1
|
Cazin I, Rossegger E, Roppolo I, Sangermano M, Granitzer P, Rumpf K, Schlögl S. Digital light processing 3D printing of dynamic magneto-responsive thiol-acrylate composites. RSC Adv 2023; 13:17536-17544. [PMID: 37304810 PMCID: PMC10253501 DOI: 10.1039/d3ra02504g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023] Open
Abstract
Additive manufacturing is one of the most promising processing techniques for fabricating customized 3D objects. For the 3D printing of functional and stimuli-triggered devices, interest is steadily growing in processing materials with magnetic properties. Synthesis routes for magneto-responsive soft materials typically involve the dispersion of (nano)particles into a non-magnetic polymer matrix. Above their glass transition temperature, the shape of such composites can be conveniently adjusted by applying an external magnetic field. With their rapid response time, facile controllability, and reversible actuation, magnetically responsive soft materials can be used in the biomedical field (e.g. drug delivery, minimally invasive surgery), soft robotics or in electronic applications. Herein, we combine the magnetic response with thermo-activated healability by introducing magnetic Fe3O4 nanoparticles into a dynamic photopolymer network, which undergoes thermo-activated bond exchange reactions. The resin is based on a radically curable thiol-acrylate system, whose composition is optimized towards processability via digital light processing 3D printing. A mono-functional methacrylate phosphate is applied as a stabilizer to increase the resins' shelf life by preventing thiol-Michael reactions. Once photocured, the organic phosphate further acts as a transesterification catalyst and activates bond exchange reactions at elevated temperature, which render the magneto-active composites mendable and malleable. The healing performance is demonstrated by recovering magnetic and mechanical properties after the thermally triggered mending of 3D-printed structures. We further demonstrate the magnetically driven movement of 3D-printed samples, which gives rise to the potential use of these materials in healable soft devices activated by external magnetic fields.
Collapse
Affiliation(s)
- Ines Cazin
- Polymer Competence Center Leoben GmbH Roseggerstrasse 12 A-8700 Leoben Austria
| | - Elisabeth Rossegger
- Polymer Competence Center Leoben GmbH Roseggerstrasse 12 A-8700 Leoben Austria
| | - Ignazio Roppolo
- Department of Applied Science and Technology, Politecnico di Torino, Duca degli Abruzzi, 24 10124 Torino Italy
| | - Marco Sangermano
- Department of Applied Science and Technology, Politecnico di Torino, Duca degli Abruzzi, 24 10124 Torino Italy
| | - Petra Granitzer
- Institute of Physics, University of Graz Universitätsplatz 3 8010 Graz Austria
| | - Klemens Rumpf
- Institute of Physics, University of Graz Universitätsplatz 3 8010 Graz Austria
| | - Sandra Schlögl
- Polymer Competence Center Leoben GmbH Roseggerstrasse 12 A-8700 Leoben Austria
| |
Collapse
|
2
|
Olmo C, Méndez C, Quintanilla PJ, Ortiz F, Renedo CJ, Ortiz A. Mineral and Ester Nanofluids as Dielectric Cooling Liquid for Power Transformers. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2723. [PMID: 35957155 PMCID: PMC9370386 DOI: 10.3390/nano12152723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Amidst the new techniques facing the improvement of cooling and insulating efficiency and the design of electric transformers, constrained by the current technologies, one of the more promising is the substitution of traditional dielectric oils for nanofluids. Research on nanofluids for their application in transformers as a coolant and dielectric medium have been performed during the last two decades and continue today. This review tries to collect and analyze the available information in this field and to offer it already dissected to researchers, focusing on the preparation methods and how nanoparticles affect the main properties of the base fluids. Here we also addressed the influence of different parameters as particle characteristics or environmental conditions in nanofluids performance, the evolution with time of the measured properties, or the neighboring relationship of nanofluids with other transformer components. In this sense, the most reviewed articles reflect enhancements of thermal conductivity or dielectric strength, as well as an improvement of time evolution of these properties, with respect to those that are found in base fluids, and, also, a better interaction between these nanofluids and dielectric cellulosics. Thus, the use of dielectric nanofluids in transformers may allow these machines to work safer or over their design parameters, reducing the risk of failure of the electrical networks and enhancing their life expectancy. Nevertheless, these advantages will not be useful unless a proper stability of nanofluids is ensured, which is achieved in a small part of revised articles. A compendium of the preparation methodology with this aim is proposed, to be checked in future works.
