Research, Department of Experimental Surgery, Ruhr-Universität Bochum, 44780 Bochum, Germany;
- Department of Surgery, Universitätsklinikum Knappschaftskrankenhaus Bochum GmbH, 44892 Bochum, Germany
| |
Collapse
|
35
|
Comini S, Sparti R, Coppola B, Mohammadi M, Scutera S, Menotti F, Banche G, Cuffini AM, Palmero P, Allizond V. Novel Silver-Functionalized Poly(ε-Caprolactone)/Biphasic Calcium Phosphate Scaffolds Designed to Counteract Post-Surgical Infections in Orthopedic Applications. Int J Mol Sci 2021; 22:10176. [PMID: 34576339 PMCID: PMC8471985 DOI: 10.3390/ijms221810176] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/17/2022] Open
Abstract
In this study, we designed and developed novel poly(ε-caprolactone) (PCL)-based biomaterials, for use as bone scaffolds, through modification with both biphasic calcium phosphate (BCP), to impart bioactive/bioresorbable properties, and with silver nitrate, to provide antibacterial protection against Staphylococcus aureus, a microorganism involved in prosthetic joint infections (PJIs). Field emission scanning electron microscopy (FESEM) showed that the samples were characterized by square-shaped macropores, and energy dispersive X-ray spectroscopy analysis confirmed the presence of PCL and BCP phases, while inductively coupled plasma-mass spectrometry (ICP-MS) established the release of Ag+ in the medium (~0.15-0.8 wt% of initial Ag content). Adhesion assays revealed a significant (p < 0.0001) reduction in both adherent and planktonic staphylococci on the Ag-functionalized biomaterials, and the presence of an inhibition halo confirmed Ag release from enriched samples. To assess the potential outcome in promoting bone integration, preliminary tests on sarcoma osteogenic-2 (Saos-2) cells indicated PCL and BCP/PCL biocompatibility, but a reduction in viability was observed for Ag-added biomaterials. Due to their combined biodegrading and antimicrobial properties, the silver-enriched BCP/PCL-based scaffolds showed good potential for engineering of bone tissue and for reducing PJIs as a microbial anti-adhesive tool used in the delivery of targeted antimicrobial molecules, even if the amount of silver needs to be tuned to improve osteointegration.
Collapse
Affiliation(s)
- Sara Comini
- Bacteriology and Mycology Laboratory, Department of Public Health and Pediatrics, University of Torino, Via Santena 9, 10126 Turin, Italy; (S.C.); (F.M.); (A.M.C.); (V.A.)
| | - Rosaria Sparti
- Immunology Laboratory, Department of Public Health and Pediatrics, University of Torino, Via Santena 9, 10126 Turin, Italy; (R.S.); (S.S.)
| | - Bartolomeo Coppola
- INSTM R.U. Lince Laboratory, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy; (B.C.); (M.M.); (P.P.)
| | - Mehdi Mohammadi
- INSTM R.U. Lince Laboratory, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy; (B.C.); (M.M.); (P.P.)
| | - Sara Scutera
- Immunology Laboratory, Department of Public Health and Pediatrics, University of Torino, Via Santena 9, 10126 Turin, Italy; (R.S.); (S.S.)
| | - Francesca Menotti
- Bacteriology and Mycology Laboratory, Department of Public Health and Pediatrics, University of Torino, Via Santena 9, 10126 Turin, Italy; (S.C.); (F.M.); (A.M.C.); (V.A.)
| | - Giuliana Banche
- Bacteriology and Mycology Laboratory, Department of Public Health and Pediatrics, University of Torino, Via Santena 9, 10126 Turin, Italy; (S.C.); (F.M.); (A.M.C.); (V.A.)
| | - Anna Maria Cuffini
- Bacteriology and Mycology Laboratory, Department of Public Health and Pediatrics, University of Torino, Via Santena 9, 10126 Turin, Italy; (S.C.); (F.M.); (A.M.C.); (V.A.)
| | - Paola Palmero
- INSTM R.U. Lince Laboratory, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy; (B.C.); (M.M.); (P.P.)
| | - Valeria Allizond
- Bacteriology and Mycology Laboratory, Department of Public Health and Pediatrics, University of Torino, Via Santena 9, 10126 Turin, Italy; (S.C.); (F.M.); (A.M.C.); (V.A.)
| |
Collapse
|
36
|
Oral Bone Tissue Regeneration: Mesenchymal Stem Cells, Secretome, and Biomaterials. Int J Mol Sci 2021; 22:ijms22105236. [PMID: 34063438 PMCID: PMC8156243 DOI: 10.3390/ijms22105236] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
In the last few decades, tissue engineering has become one of the most studied medical fields. Even if bone shows self-remodeling properties, in some cases, due to injuries or anomalies, bone regeneration can be required. In particular, oral bone regeneration is needed in the dentistry field, where the functional restoration of tissues near the tooth represents a limit for many dental implants. In this context, the application of biomaterials and mesenchymal stem cells (MSCs) appears promising for bone regeneration. This review focused on in vivo studies that evaluated bone regeneration using biomaterials with MSCs. Different biocompatible biomaterials were enriched with MSCs from different sources. These constructs showed an enhanced bone regenerative power in in vivo models. However, we discussed also a future perspective in tissue engineering using the MSC secretome, namely the conditioned medium and extracellular vesicles. This new approach has already shown promising results for bone tissue regeneration in experimental models.
Collapse
|