1
|
Barz M, Parak WJ, Zentel R. Concepts and Approaches to Reduce or Avoid Protein Corona Formation on Nanoparticles: Challenges and Opportunities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402935. [PMID: 38976560 PMCID: PMC11425909 DOI: 10.1002/advs.202402935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/19/2024] [Indexed: 07/10/2024]
Abstract
This review describes the formation of a protein corona (or its absence) on different classes of nanoparticles, its basic principles, and its consequences for nanomedicine. For this purpose, it describes general concepts to control (guide/minimize) the interaction between artificial nanoparticles and plasma proteins to reduce protein corona formation. Thereafter, methods for the qualitative or quantitative determination of protein corona formation are presented, as well as the properties of nanoparticle surfaces, which are relevant for protein corona prevention (or formation). Thereby especially the role of grafting density of hydrophilic polymers on the surface of the nanoparticle is discussed to prevent the formation of a protein corona. In this context also the potential of detergents (surfactants) for a temporary modification as well as grafting-to and grafting-from approaches for a permanent modification of the surface are discussed. The review concludes by highlighting several promising avenues. This includes (i) the use of nanoparticles without protein corona for active targeting, (ii) the use of synthetic nanoparticles without protein corona formation to address the immune system, (iii) the recollection of nanoparticles with a defined protein corona after in vivo application to sample the blood proteome and (iv) further concepts to reduce protein corona formation.
Collapse
Affiliation(s)
- Matthias Barz
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, NL-2333 CC, Netherlands
| | - Wolfgang J Parak
- Institut für Nanostruktur- und Festkörperphysik, Universität Hamburg, Luruper Chaussee 149, D-22761, Hamburg, Germany
| | - Rudolf Zentel
- Department of Chemistry, Johannes Gutenberg-University of Mainz, Duesbergweg 10-14, D-55128, Mainz, Germany
| |
Collapse
|
2
|
Zentel R. Nanoparticular Carriers As Objects to Study Intentional and Unintentional Bioconjugation. ACS Biomater Sci Eng 2024; 10:3-11. [PMID: 35412796 DOI: 10.1021/acsbiomaterials.2c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synthetic nanoparticles are interesting to use in the study of ligation with natural biorelevant structures. That is because they present an intermediate situation between reactions onto soluble polymers or onto solid surfaces. In addition, differently functionalized nanoparticles can be separated and studied independently thereafter. So what would be a "patchy functionalization" on a macroscopic surface results in differently functionalized nanoparticles, which can be separated after the interaction with body fluids. This paper will review bioconjugation of such nanoparticles with a special focus on recent results concerning the formation of a protein corona by unspecific adsorption (lower lines of TOC), which presents an unintentional bioconjugation, and on new aspects of intentionally performed bioconjugation by covalent chemistry (upper line). For this purpose, it is important that polymeric nanoparticles without a protein corona can be prepared. This opens, e.g., the possibility to look for special proteins adsorbed as a result of the natural compound ligated to the nanoparticle by covalent chemistry, like the Fc part of antibodies. At the same time, the use of highly reactive, bioorthogonal functional groups (inverse electron demand Diels-Alder cycloaddition) on the nanoparticles allows an efficient ligation after administration inside the body, i.e., in vivo.