Collapse
|
3
|
Shahabadi N, Razlansari M, Zhaleh H. In vitro cytotoxicity studies of smart pH-sensitive lamivudine-loaded CaAl-LDH magnetic nanoparticles against Mel-Rm and A-549 cancer cells. J Biomol Struct Dyn 2020; 40:213-225. [PMID: 32873158 DOI: 10.1080/07391102.2020.1812431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this study, an effective nano-drug delivery system was prepared by the co-precipitation method via two steps; the preparation of Fe3O4 magnetic nanoparticles and its surface modification with layered double hydroxide (LDH) and loading lamivudine on this nanocarrier (Fe3O4@CaAl-LDH@Lamivudine). The developed nanoparticles (NPs) were characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray analysis, Fourier-transformed infrared spectroscopy, vibrating-sample magnetometry, thermogravimetric analysis, X-ray photoelectron spectroscopy and Brunauer-Emmett-Teller. The prepared system demonstrated an average size of 130 nm. Also, the drug entrapment efficiency was estimated at ∼70%. In vitro, drug release investigations showed a controlled and pH-dependent lamivudine release over 300 min. The in vitro cytotoxic activity of Fe3O4@CaAl-LDH@Lamivudine NPs was explored against Mel-Rm and A-549 cancer cell lines in comparison with lamivudine and nanocarrier using lactate dehydrogenase colorimetric and MTT assay. The results of the MTT assay revealed that the Fe3O4@CaAl-LDH@Lamivudine NPs significantly inhibited the proliferation of Mel-Rm and A-549 cells in a dose-dependent manner. The influences of Fe3O4@CaAl-LDH@Lamivudine on the cancer cell lines by different therapeutic investigation illustrated the remarkable effect in comparison with free drug. Finally, the achieved consequences confirm the anticancer properties of Fe3O4@CaAl-LDH@Lamivudine and indicate that they may be a cost-effective substitute in the treatment of lung and skin cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nahid Shahabadi
- Inorganic Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran.,Medical Biology Research Center (MBRC), University of Medical Sciences, Kermanshah, Iran
| | - Mahtab Razlansari
- Inorganic Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Hossein Zhaleh
- Substance Abuse Prevention Research Center, University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
4
|
Santos PCM, Machado TO, Santin JVC, Feuser PE, Córneo ES, Machado‐de‐Ávila RA, Sayer C, Araújo PHH. Superparamagnetic biobased poly(thioether‐ester) via thiol‐ene polymerization in miniemulsion for hyperthermia. J Appl Polym Sci 2020. [DOI: 10.1002/app.49741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Paula C. M. Santos
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina Florianópolis Brazil
| | - Thiago O. Machado
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina Florianópolis Brazil
| | - João V. C. Santin
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina Florianópolis Brazil
| | - Paulo E. Feuser
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina Florianópolis Brazil
| | - Emily S. Córneo
- Postgraduate Program in Health Science University of Southern Santa Catarina Florianópolis Brazil
| | | | - Claudia Sayer
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina Florianópolis Brazil
| | - Pedro H. H. Araújo
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina Florianópolis Brazil
| |
Collapse
|
5
|
Park J, Jin C, Lee S, Kim J, Choi H. Magnetically Actuated Degradable Microrobots for Actively Controlled Drug Release and Hyperthermia Therapy. Adv Healthc Mater 2019; 8:e1900213. [PMID: 31290597 DOI: 10.1002/adhm.201900213] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/21/2019] [Indexed: 11/07/2022]
Abstract
Microrobots facilitate targeted therapy due to their small size, minimal invasiveness, and precise wireless control. A degradable hyperthermia microrobot (DHM) with a 3D helical structure is developed, enabling actively controlled drug delivery, release, and hyperthermia therapy. The microrobot is made of poly(ethylene glycol) diacrylate (PEGDA) and pentaerythritol triacrylate (PETA) and contains magnetic Fe3 O4 nanoparticles (MNPs) and 5-fluorouracil (5-FU). Its locomotion is remotely and precisely controlled by a rotating magnetic field (RMF) generated by an electromagnetic actuation system. Drug-free DHMs reduce the viability of cancer cells by elevating the temperature under an alternating magnetic field (AMF), a hyperthermic effect. 5-FU is released from the proposed DHMs in normal-, high-burst-, and constant-release modes, controlled by the AMF. Finally, actively controlled drug release from the DHMs in normal- and high-burst-release mode results in a reduction in cell viability. The reduction in cell viability is of greater magnitude in high-burst- than in normal-release mode. In summary, biodegradable DHMs have potential for actively controlled drug release and hyperthermia therapy.
