1
|
Tavares MR, Kirakci K, Kotov N, Pechar M, Lang K, Pola R, Etrych T. Octahedral Molybdenum Cluster-Based Nanomaterials for Potential Photodynamic Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3350. [PMID: 36234477 PMCID: PMC9565569 DOI: 10.3390/nano12193350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Photo/radiosensitizers, such as octahedral molybdenum clusters (Mo6), have been intensively studied for photodynamic applications to treat various diseases. However, their delivery to the desired target can be hampered by its limited solubility, low stability in physiological conditions, and inappropriate biodistribution, thus limiting the therapeutic effect and increasing the side effects of the therapy. To overcome such obstacles and to prepare photofunctional nanomaterials, we employed biocompatible and water-soluble copolymers based on N-(2-hydroxypropyl)methacrylamide (pHPMA) as carriers of Mo6 clusters. Several strategies based on electrostatic, hydrophobic, or covalent interactions were employed for the formation of polymer-cluster constructs. Importantly, the luminescent properties of the Mo6 clusters were preserved upon association with the polymers: all polymer-cluster constructs exhibited an effective quenching of their excited states, suggesting a production of singlet oxygen (O2(1Δg)) species which is a major factor for a successful photodynamic treatment. Even though the colloidal stability of all polymer-cluster constructs was satisfactory in deionized water, the complexes prepared by electrostatic and hydrophobic interactions underwent severe aggregation in phosphate buffer saline (PBS) accompanied by the disruption of the cohesive forces between the cluster and polymer molecules. On the contrary, the conjugates prepared by covalent interactions notably displayed colloidal stability in PBS in addition to high luminescence quantum yields, suggesting that pHPMA is a suitable nanocarrier for molybdenum cluster-based photosensitizers intended for photodynamic applications.
Collapse
Affiliation(s)
- Marina Rodrigues Tavares
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského Náměstí 2, 162 06 Prague 6, Czech Republic
| | - Kaplan Kirakci
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Husinec-Řež 1001, Czech Republic
| | - Nikolay Kotov
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského Náměstí 2, 162 06 Prague 6, Czech Republic
| | - Michal Pechar
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského Náměstí 2, 162 06 Prague 6, Czech Republic
| | - Kamil Lang
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Husinec-Řež 1001, Czech Republic
| | - Robert Pola
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského Náměstí 2, 162 06 Prague 6, Czech Republic
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského Náměstí 2, 162 06 Prague 6, Czech Republic
| |
Collapse
|
2
|
Kostka L, Sivák L, Šubr V, Kovářová J, Šírová M, Říhová B, Sedlacek R, Etrych T, Kovář M. Simultaneous Delivery of Doxorubicin and Protease Inhibitor Derivative to Solid Tumors via Star-Shaped Polymer Nanomedicines Overcomes P-gp- and STAT3-Mediated Chemoresistance. Biomacromolecules 2022; 23:2522-2535. [PMID: 35584053 DOI: 10.1021/acs.biomac.2c00256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The derivative of protease inhibitor ritonavir (5-methyl-4-oxohexanoic acid ritonavir ester; RD) was recently recognized as a potent P-gp inhibitor and cancerostatic drug inhibiting the proteasome and STAT3 signaling. Therefore, we designed high-molecular-weight HPMA copolymer conjugates with a PAMAM dendrimer core bearing both doxorubicin (Dox) and RD (Star-RD + Dox) to increase the circulation half-life to maximize simultaneous delivery of Dox and RD into the tumor. Star-RD inhibited P-gp activity, potently sensitizing both low- and high-P-gp-expressing cancer cells to the cytostatic and proapoptotic activity of Dox in vitro. Star-RD + Dox possessed higher cytostatic and proapoptotic activities compared to Star-Dox and the equivalent mixture of Star-Dox and Star-RD in vitro. Star-RD + Dox efficiently inhibited STAT3 signaling and induced caspase-3 activation and DNA fragmentation in cancer cells in vivo. Importantly, Star-RD + Dox was found to have superior antitumor activity in terms of tumor growth inhibition and increased survival of mice bearing P-gp-expressing tumors.