Collapse
Affiliation(s)
- Rudolf Zentel
- Department of Chemistry, Universität Mainz, Duesbergweg 10-14, D-55099 Mainz, Germany
| |
Collapse
|
3
|
Bauer T, Alberg I, Zengerling LA, Besenius P, Koynov K, Slütter B, Zentel R, Que I, Zhang H, Barz M. Tuning the Cross-Linking Density and Cross-Linker in Core Cross-Linked Polymeric Micelles and Its Effects on the Particle Stability in Human Blood Plasma and Mice. Biomacromolecules 2023; 24:3545-3556. [PMID: 37449781 PMCID: PMC10428167 DOI: 10.1021/acs.biomac.3c00308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/27/2023] [Indexed: 07/18/2023]
Abstract
Core cross-linked polymeric micelles (CCPMs) are designed to improve the therapeutic profile of hydrophobic drugs, reduce or completely avoid protein corona formation, and offer prolonged circulation times, a prerequisite for passive or active targeting. In this study, we tuned the CCPM stability by using bifunctional or trifunctional cross-linkers and varying the cross-linkable polymer block length. For CCPMs, amphiphilic thiol-reactive polypept(o)ides of polysarcosine-block-poly(S-ethylsulfonyl-l-cysteine) [pSar-b-pCys(SO2Et)] were employed. While the pCys(SO2Et) chain lengths varied from Xn = 17 to 30, bivalent (derivatives of dihydrolipoic acid) and trivalent (sarcosine/cysteine pentapeptide) cross-linkers have been applied. Asymmetrical flow field-flow fraction (AF4) displayed the absence of aggregates in human plasma, yet for non-cross-linked PM and CCPMs cross-linked with dihydrolipoic acid at [pCys(SO2Et)]17, increasing the cross-linking density or the pCys(SO2Et) chain lengths led to stable CCPMs. Interestingly, circulation time and biodistribution in mice of non-cross-linked and bivalently cross-linked CCPMs are comparable, while the trivalent peptide cross-linkers enhance the circulation half-life from 11 to 19 h.
Collapse
Affiliation(s)
- Tobias
A. Bauer
- Leiden
Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Irina Alberg
- Department
of Chemistry, Johannes Gutenberg University
Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Lydia A. Zengerling
- Department
of Chemistry, Johannes Gutenberg University
Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Pol Besenius
- Department
of Chemistry, Johannes Gutenberg University
Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Kaloian Koynov
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Bram Slütter
- Leiden
Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Rudolf Zentel
- Department
of Chemistry, Johannes Gutenberg University
Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Ivo Que
- Translational
Nanobiomaterials and Imaging Group, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333
ZA Leiden, The Netherlands
| | - Heyang Zhang
- Leiden
Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Matthias Barz
- Leiden
Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Department
of Dermatology, University Medical Center
of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| |
Collapse
|
4
|
Bauer TA, Schramm J, Fenaroli F, Siemer S, Seidl CI, Rosenauer C, Bleul R, Stauber RH, Koynov K, Maskos M, Barz M. Complex Structures Made Simple - Continuous Flow Production of Core Cross-Linked Polymeric Micelles for Paclitaxel Pro-Drug-Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210704. [PMID: 36934295 DOI: 10.1002/adma.202210704] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/10/2023] [Indexed: 05/26/2023]
Abstract
Translating innovative nanomaterials to medical products requires efficient manufacturing techniques that enable large-scale high-throughput synthesis with high reproducibility. Drug carriers in medicine embrace a complex subset of tasks calling for multifunctionality. Here, the synthesisof pro-drug-loaded core cross-linked polymeric micelles (CCPMs) in a continuous flow processis reported, which combines the commonly separated steps of micelle formation, core cross-linking, functionalization, and purification into a single process. Redox-responsive CCPMs are formed from thiol-reactive polypept(o)ides of polysarcosine-block-poly(S-ethylsulfonyl-l-cysteine) and functional cross-linkers based on dihydrolipoic acid hydrazide for pH-dependent release of paclitaxel. The precisely controlled microfluidic process allows the production of spherical micelles (Dh = 35 nm) with low polydispersity values (PDI < 0.1) while avoiding toxic organic solvents and additives with unfavorable safety profiles. Self-assembly and cross-linking via slit interdigital micromixers produces 350-700 mg of CCPMs/h per single system, while purification by online tangential flow filtration successfully removes impurities (unimer ≤ 0.5%). The formed paclitaxel-loaded CCPMs possess the desired pH-responsive release profile, display stable drug encapsulation, an improved toxicity profile compared to Abraxane (a trademark of Bristol-Myers Squibb), and therapeutic efficiency in the B16F1-xenotransplanted zebrafish model. The combination of reactive polymers, functional cross-linkers, and microfluidics enables the continuous-flow synthesis of therapeutically active CCPMs in a single process.