Collapse
Affiliation(s)
- Jongeon Park
- Department of Robotics EngineeringDGIST‐ETH Microrobot Research CenterDaegu Gyeongbuk Institute of Science and Technology (DGIST) 333, Techno jungang‐daero, Hyeonpung‐Myeon, Dalseong‐Gun Daegu 42988 Republic of Korea
| | - Chaewon Jin
- Department of Robotics EngineeringDGIST‐ETH Microrobot Research CenterDaegu Gyeongbuk Institute of Science and Technology (DGIST) 333, Techno jungang‐daero, Hyeonpung‐Myeon, Dalseong‐Gun Daegu 42988 Republic of Korea
| | - Seungmin Lee
- Department of Robotics EngineeringDGIST‐ETH Microrobot Research CenterDaegu Gyeongbuk Institute of Science and Technology (DGIST) 333, Techno jungang‐daero, Hyeonpung‐Myeon, Dalseong‐Gun Daegu 42988 Republic of Korea
| | - Jin‐Young Kim
- Department of Robotics EngineeringDGIST‐ETH Microrobot Research CenterDaegu Gyeongbuk Institute of Science and Technology (DGIST) 333, Techno jungang‐daero, Hyeonpung‐Myeon, Dalseong‐Gun Daegu 42988 Republic of Korea
| | - Hongsoo Choi
- Department of Robotics EngineeringDGIST‐ETH Microrobot Research CenterDaegu Gyeongbuk Institute of Science and Technology (DGIST) 333, Techno jungang‐daero, Hyeonpung‐Myeon, Dalseong‐Gun Daegu 42988 Republic of Korea
| |
Collapse
|
6
|
Le VT, Pham TM, Doan VD, Lebedeva OE, Nguyen HT. Removal of Pb(ii) ions from aqueous solution using a novel composite adsorbent of Fe3o4/PVA/spent coffee grounds. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2019.1565770] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Van Thuan Le
- Center for Advanced Chemistry, Institute of Research & Development, Duy Tan University, Danang city, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Center for High Technology Development, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Thanh Minh Pham
- Deparment of Biology and Chemistry, Belgorod State National Research University, Belgorod, Russia
- Center of Research and Radioisotope Production, Nuclear Research Institute, Dalat, Vietnam
| | - Van Dat Doan
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh city, Ho Chi Minh city, Vietnam
| | - Olga Evgenyevna Lebedeva
- Deparment of Biology and Chemistry, Belgorod State National Research University, Belgorod, Russia
| | - Hoai Thuong Nguyen
- Division of Computational Physics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Electrical & Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
7
|
Amine functional magnetic nanoparticles via waterborne thiol-ene suspension photopolymerization for antibody immobilization. Colloids Surf B Biointerfaces 2018; 170:122-128. [PMID: 29894832 DOI: 10.1016/j.colsurfb.2018.05.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/07/2018] [Accepted: 05/26/2018] [Indexed: 12/27/2022]
Abstract
The modification of magnetic nanoparticles (MNPs) via different routes for biomolecule binding is an attractive area of research. Waterborne thiol-ene suspension photopolymerization (TESP) can be a useful method for preparing functional MNPs. In this study, for the very first time waterborne TESP was performed in the presence of MNPs. Neat MNPs were coated and in situ functionalized with amine groups by using thiol-ene chemistry. Engrailed-2 (EN2) protein, a potential biomarker for various cancers such as prostate cancer, bladder cancer, breast cancer and ovarian cancer, is known to be a strong binder to a specific DNA sequence (50-TAATTA-30) to regulate transcription. Anti-EN2 antibodies were immobilized onto these MNPs by physical adsorption and covalent bonding methods, respectively. The amount of the physically immobilized antibodies (0.54 mg/g) were found to be lower than the loading of the covalently bonded antibodies (1.775 mg/g). The biomarker level in the artificial solutions prepared was determined by enzyme-linked immunosorbent assay. Coated MNPs were characterized by FTIR, TGA, SEM and STEM. After TESP, the average diameter of the neat magnetite nanoparticles increased from ∼15 nm to ∼32 nm.