Collapse
Affiliation(s)
- Libor Kostka
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 16206 Prague, Czech Republic
| | - Ladislav Sivák
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| | - Vladimír Šubr
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 16206 Prague, Czech Republic
| | - Jiřina Kovářová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| | - Milada Šírová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| | - Blanka Říhová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| | - Radislav Sedlacek
- Czech Center of Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, Průmyslová 595, 25250 Vestec, Czech Republic
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 16206 Prague, Czech Republic
| | - Marek Kovář
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| |
Collapse
|
3
|
Wang D, Zhang X, Xu B. PEGylated Doxorubicin Prodrug-Forming Reduction-Sensitive Micelles With High Drug Loading and Improved Anticancer Therapy. Front Bioeng Biotechnol 2021; 9:781982. [PMID: 34869293 PMCID: PMC8640247 DOI: 10.3389/fbioe.2021.781982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/25/2021] [Indexed: 01/29/2023] Open
Abstract
Significant efforts on the design and development of advanced drug delivery systems for targeted cancer chemotherapy continue to be a major challenge. Here, we reported a kind of reduction-responsive PEGylated doxorubicin (DOX) prodrug via the simple esterification and amidation reactions, which self-assembled into the biodegradable micelles in solutions. Since there was an obvious difference in the reduction potentials between the oxidizing extracellular milieu and the reducing intracellular fluids, these PEG-disulfide-DOX micelles were localized intracellularly and degraded rapidly by the stimulus to release the drugs once reaching the targeted tumors, which obviously enhanced the therapeutic efficacy with low side effects. Moreover, these reduction-sensitive micelles could also physically encapsulate the free DOX drug into the polymeric cargo, exhibiting a two-phase programmed drug release behavior. Consequently, it showed a potential to develop an intelligent and multifunctional chemotherapeutic payload transporter for the effective tumor therapy.
Collapse
Affiliation(s)
- Dongdong Wang
- Minimally Invasive Interventional Therapy Center, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, China
- Department of Oncology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, China
| | - Xiaoyi Zhang
- School of Pharmacy, Shihezi University, Shihezi, China
| | - Bingbing Xu
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine of Peking University, Beijing, China
| |
Collapse
|
4
|
Zhang M, Wang N, Liu J, Wang C, Xu Y, Ma L. A review on biomass-derived levulinic acid for application in drug synthesis. Crit Rev Biotechnol 2021; 42:220-253. [DOI: 10.1080/07388551.2021.1939261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Mingyue Zhang
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Nan Wang
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, PR China
- School of Environmental Science and Engineering, Tianjin University, Tianjin, PR China
| | - Jianguo Liu
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Chenguang Wang
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Ying Xu
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Longlong Ma
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
5
|
Chytil P, Kostka L, Etrych T. HPMA Copolymer-Based Nanomedicines in Controlled Drug Delivery. J Pers Med 2021; 11:115. [PMID: 33578756 PMCID: PMC7916469 DOI: 10.3390/jpm11020115] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Recently, numerous polymer materials have been employed as drug carrier systems in medicinal research, and their detailed properties have been thoroughly evaluated. Water-soluble polymer carriers play a significant role between these studied polymer systems as they are advantageously applied as carriers of low-molecular-weight drugs and compounds, e.g., cytostatic agents, anti-inflammatory drugs, antimicrobial molecules, or multidrug resistance inhibitors. Covalent attachment of carried molecules using a biodegradable spacer is strongly preferred, as such design ensures the controlled release of the drug in the place of a desired pharmacological effect in a reasonable time-dependent manner. Importantly, the synthetic polymer biomaterials based on N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers are recognized drug carriers with unique properties that nominate them among the most serious nanomedicines candidates for human clinical trials. This review focuses on advances in the development of HPMA copolymer-based nanomedicines within the passive and active targeting into the place of desired pharmacological effect, tumors, inflammation or bacterial infection sites. Specifically, this review highlights the safety issues of HPMA polymer-based drug carriers concerning the structure of nanomedicines. The main impact consists of the improvement of targeting ability, especially concerning the enhanced and permeability retention (EPR) effect.
Collapse
Affiliation(s)
| | | | - Tomáš Etrych
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic; (P.C.); (L.K.)
