1
|
Castro NR, Pinto CDSC, Dos Santos EP, Mansur CRE. Nanosystems with potential application as carriers for skin depigmenting actives. NANOTECHNOLOGY 2024; 35:402001. [PMID: 38901412 DOI: 10.1088/1361-6528/ad5a15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/20/2024] [Indexed: 06/22/2024]
Abstract
Hyperpigmentation is a skin disorder characterized by excessive production of melanin in the skin and includes dyschromias such as post-inflammatory hyperchromias, lentigens, melasma and chloasma. Topical products containing depigmenting agents offer a less aggressive treatment option for hyperpigmentation compared to methods like chemical peels and laser sessions. However, some of these agents can cause side effects such as redness and skin irritation. Encapsulating these actives in nanosystems shows promise in mitigating these effects and improving product safety and efficacy. In addition, nanocarriers have the ability to penetrate the skin, potentially allowing for targeted delivery of actives to the affected areas. The most commonly investigated nanosystems are nanoemulsions, vesicular nanosystems and nanoparticles, in which different materials can be used to generate different compositions in order to improve the properties of these nanocarriers. Nanocarriers have already been widely explored, but it is necessary to understand the evolution of these technologies when applied to the treatment of skin hyperchromias. Therefore, this literature review aims to present the state of the art over the last 15 years on the use of nanosystems as a potential strategy for encapsulating depigmenting actives for potential application in cosmetic products for skin hyperchromia. By providing a comprehensive overview of the latest research findings and technological advances, this article can contribute to improving the care and quality of life of people affected by this skin condition.
Collapse
Affiliation(s)
- Natalia Ruben Castro
- Federal University of Rio de Janeiro, Institute of Macromolecules, Center of Technology, Ilha do Fundão, Rio de Janeiro, Brazil
| | - Cristal Dos Santos C Pinto
- Federal University of Rio de Janeiro, Institute of Macromolecules, Center of Technology, Ilha do Fundão, Rio de Janeiro, Brazil
| | - Elisabete P Dos Santos
- Federal University of Rio de Janeiro, Faculty of Pharmacy, Department of Drugs and Medicines, Ilha do Fundão, Rio de Janeiro, Brazil
| | - Claudia Regina E Mansur
- Federal University of Rio de Janeiro, Institute of Macromolecules, Center of Technology, Ilha do Fundão, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Lee MS, Bui HTD, Kim SJ, Lee JB, Yoo HS. Liposome-assisted penetration and antiaging effects of collagen in a 3D skin model. J Cosmet Dermatol 2024; 23:236-243. [PMID: 37415450 DOI: 10.1111/jocd.15912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Collagen is a major component of the extracellular matrix that supports the epidermal layers of the skin; thus, many strategies have been made to enhance the topical delivery of collagen for antiaging purposes. In addition, our previous study indicated that liposome can help the penetration of active ingredients into the skin. AIMS To produce stable collagen-encapsulated liposomes to improve the topical delivery of collagen. METHODS Collagen-encapsulated liposomes were fabricated using high-pressure homogenization method. The colloidal stability and adhesion ability were confirmed using dynamic light scattering, and spectrofluorophotometer, respectively. Keratinocyte differentiations of 3D skin before and after treatment with collagen-encapsulated liposomes were confirmed by real-time PCR. RESULTS In comparison with native collagen, collagen-encapsulated liposomes enhanced collagen retention in artificial membranes by twofold, even after repeated washings with water. In addition, real-time PCR results indicated that 3D skin treated with collagen-encapsulated liposomes exhibited higher levels of collagen, keratin, and involucrin, even after ethanol treatment. CONCLUSION Liposomes could serve as efficient delivery vehicles for collagen, thereby enhancing its antiaging effects.
Collapse
Affiliation(s)
- Mi So Lee
- Department of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Hoai-Thuong Duc Bui
- Department of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Su Ji Kim
- Innovation Lab., Cosmax R&I Center, Seongnam-si, Republic of Korea
| | - Jun Bae Lee
- Innovation Lab., Cosmax R&I Center, Seongnam-si, Republic of Korea
| | - Hyuk Sang Yoo
- Department of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
3
|
Khan MS, Baskoy SA, Yang C, Hong J, Chae J, Ha H, Lee S, Tanaka M, Choi Y, Choi J. Lipid-based colloidal nanoparticles for applications in targeted vaccine delivery. NANOSCALE ADVANCES 2023; 5:1853-1869. [PMID: 36998671 PMCID: PMC10044484 DOI: 10.1039/d2na00795a] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/15/2023] [Indexed: 06/19/2023]
Abstract
Bioactive molecules and their effects have been influenced by their solubility and administration route. In many therapeutic reagents, the performance of therapeutics is dependent on physiological barriers in the human body and delivery efficacy. Therefore, an effective and stable therapeutic delivery promotes pharmaceutical advancement and suitable biological usage of drugs. In the biological and pharmacological industries, lipid nanoparticles (LNPs) have emerged as a potential carrier to deliver therapeutics. Since studies reported doxorubicin-loaded liposomes (Doxil®), LNPs have been applied to numerous clinical trials. Lipid-based nanoparticles, including liposomes, solid lipid nanoparticles (SLNs), and nanostructured lipid nanoparticles, have also been developed to deliver active ingredients in vaccines. In this review, we present the type of LNPs used to develop vaccines with attractive advantages. We then discuss messenger RNA (mRNA) delivery for the clinical application of mRNA therapeutic-loaded LNPs and recent research trend of LNP-based vaccine development.