Collapse
|
8
|
Pham Thanh Minh, Lebedeva OE. Adsorption Properties of a Magnetite Composite with Coffee Waste. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2018. [DOI: 10.1134/s0036024418100217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Aqueous-phase synthesis of iron oxide nanoparticles and composites for cancer diagnosis and therapy. Adv Colloid Interface Sci 2017; 249:374-385. [PMID: 28335985 DOI: 10.1016/j.cis.2017.02.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/24/2017] [Accepted: 02/24/2017] [Indexed: 12/18/2022]
Abstract
The design and development of multifunctional nanoplatforms for biomedical applications still remains to be challenging. This review reports the recent advances in aqueous-phase synthesis of iron oxide nanoparticles (Fe3O4 NPs) and their composites for magnetic resonance (MR) imaging and photothermal therapy of cancer. Water dispersible and colloidally stable Fe3O4 NPs synthesized via controlled coprecipitation route, hydrothermal route and mild reduction route are introduced. Some of key strategies to improve the r2 relaxivity of Fe3O4 NPs and to enhance their uptake by cancer cells are discussed in detail. These aqueous-phase synthetic methods can also be applied to prepare Fe3O4 NP-based composites for dual-mode molecular imaging applications. More interestingly, aqueous-phase synthesized Fe3O4 NPs are able to be fabricated as multifunctional theranostic agents for multi-mode imaging and photothermal therapy of cancer. This review will provide some meaningful information for the design and development of various Fe3O4 NP-based multifunctional nanoplatforms for cancer diagnosis and therapy.
Collapse
|
10
|
Investigating Size- and Temperature-Dependent Coercivity and Saturation Magnetization in PEG Coated Fe3O4 Nanoparticles. MAGNETOCHEMISTRY 2017. [DOI: 10.3390/magnetochemistry3020019] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
11
|
Bazzano M, Pisano R, Brelstaff J, Spillantini MG, Sidoryk-Wegrzynowicz M, Rizza G, Sangermano M. Synthesis of polymeric nanocapsules by radical UV-activated interface-emulsion polymerization. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28226] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Marco Bazzano
- Department of Applied Science and Technology; Politecnico di Torino; Torino Italy
| | - Roberto Pisano
- Department of Applied Science and Technology; Politecnico di Torino; Torino Italy
| | - Jack Brelstaff
- Department of Clinical Neurosciences; Clifford Allbutt Building, University of Cambridge; Cambridge United Kingdom
| | - Maria Grazia Spillantini
- Department of Clinical Neurosciences; Clifford Allbutt Building, University of Cambridge; Cambridge United Kingdom
| | - Marta Sidoryk-Wegrzynowicz
- Department of Clinical Neurosciences; Clifford Allbutt Building, University of Cambridge; Cambridge United Kingdom
| | - Giancarlo Rizza
- Laboratoire des Solides Irradiés, CEA-IRAMIS-CNRS, Ecolé Polytechnique; Palaiseau Cedex France
| | - Marco Sangermano
- Department of Applied Science and Technology; Politecnico di Torino; Torino Italy
| |
Collapse
|
12
|
Zahraei M, Marciello M, Lazaro-Carrillo A, Villanueva A, Herranz F, Talelli M, Costo R, Monshi A, Shahbazi-Gahrouei D, Amirnasr M, Behdadfar B, Morales MP. Versatile theranostics agents designed by coating ferrite nanoparticles with biocompatible polymers. NANOTECHNOLOGY 2016; 27:255702. [PMID: 27184442 DOI: 10.1088/0957-4484/27/25/255702] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Three biocompatible polymers, polyethylene glycol (PEG), dextran and chitosan, have been used in this work to control the colloidal stability of magnetic nanoparticles (14 ± 5 nm in diameter) and to vary the aggregation state in order to study their effect on relaxometric and heating properties. Two different coating strategies have been deeply developed; one based on the formation of an amide bond between citric acid coated nanoparticles (NPs) and amine groups present on the polymer surface and the other based on the NP encapsulation. Relaxometric properties revealed that proton relaxation rates strongly depend on the coating layer hydrophilicity and the aggregation state of the particles due to the presence of magnetic interactions. Thus, while PEG coating reduces particle aggregation by increasing inter-particle spacing leading to reduction of both T1 and T2 relaxation, dextran and chitosan lead to an increase mainly in T2 values due to the aggregation of particles in bigger clusters where they are in close contact. Dextran and chitosan coated NPs have also shown a remarkable heating effect during the application of an alternating magnetic field. They have proved to be potential candidates as theranostic agents for cancer diagnosis and treatment. Finally, cytotoxicity of PEG conjugated NPs, which seem to be ideal for intravenous administration because of their small hydrodynamic size, was investigated resulting in high cell viability even at 0.2 mg Fe ml(-1) after 24 h of incubation. This suspension can be used as drug/biomolecule carrier for in vivo applications.