Collapse
Affiliation(s)
- Tobias A Bauer
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333CC, The Netherlands
| | - Jonas Schramm
- Fraunhofer Institute for Microengineering and Microsystems, Carl-Zeiss-Str. 18-20, 55129, Mainz, Germany
| | - Federico Fenaroli
- Department for Biosciences, University of Oslo, Blindernveien 31, 0371, Oslo, Norway
| | - Svenja Siemer
- Molecular and Cellular Oncology/Nanobiomedicine, ENT Department, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Christine I Seidl
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333CC, The Netherlands
| | - Christine Rosenauer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Regina Bleul
- Fraunhofer Institute for Microengineering and Microsystems, Carl-Zeiss-Str. 18-20, 55129, Mainz, Germany
| | - Roland H Stauber
- Molecular and Cellular Oncology/Nanobiomedicine, ENT Department, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Michael Maskos
- Fraunhofer Institute for Microengineering and Microsystems, Carl-Zeiss-Str. 18-20, 55129, Mainz, Germany
| | - Matthias Barz
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333CC, The Netherlands
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| |
Collapse
|
5
|
The in vivo fate of polymeric micelles. Adv Drug Deliv Rev 2022; 188:114463. [PMID: 35905947 DOI: 10.1016/j.addr.2022.114463] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/10/2022] [Accepted: 07/15/2022] [Indexed: 12/12/2022]
Abstract
This review aims to provide a systemic analysis of the in vivo, as well as subcellular, fate of polymeric micelles (PMs), starting from the entry of PMs into the body. Few PMs are able to cross the biological barriers intact and reach the circulation. In the blood, PMs demonstrate fairly good stability mainly owing to formation of protein corona despite controversial results reported by different groups. Although the exterior hydrophilic shells render PMs "long-circulating", the biodistribution of PMs into the mononuclear phagocyte systems (MPS) is dominant as compared with non-MPS organs and tissues. Evidence emerges to support that the copolymer poly(ethylene glycol)-poly(lactic acid) (PEG-PLA) is first broken down into pieces of PEG and PLA and then remnants to be eliminated from the body finally. At the cellular level, PMs tend to be internalized via endocytosis due to their particulate nature and disassembled and degraded within the cell. Recent findings on the effect of particle size, surface characteristics and shape are also reviewed. It is envisaged that unraveling the in vivo and subcellular fate sheds light on the performing mechanisms and gears up the clinical translation of PMs.
Collapse
|
6
|
Huppertsberg A, Leps C, Alberg I, Rosenauer C, Morsbach S, Landfester K, Tenzer S, Zentel R, Nuhn L. Squaric Ester-Based Nanogels Induce No Distinct Protein Corona but Entrap Plasma Proteins into their Porous Hydrogel Network. Macromol Rapid Commun 2022; 43:e2200318. [PMID: 35687083 DOI: 10.1002/marc.202200318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/17/2022] [Indexed: 11/11/2022]
Abstract
After intravenous administration of nanocarriers, plasma proteins may rapidly adsorb onto their surfaces. This process hampers the prediction of the nanocarriers' pharmacokinetics as it determines their physiological identity in a complex biological environment. Toward clinical translation it is therefore an essential prerequisite to investigate the nanocarriers' interaction with plasma proteins. Here, this work evaluates a highly "PEGylated" squaric ester-based nanogel with inherent prolonged blood circulation properties. After incubation with human blood plasma, the nanogels are isolated by asymmetrical flow-field flow fractionation. Multiangle light scattering measurements confirm the absence of significant size increases as well as aggregation upon plasma incubation. However, proteomic analyses by gel electrophoresis find minor absolute amounts of proteins (3 wt%), whereas label-free liquid chromatography mass spectrometry identify 65 enriched proteins. Interestingly, the relative abundance of these proteins is almost similar to their proportion in pure native plasma. Due to the nanogels' hydrated and porous network morphology, it is concluded that the detected proteins rather result from passive diffusion into the nanogel network than from specific interactions at the plasma particle interface. Consequently, these results do not indicate a classical surface protein corona but rather reflect the highly outer and inner stealth-like behavior of the porous hydrogel network.