Collapse
Affiliation(s)
- Muhammad Saad Khan
- Department of Physics, Toronto Metropolitan University 350 Victoria Street Toronto M5B2K3 Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), St. Michael's Hospital 209 Victoria Street Toronto M5B1W8 Canada
| | - Sila Appak Baskoy
- Institute for Biomedical Engineering, Science and Technology (iBEST), St. Michael's Hospital 209 Victoria Street Toronto M5B1W8 Canada
- Department of Chemistry and Biology, Toronto Metropolitan University, Faculty of Science 350 Victoria Street Toronto M5B2K3 ON Canada
| | - Celina Yang
- Department of Physics, Toronto Metropolitan University 350 Victoria Street Toronto M5B2K3 Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), St. Michael's Hospital 209 Victoria Street Toronto M5B1W8 Canada
| | - Joohye Hong
- School of Integrative Engineering, Chung-Ang University Seoul 06974 Republic of Korea
| | - Jayoung Chae
- School of Integrative Engineering, Chung-Ang University Seoul 06974 Republic of Korea
| | - Heejin Ha
- School of Integrative Engineering, Chung-Ang University Seoul 06974 Republic of Korea
| | - Sungjun Lee
- School of Integrative Engineering, Chung-Ang University Seoul 06974 Republic of Korea
- Feynman Institute of Technology, Nanomedicine Corporation Seoul 06974 Republic of Korea
| | - Masayoshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama-shi 226-8503 Kanagawa Japan
| | - Yonghyun Choi
- School of Integrative Engineering, Chung-Ang University Seoul 06974 Republic of Korea
- Feynman Institute of Technology, Nanomedicine Corporation Seoul 06974 Republic of Korea
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University Seoul 06974 Republic of Korea
- Feynman Institute of Technology, Nanomedicine Corporation Seoul 06974 Republic of Korea
| |
Collapse
|
4
|
Jung WH, Song J, You G, Lee JH, Lee SW, Ahn JH, Mok H. Protection of Skin Fibroblasts from Infrared-A-Induced Photo-Damage Using Ginsenoside Rg3(S)-Incorporated Soybean Lecithin Liposomes. J Microbiol Biotechnol 2023; 33:135-141. [PMID: 36575857 PMCID: PMC9895989 DOI: 10.4014/jmb.2210.10048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/09/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022]
Abstract
Protection of skin cells from chronic infrared-A (IRA) irradiation is crucial for anti-photoaging of the skin. In this study, we investigated the protective activity of Rg3(S) and Rg3(S)-incorporated anionic soybean lecithin liposomes (Rg3/Lipo) with a size of approximately 150 nm against IRA-induced photodamage in human fibroblasts. The formulated Rg3/Lipo showed increased solubility in aqueous solution up to a concentration of 200 μg/ml, compared to free Rg3(S). In addition, Rg3/Lipo exhibited superior colloidal stability in aqueous solutions and biocompatibility for normal human dermal fibroblasts (NHDFs). After repeated IRA irradiation on NHDFs, elevated levels of cellular and mitochondrial reactive oxygen species (ROS) were greatly reduced by Rg3(S) and Rg3/Lipo. In addition, cells treated with Rg3/Lipo exhibited noticeably reduced apoptotic signals following IRA irradiation compared to untreated cells. Thus, considering aqueous solubility and cellular responses, Rg3/Lipo could serve as a promising infrared protector for healthy aging of skin cells.
Collapse
Affiliation(s)
- Won Ho Jung
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jihyeon Song
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Gayeon You
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jun Hyuk Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Sin Won Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Joong-Hoon Ahn
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyejung Mok
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea,Corresponding author Phone: +82-2-450-0448 E-mail:
| |
Collapse
|
5
|
Lee MS, Kim SJ, Lee JB, Yoo HS. Clinical evaluation of the brightening effect of chitosan-based cationic liposomes. J Cosmet Dermatol 2022; 21:6822-6829. [PMID: 36052771 DOI: 10.1111/jocd.15350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/22/2022] [Accepted: 08/31/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Cationic liposomes can enhance the permeability of drugs in 3-D skin. Chitosan is considered a safe material for percutaneous delivery; thus, this study uses chitosan-incorporated cationic liposomes. AIMS This study investigated the improvement in skin brightness, melanin, and melasma after treatment niacinamide-incorporated chitosan cationic liposomes. METHODS A skin brightening agent, niacinamide, was formulated into cationic liposomes to facilitate percutaneous absorption and was clinically tested in 21 Korean female subjects. Cationic liposomes were prepared using a high-pressure homogenizer after mixing an oil phase containing lecithin and cholesterol and an aqueous phase containing niacinamide and chitosan. RESULTS The cationic liposomes exhibited stability over 28 days, with a particle size of 255-275 nm and zeta potential of 10-14 mV. Cationic liposomes containing niacinamide and a control formulation were applied to the left and right side of the face, respectively, twice daily for 28 days. Skin brightness, melanin index, and area of melasma were significantly enhanced where cationic liposomes were used, in comparison with formulations without cationic liposomes, demonstrating a 1.38-2.08-fold improvement. CONCLUSION Thus, we established that chitosan liposomes augmented the percutaneous absorption of niacinamide and improved the appearance of the skin.