| |
Collapse
|
6
|
Han S, Lee J, Jung E, Park S, Sagawa A, Shibasaki Y, Lee D, Kim BS. Mechanochemical Drug Conjugation via pH-Responsive Imine Linkage for Polyether Prodrug Micelles. ACS APPLIED BIO MATERIALS 2021; 4:2465-2474. [DOI: 10.1021/acsabm.0c01437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sohee Han
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Joonhee Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Eunkyeong Jung
- Department of Polymer Nano Science and Technology, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Suebin Park
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Aoi Sagawa
- Department of Chemistry and Biological Sciences, Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Yuji Shibasaki
- Department of Chemistry and Biological Sciences, Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Dongwon Lee
- Department of Polymer Nano Science and Technology, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Byeong-Su Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
7
|
Tavares MR, Hrabánková K, Konefał R, Kaňa M, Říhová B, Etrych T, Šírová M, Chytil P. HPMA-Based Copolymers Carrying STAT3 Inhibitor Cucurbitacin-D as Stimulus-Sensitive Nanomedicines for Oncotherapy. Pharmaceutics 2021; 13:pharmaceutics13020179. [PMID: 33525658 PMCID: PMC7911143 DOI: 10.3390/pharmaceutics13020179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 12/19/2022] Open
Abstract
The study describes the synthesis, physicochemical properties, and biological evaluation of polymer therapeutics based on N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers intended for a tumor-targeted immuno-oncotherapy. Water-soluble linear and cholesterol-containing HPMA precursors were synthesized using controlled reversible addition–fragmentation chain transfer polymerization to reach molecular weight Mn about 2 × 104 g·mol−1 and low dispersity. These linear or self-assembled micellar conjugates, containing immunomodulatory agent cucurbitacin-D (CuD) or the anticancer drug doxorubicin (Dox) covalently bound by the hydrolytically degradable hydrazone bond, showed a hydrodynamic size of 10–30 nm in aqueous solutions. The CuD-containing conjugates were stable in conditions mimicking blood. Importantly, a massive release of active CuD in buffer mimicking the acidic tumor environment was observed. In vitro, both the linear (LP-CuD) and the micellar (MP-CuD) conjugates carrying CuD showed cytostatic/cytotoxic activity against several cancer cell lines. In a murine metastatic and difficult-to-treat 4T1 mammary carcinoma, only LP-CuD showed an anticancer effect. Indeed, the co-treatment with Dox-containing micellar polymer conjugate and LP-CuD showed potentiation of the anticancer effect. The results indicate that the binding of CuD, characterized by prominent hydrophobic nature and low bioavailability, to the polymer carrier allows a safe and effective delivery. Therefore, the conjugate could serve as a potential component of immuno-oncotherapy schemes within the next preclinical evaluation.
Collapse
Affiliation(s)
- Marina R. Tavares
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského náměstí 2, CZ-162 06 Prague 6, Czech Republic; (M.R.T.); (R.K.); (T.E.)
| | - Klára Hrabánková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic; (K.H.); (M.K.); (B.Ř.); (M.Š.)
| | - Rafał Konefał
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského náměstí 2, CZ-162 06 Prague 6, Czech Republic; (M.R.T.); (R.K.); (T.E.)
| | - Martin Kaňa
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic; (K.H.); (M.K.); (B.Ř.); (M.Š.)
| | - Blanka Říhová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic; (K.H.); (M.K.); (B.Ř.); (M.Š.)
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského náměstí 2, CZ-162 06 Prague 6, Czech Republic; (M.R.T.); (R.K.); (T.E.)
| | - Milada Šírová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic; (K.H.); (M.K.); (B.Ř.); (M.Š.)
| | - Petr Chytil
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského náměstí 2, CZ-162 06 Prague 6, Czech Republic; (M.R.T.); (R.K.); (T.E.)
- Correspondence: ; Tel.: +420-296-809-230
| |
Collapse
|
8
|
Li H, Cheng Z, Wang Y, Zhou D, Su M, Wang X, He P, Zhang Y. Self‐Assembled Star‐Shaped sPCL–PEG Copolymer Nanomicelles with pH‐Sensitivity for Anticancer Drug Delivery. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hanhong Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering (Hubei University) College of Chemistry and Chemical Engineering Hubei University Wuhan 430062 China
| | - Zhenqi Cheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering (Hubei University) College of Chemistry and Chemical Engineering Hubei University Wuhan 430062 China
| | - Yang Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering (Hubei University) College of Chemistry and Chemical Engineering Hubei University Wuhan 430062 China
| | - Dong Zhou
- State Key Laboratory of Biocatalysis and Enzyme Engineering (Hubei University) College of Chemistry and Chemical Engineering Hubei University Wuhan 430062 China
| | - Mingji Su
- State Key Laboratory of Biocatalysis and Enzyme Engineering (Hubei University) College of Chemistry and Chemical Engineering Hubei University Wuhan 430062 China
| | - Xianxun Wang
- Department of Orthopedics The Third People's Hospital of Hubei Province Jianghan University Wuhan 430033 China
| | - Peixin He
- State Key Laboratory of Biocatalysis and Enzyme Engineering (Hubei University) College of Chemistry and Chemical Engineering Hubei University Wuhan 430062 China
| | - Yuhong Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering (Hubei University) College of Chemistry and Chemical Engineering Hubei University Wuhan 430062 China
| |
Collapse
|
9
|
Misiak P, Markiewicz KH, Szymczuk D, Wilczewska AZ. Polymeric Drug Delivery Systems Bearing Cholesterol Moieties: A Review. Polymers (Basel) 2020; 12:E2620. [PMID: 33172152 PMCID: PMC7694753 DOI: 10.3390/polym12112620] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 12/21/2022] Open
Abstract
This review aims to provide an overview of polymers comprising cholesterol moiety/ies designed to be used in drug delivery. Over the last two decades, there have been many papers published in this field, which are summarized in this review. The primary focus of this article is on the methods of synthesis of polymers bearing cholesterol in the main chain or as side chains. The data related to the composition, molecular weight, and molecular weight distribution of polymers are presented. Moreover, other aspects, such as forms of carriers, types of encapsulated drugs, encapsulation efficiency and capacity, are also included.