Collapse
Affiliation(s)
| | - Christian Leps
- Institute for Immunology, University Medical Center of Mainz, 55131, Mainz, Germany
| | - Irina Alberg
- Department of Chemistry, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | | | - Svenja Morsbach
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | | | - Stefan Tenzer
- Institute for Immunology, University Medical Center of Mainz, 55131, Mainz, Germany
| | - Rudolf Zentel
- Department of Chemistry, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Lutz Nuhn
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany.,Chair of Macromolecular Chemistry, Faculty of Chemistry and Pharmacy, Julius Maximilian University Würzburg, 97074, Würzburg, Germany
| |
Collapse
|
7
|
Siemer S, Bauer TA, Scholz P, Breder C, Fenaroli F, Harms G, Dietrich D, Dietrich J, Rosenauer C, Barz M, Becker S, Strieth S, Reinhardt C, Fauth T, Hagemann J, Stauber RH. Targeting Cancer Chemotherapy Resistance by Precision Medicine-Driven Nanoparticle-Formulated Cisplatin. ACS NANO 2021; 15:18541-18556. [PMID: 34739225 DOI: 10.1021/acsnano.1c08632] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Therapy resistance is the major cause of cancer death. As patients respond heterogeneously, precision/personalized medicine needs to be considered, including the application of nanoparticles (NPs). The success of therapeutic NPs requires to first identify clinically relevant resistance mechanisms and to define key players, followed by a rational design of biocompatible NPs capable to target resistance. Consequently, we employed a tiered experimental pipeline from in silico to analytical and in vitro to overcome cisplatin resistance. First, we generated cisplatin-resistant cancer cells and used next-generation sequencing together with CRISPR/Cas9 knockout technology to identify the ion channel LRRC8A as a critical component for cisplatin resistance. LRRC8A's cisplatin-specificity was verified by testing free as well as nanoformulated paclitaxel or doxorubicin. The clinical relevance of LRRC8A was demonstrated by its differential expression in a cohort of 500 head and neck cancer patients, correlating with patient survival under cisplatin therapy. To overcome LRRC8A-mediated cisplatin resistance, we constructed cisplatin-loaded, polysarcosine-based core cross-linked polymeric NPs (NPCis, Ø ∼ 28 nm) with good colloidal stability, biocompatibility (low immunogenicity, low toxicity, prolonged in vivo circulation, no complement activation, no plasma protein aggregation), and low corona formation properties. 2D/3D-spheroid cell models were employed to demonstrate that, in contrast to standard of care cisplatin, NPCis significantly (p < 0.001) eradicated all cisplatin-resistant cells by circumventing the LRRC8A-transport pathway via the endocytic delivery route. We here identified LRRC8A as critical for cisplatin resistance and suggest LRRC8A-guided patient stratification for ongoing or prospective clinical studies assessing therapy resistance to nanoscale platinum drug nanoformulations versus current standard of care formulations.
Collapse
Affiliation(s)
- Svenja Siemer
- Nanobiomedicine/ENT Department, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Tobias A Bauer
- Leiden Academic Center for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55099 Mainz, Germany Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Paul Scholz
- BRAIN AG, Darmstaedter Straße 34, 64673 Zwingenberg, Germany
| | - Christina Breder
- Nanobiomedicine/ENT Department, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Federico Fenaroli
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Gregory Harms
- Cell Biology Unit, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Dimo Dietrich
- Department of Otorhinolaryngology, University Medical Center Bonn, 53127 Bonn, Germany
| | - Jörn Dietrich
- Department of Otorhinolaryngology, University Medical Center Bonn, 53127 Bonn, Germany
| | - Christine Rosenauer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Matthias Barz
- Leiden Academic Center for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55099 Mainz, Germany Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Sven Becker
- Department of Otorhinolaryngology, University Medical Center Tuebingen, Elfriede-Aulhorn-Str. 5, 72076 Tuebingen, Germany
| | - Sebastian Strieth
- Department of Otorhinolaryngology, University Medical Center Bonn, 53127 Bonn, Germany
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Torsten Fauth
- BRAIN AG, Darmstaedter Straße 34, 64673 Zwingenberg, Germany
| | - Jan Hagemann
- Nanobiomedicine/ENT Department, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Roland H Stauber
- Nanobiomedicine/ENT Department, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| |
Collapse
|