Collapse
Affiliation(s)
- M Zahraei
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Maleki A, Zand P, Mohseni Z. Fe3O4@PEG-SO3H rod-like morphology along with the spherical nanoparticles: novel green nanocomposite design, preparation, characterization and catalytic application. RSC Adv 2016. [DOI: 10.1039/c6ra24029a] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new heterogeneous nanocatalyst was successfully synthesized, completely characterized and efficiently applied in the synthesis of dihydropyrimidines.
Collapse
Affiliation(s)
- Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory
- Department of Chemistry
- Iran University of Science and Technology
- Tehran 16846-13114
- Iran
| | - Pedram Zand
- Catalysts and Organic Synthesis Research Laboratory
- Department of Chemistry
- Iran University of Science and Technology
- Tehran 16846-13114
- Iran
| | - Zahra Mohseni
- Catalysts and Organic Synthesis Research Laboratory
- Department of Chemistry
- Iran University of Science and Technology
- Tehran 16846-13114
- Iran
| |
Collapse
|
14
|
Loginova TP, Timofeeva GI, Lependina OL, Shandintsev VA, Matyushin AA, Khotina IA, Shtykova EV. Fabrication and study of properties of magnetite nanoparticles in hybrid micelles of polystyrene-block-polyethylene oxide and sodium dodecyl sulfate. CRYSTALLOGR REP+ 2016. [DOI: 10.1134/s1063774516010107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Bordoni AV, Lombardo MV, Wolosiuk A. Photochemical radical thiol–ene click-based methodologies for silica and transition metal oxides materials chemical modification: a mini-review. RSC Adv 2016. [DOI: 10.1039/c6ra10388j] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The photochemical radical thiol–ene addition reaction (PRTEA) is a highly powerful synthetic technique for surface modification.
Collapse
Affiliation(s)
- Andrea V. Bordoni
- Gerencia Química – Centro Atómico Constituyentes
- Comisión Nacional de Energía Atómica
- CONICET
- B1650KNA San Martín
- Argentina
| | - M. Verónica Lombardo
- Gerencia Química – Centro Atómico Constituyentes
- Comisión Nacional de Energía Atómica
- CONICET
- B1650KNA San Martín
- Argentina
| | - Alejandro Wolosiuk
- Gerencia Química – Centro Atómico Constituyentes
- Comisión Nacional de Energía Atómica
- CONICET
- B1650KNA San Martín
- Argentina
| |
Collapse
|
16
|
Köwitsch A, Niepel MS, Michanetzis GPA, Missirlis YF, Groth T. Effect of Immobilized Thiolated Glycosaminoglycans on Fibronectin Adsorption and Behavior of Fibroblasts. Macromol Biosci 2015; 16:381-94. [DOI: 10.1002/mabi.201500276] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/10/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Alexander Köwitsch
- Biomedical Materials Group; Institute of Pharmacy; Martin Luther University Halle-Wittenberg; 06099 Halle (Saale) Germany
| | - Marcus S. Niepel
- Biomedical Materials Group; Institute of Pharmacy; Martin Luther University Halle-Wittenberg; 06099 Halle (Saale) Germany
| | - Georgios P. A. Michanetzis
- Biomedical Engineering Laboratory; Department of Mechanical Engineering; University of Patras; 26504 Rion-Patras Greece
| | - Yannis F. Missirlis
- Biomedical Engineering Laboratory; Department of Mechanical Engineering; University of Patras; 26504 Rion-Patras Greece
| | - Thomas Groth
- Biomedical Materials Group; Institute of Pharmacy; Martin Luther University Halle-Wittenberg; 06099 Halle (Saale) Germany
| |
Collapse
|
17
|
Hashemian S, Dehghanpor A, Moghahed M. Cu0.5Mn0.5Fe2O4 nano spinels as potential sorbent for adsorption of brilliant green. J IND ENG CHEM 2015. [DOI: 10.1016/j.jiec.2014.10.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Rajan B, Sathish S, Balakumar S, Devaki T. Synthesis and dose interval dependent hepatotoxicity evaluation of intravenously administered polyethylene glycol-8000 coated ultra-small superparamagnetic iron oxide nanoparticle on Wistar rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 39:727-735. [PMID: 25721486 DOI: 10.1016/j.etap.2015.01.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 01/19/2015] [Accepted: 01/28/2015] [Indexed: 06/04/2023]
Abstract