Collapse
Affiliation(s)
- Paweł Misiak
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1k, 15-245 Bialystok, Poland; (K.H.M.); (D.S.)
| | | | | | - Agnieszka Z. Wilczewska
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1k, 15-245 Bialystok, Poland; (K.H.M.); (D.S.)
| |
Collapse
|
10
|
Bobde Y, Biswas S, Ghosh B. Current trends in the development of HPMA-based block copolymeric nanoparticles for their application in drug delivery. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Braunová A, Chytil P, Laga R, Šírová M, Machová D, Parnica J, Říhová B, Janoušková O, Etrych T. Polymer nanomedicines based on micelle-forming amphiphilic or water-soluble polymer-doxorubicin conjugates: Comparative study of in vitro and in vivo properties related to the polymer carrier structure, composition, and hydrodynamic properties. J Control Release 2020; 321:718-733. [DOI: 10.1016/j.jconrel.2020.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/05/2020] [Accepted: 03/02/2020] [Indexed: 10/24/2022]
|
12
|
Chytil P, Šírová M, Kudláčová J, Říhová B, Ulbrich K, Etrych T. Bloodstream Stability Predetermines the Antitumor Efficacy of Micellar Polymer–Doxorubicin Drug Conjugates with pH-Triggered Drug Release. Mol Pharm 2018. [DOI: 10.1021/acs.molpharmaceut.8b00156] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Petr Chytil
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského náměstı́ 2, 162 06 Prague 6, Czech Republic
| | - Milada Šírová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Júlia Kudláčová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského náměstı́ 2, 162 06 Prague 6, Czech Republic
| | - Blanka Říhová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Karel Ulbrich
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského náměstı́ 2, 162 06 Prague 6, Czech Republic
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského náměstı́ 2, 162 06 Prague 6, Czech Republic
| |
Collapse
|
13
|
Chen Y, Dakwar GR, Braeckmans K, Lammers T, Hennink WE, Metselaar JM. In Vitro Evaluation of Anti-Aggregation and Degradation Behavior of PEGylated Polymeric Nanogels under In Vivo Like Conditions. Macromol Biosci 2017; 18. [PMID: 29152858 DOI: 10.1002/mabi.201700127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 05/20/2017] [Indexed: 11/07/2022]
Abstract
The in vivo stability and biodegradability of nanocarriers crucially determine therapeutic efficacy as well as safety when used for drug delivery. This study aims to evaluate optimized in vitro techniques predictive for in vivo nanocarrier behavior. Polymeric biodegradable nanogels based on hydroxyethyl methacrylamide-oligoglycolates-derivatized poly(hydroxyethyl methacrylamide-co-N-(2-azidoethyl)methacrylamide) and with various degrees of PEGylation and crosslinking densities are prepared. Three techniques are chosen and refined for specific in vitro evaluation of the nanocarrier performance: (1) fluorescence single particle tracking (fSPT) to study the stability of nanogels in human plasma, (2) tangential flow filtration (TFF) to study the degradation and filtration of nanogel degradation products, and (3) fluorescence fluctuation spectroscopy (FFS) to evaluate and compare the degradation behavior of nanogels in buffer and plasma. fSPT results demonstrate that nanogels with highest PEGylation content show the least aggregation. The TFF results reveal that nanogels with higher crosslink density have slower degradation and removal by filtration. FFS results indicate a similar degradation behavior in human plasma as compared to that in phosphate buffered saline. In conclusion, three methods can be used to compare and select the optimal nanogel composition, and these methods hold potential to predict the in vivo performance of nanocarriers.