Collapse
Affiliation(s)
- Mi So Lee
- Department of Biomedical Science, Kangwon National University, Chuncheon, Korea
| | - Su Ji Kim
- Innovation Lab., Cosmax R&I Center, Seongnam-si, Korea
| | - Jun Bae Lee
- Innovation Lab., Cosmax R&I Center, Seongnam-si, Korea
| | - Hyuk Sang Yoo
- Department of Biomedical Science, Kangwon National University, Chuncheon, Korea.,Kangwon Institute of Inclusive Technology (KIIT), Kangwon National University, Chuncheon, Korea
| |
Collapse
|
6
|
O'Shea DG, Curtin CM, O'Brien FJ. Articulation inspired by nature: a review of biomimetic and biologically active 3D printed scaffolds for cartilage tissue engineering. Biomater Sci 2022; 10:2462-2483. [PMID: 35355029 PMCID: PMC9113059 DOI: 10.1039/d1bm01540k] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/17/2022] [Indexed: 11/21/2022]
Abstract
In the human body, articular cartilage facilitates the frictionless movement of synovial joints. However, due to its avascular and aneural nature, it has a limited ability to self-repair when damaged due to injury or wear and tear over time. Current surgical treatment options for cartilage defects often lead to the formation of fibrous, non-durable tissue and thus a new solution is required. Nature is the best innovator and so recent advances in the field of tissue engineering have aimed to recreate the microenvironment of native articular cartilage using biomaterial scaffolds. However, the inability to mirror the complexity of native tissue has hindered the clinical translation of many products thus far. Fortunately, the advent of 3D printing has provided a potential solution. 3D printed scaffolds, fabricated using biomimetic biomaterials, can be designed to mimic the complex zonal architecture and composition of articular cartilage. The bioinks used to fabricate these scaffolds can also be further functionalised with cells and/or bioactive factors or gene therapeutics to mirror the cellular composition of the native tissue. Thus, this review investigates how the architecture and composition of native articular cartilage is inspiring the design of biomimetic bioinks for 3D printing of scaffolds for cartilage repair. Subsequently, we discuss how these 3D printed scaffolds can be further functionalised with cells and bioactive factors, as well as looking at future prospects in this field.
Collapse
Affiliation(s)
- Donagh G O'Shea
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Caroline M Curtin
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| |
Collapse
|
7
|
Hemoglobin I from Lucina pectinata on Collagen Scaffold: A Prospective Hydrogen Sulfide Scavenger. J CHEM-NY 2022. [DOI: 10.1155/2022/5101712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hydrogen sulfide (H2S), independently of being a toxic gas with a characteristic smell of rotten eggs, is a crucial signaling molecule with significant physiological functions. Given the rapid diffusivity of the gas, it is a challenge to develop robust sensors and biomarkers to quantify free or bound H2S. In addition, there is the need to further develop a robust biosystem to efficiently trap or scavenge H2S from different producing environments. The work presented here uses recombinant met-aquo rHbI (rHbI-H2O) immobilization techniques on collagen to determine its ability to bind H2S due to its high affinity (
M-1). The hemeprotein will function as a scavenger on this scaffold system. UV-Vis absorption and UV-Vis diffuse reflectance (%R) spectroscopy of rHbI-H2O and rHbI-sulfide (rHbI-H2S) complex in solution and collagen scaffold demonstrated that the heme chromophore retains its reactivity and properties. UV-Vis diffuse reflectance measurements, transformed using the Kubelka-Munk function (K-M function), show a linear correlation (
and 0.9916) of rHbI-H2O and rHbI-H2S within concentrations from 1 μM to 35 μM for derivatives. The extraordinary affinity of rHbI-H2O for H2S suggests recombinant met-aquo HbI in a collagen scaffold is an excellent scavenger moiety for hydrogen sulfide. These findings give insight into H2S trapping using the rHbI-H2O-collagen scaffold, where the rHbI-H2S concentration can be determined. Future pathways are to work toward the development of a met-aquo rHbI collagen solution capable of being printed as single drops on polymer, cotton or chromatographic paper. Upon exposure of these matrixes to H2S, the rHbI-H2S complex is formed and its concentration determined using UV-Vis diffuse reflectance technique.
Collapse
|
8
|
Ahani E, Montazer M, Mianehro A, Samadi N, Toliyat T, Mahmoudi Rad M. Preparation of long-lasting antibacterial wound dressing through diffusion of cationic-liposome-encapsulated polyhexamethylene biguanide. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.105092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|