Superparamagnetic iron oxide nanoparticles are being used in medical imaging, drug delivery, cancer therapy, and so on. However, there is a direct need to identify any nanotoxicity associated with these nanoparticles. However uncommon, drug-induced liver injury (DILI) is a major health concern that challenges pharmaceutical industry and drug regulatory agencies alike. In this study we have synthesized and evaluated the dose interval dependent hepatotoxicity of polyethylene glycol-8000 coated ultra-small superparamagnetic iron oxide nanoparticles (PUSPIOs). To assess the hepatotoxicity of intravenously injected PUSPIOs, alterations in basic clinical parameters, hematological parameters, hemolysis assay, serum levels of liver marker enzymes, serum and liver lipid peroxidation (LPO) levels, enzymatic antioxidant levels, and finally histology of liver, kidney, spleen, lung, brain, and heart tissues were studied in control and experimental Wistar rat groups over a 30-day period. The results of our study showed a significant increase in the aspartate transaminase (AST) enzyme activity at a dose of 10mg/kg b.w. PUSPIOs twice a week. Besides, alanine transaminase (ALT), alkaline phosphatase (ALP), and gamma-glutamyl transferase (γGT) enzyme activity showed a slender increase when compared with control experimental groups. A significant increase in the serum and liver LPO levels at a dose of 10mg/kg b.w. PUSPIOs twice a week was also observed. Histological analyses of liver, kidney, spleen, lung, brain and heart tissue samples showed no obvious uncharacteristic changes. In conclusion, PUSPIOs were found to posses excellent biocompatibility and Wistar rats showed much better drug tolerance to the dose of 10mg/kg b.w. per week than the dose of 10mg/kg b.w. twice a week for the period of 30 days.
Collapse
Affiliation(s)
- Balan Rajan
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai- 600025, Tamil Nadu, India
| | - Shanmugam Sathish
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai- 600025, Tamil Nadu, India
| | - Subramanian Balakumar
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai- 600025, Tamil Nadu, India
| | - Thiruvengadam Devaki
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai- 600025, Tamil Nadu, India.
| |
Collapse
|
19
|
Georgiadou V, Kokotidou C, Le Droumaguet B, Carbonnier B, Choli-Papadopoulou T, Dendrinou-Samara C. Oleylamine as a beneficial agent for the synthesis of CoFe₂O₄ nanoparticles with potential biomedical uses. Dalton Trans 2014; 43:6377-88. [PMID: 24604256 DOI: 10.1039/c3dt53179a] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The multifunctional role of oleylamine (OAm) as a versatile and flexible reagent in synthesis as well as a desired surface ligand for the synthesis of CoFe2O4 nanoparticles (NPs) is described. CoFe2O4 NPs were prepared by a facile, reproducible and scalable solvothermal approach in the presence of pure OAm. By monitoring the volume of OAm, different shapes of NPs, spherical and truncated, were formed. The syntheses led to high yields of monodispersed and considerably small (9-11 nm) CoFe2O4 NPs with enhanced magnetization (M(s) = 84.7-87.5 emu g(-1)). The resulting hydrophobic CoFe2O4 NPs were easily transferred to an aqueous phase through the formation of reverse micelles between the hydrophobic chains of OAm and cetyltrimethylammonium bromide (CTAB) and transverse relaxivities (r2) were measured. The spherical NPs had a greater effect on water proton relaxivity (r2 = 553 mM(-1) s(-1)) at an applied magnetic field of 11.7 T. The NPs became fluorescent probes by exploiting the presence of the double bond of OAm in the middle of the molecule; a thiol-ene "click" reaction with the fluorophore bovine serum albumin (FITC-BSA) was achieved. The labeled/biofunctionalized CoFe2O4 NPs interacted with cancer (HeLa and A549) and non-cancer cell lines (MRC5 and dental MSCS) and cell viability was estimated. A clear difference of toxicity between the cancer and non-cancer cells was observed while low cytotoxicity in living cells was supported. Confocal laser microscopy showed that NPs entered the cell membranes and were firstly localized close to them provoking a membrane expansion and were further accumulated perinuclearly without entering the nuclei.
Collapse
Affiliation(s)
- Violetta Georgiadou
- Department of Inorganic Chemistry
- Aristotle University of Thessaloniki
- 54124 Thessaloniki, Greece
| | - Chrysoula Kokotidou
- Department of Biochemistry
- Aristotle University of Thessaloniki
- 54124 Thessaloniki, Greece
| | - Benjamin Le Droumaguet
- Institut de Chimie et des Matériaux
- Paris-Est (ICMPE)-UMR 7182
- 94320 Thiais, France
- Université Paris-Est Créteil Val-de-Marne
- Faculté des Sciences 61
| | - Benjamin Carbonnier
- Institut de Chimie et des Matériaux
- Paris-Est (ICMPE)-UMR 7182
- 94320 Thiais, France
- Université Paris-Est Créteil Val-de-Marne
- Faculté des Sciences 61
| | | | | |
Collapse
|
20
|
Lowe AB. Thiol–ene “click” reactions and recent applications in polymer and materials synthesis: a first update. Polym Chem 2014. [DOI: 10.1039/c4py00339j] [Citation(s) in RCA: 579] [Impact Index Per Article: 57.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This contribution serves as an update to a previous review (Polym. Chem.2010,1, 17–36) and highlights recent applications of thiol–ene ‘click’ chemistry as an efficient tool for both polymer/materials synthesis as well as modification.
Collapse
Affiliation(s)
- Andrew B. Lowe
- School of Chemical Engineering
- Centre for Advanced Macromolecular Design
- UNSW Australia
- University of New South Wales
- Kensington Sydney, Australia
| |
Collapse
|
21
|
Synthesis of flexible magnetic nanohybrid based on bacterial cellulose under ultrasonic irradiation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:2407-12. [PMID: 23498276 DOI: 10.1016/j.msec.2013.02.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 02/01/2013] [Accepted: 02/04/2013] [Indexed: 11/20/2022]
Abstract
Flexible magnetic membrane based on bacterial cellulose (BC) was successfully prepared by in-situ synthesis of the Fe3O4 nanoparticles under different conditions and its properties were characterized. The results demonstrated that the Fe3O4 nanoparticles coated with PEG were well homogeneously dispersed in the BC matrix under ultrasonic irradiation with the saturation magnetization of 40.58 emu/g. Besides that, the membranes exhibited the striking flexibility and mechanical properties. This study provided a green and facile method to inhibit magnetic nanoparticle aggregation without compromising the mechanical properties of the nanocomposites. Magnetically responsive BC membrane would have potential applications in electronic actuators, information storage, electromagnetic shielding coating and anti-counterfeit.
Collapse
|
22
|
Mukhopadhyay A, Joshi N, Chattopadhyay K, De G. A facile synthesis of PEG-coated magnetite (Fe3O4) nanoparticles and their prevention of the reduction of cytochrome c. ACS APPLIED MATERIALS & INTERFACES 2012; 4:142-9. [PMID: 22111689 DOI: 10.1021/am201166m] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We report here a facile and green synthetic approach to prepare magnetite (Fe(3)O(4)) nanoparticles (NPs) with magnetic core and polyethylene glycol (PEG) surface coating. The interaction of the bare and PEG-coated Fe(3)O(4) NPs with cytochrome c (cyt c, an important protein with direct role in the electron transfer chain) is also reported in this study. With ultrasonication as the only peptization method and water as the synthesis medium, this method is easy, fast, and environmentally benign. The PEG coated NPs are highly water dispersible and stable. The bare NPs have considerable magnetism at room temperature; surface modification by PEG has resulted in softening the magnetization. This approach can very well be applicable to prepare biocompatible, surface-modified soft magnetic materials, which may offer enormous utility in the field of biomedical research. Detailed characterizations including XRD, FTIR, TG/DTA, TEM, and VSM of the PEG-coated Fe(3)O(4) NPs were carried out in order to ensure the future applicability of this method. Although the interaction of bare NPs with cyt c shows reduction of the protein, efficient surface modification by PEG prevents its reduction.
Collapse
Affiliation(s)
- Anindita Mukhopadhyay
- Nano-Structured Materials Division, Central Glass and Ceramic Research Institute, Council of Scientific & Industrial Research, 196 Raja S. C. Mullick Road, Kolkata 700032, India
| | | | | | | |
Collapse
|