Collapse
Affiliation(s)
- Yinan Chen
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584, CG, Utrecht, The Netherlands
| | - George R Dakwar
- Laboratory for General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000, Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory for General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000, Ghent, Belgium
| | - Twan Lammers
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584, CG, Utrecht, The Netherlands.,Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, 52074, Aachen, Germany.,Department of Targeted Therapeutics, MIRA Institute for Biomedical Engineering and Technical Medicine, University of Twente, 7522, NB, Enschede, The Netherlands
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584, CG, Utrecht, The Netherlands
| | - Josbert M Metselaar
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, 52074, Aachen, Germany.,Department of Targeted Therapeutics, MIRA Institute for Biomedical Engineering and Technical Medicine, University of Twente, 7522, NB, Enschede, The Netherlands
| |
Collapse
|
14
|
Chytil P, Koziolová E, Etrych T, Ulbrich K. HPMA Copolymer-Drug Conjugates with Controlled Tumor-Specific Drug Release. Macromol Biosci 2017; 18. [PMID: 28805040 DOI: 10.1002/mabi.201700209] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Indexed: 11/10/2022]
Abstract
Over the past few decades, numerous polymer drug carrier systems are designed and synthesized, and their properties are evaluated. Many of these systems are based on water-soluble polymer carriers of low-molecular-weight drugs and compounds, e.g., cytostatic agents, anti-inflammatory drugs, or multidrug resistance inhibitors, all covalently bound to a carrier by a biodegradable spacer that enables controlled release of the active molecule to achieve the desired pharmacological effect. Among others, the synthetic polymer carriers based on N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers are some of the most promising carriers for this purpose. This review focuses on advances in the development of HPMA copolymer carriers and their conjugates with anticancer drugs, with triggered drug activation in tumor tissue and especially in tumor cells. Specifically, this review highlights the improvements in polymer drug carrier design with respect to the structure of a spacer to influence controlled drug release and activation, and its impact on the drug pharmacokinetics, enhanced tumor uptake, cellular trafficking, and in vivo antitumor activity.
Collapse
Affiliation(s)
- Petr Chytil
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic
| | - Eva Koziolová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic
| | - Karel Ulbrich
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic
| |
Collapse
|
15
|
Šírová M, Horková V, Etrych T, Chytil P, Říhová B, Studenovský M. Polymer donors of nitric oxide improve the treatment of experimental solid tumours with nanosized polymer therapeutics. J Drug Target 2017; 25:796-808. [PMID: 28726521 DOI: 10.1080/1061186x.2017.1358724] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Polymer carriers based on N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers with incorporated organic nitrates as nitric oxide (NO) donors were designed with the aim to localise NO generation in solid tumours, thus highly increasing the enhanced permeability and retention (EPR) effect. The NO donors were coupled to the polymer carrier either through a stable bond or through a hydrolytically degradable, pH sensitive, bond. In vivo, the co-administration of the polymer NO donor and HPMA copolymer-bound cytotoxic drug (doxorubicin; Dox) resulted in an improvement in the treatment of murine EL4 T-cell lymphoma. The polymer NO donors neither potentiated the in vitro toxicity of the cytotoxic drug nor exerted any effect on in vivo model without the EPR effect, such as BCL1 leukaemia. Thus, an increase in passive accumulation of the nanomedicine carrying cytotoxic drug via NO-enhanced EPR effect was the operative mechanism of action. The most significant improvement in the therapy was observed in a combination treatment with such a polymer conjugate of Dox, which is characterised by increased circulation in the blood and efficient accumulation in solid tumours. Notably, the combination treatment enabled the development of an anti-tumour immune response, which was previously demonstrated as an important feature of HPMA-based polymer cytotoxic drugs.
Collapse
Affiliation(s)
- Milada Šírová
- a Laboratory of Tumor Immunology , Institute of Microbiology CAS, v.v.i , Prague , Czech Republic
| | - Veronika Horková
- a Laboratory of Tumor Immunology , Institute of Microbiology CAS, v.v.i , Prague , Czech Republic
| | - Tomáš Etrych
- b Department of Biomedical Polymers , Institute of Macromolecular Chemistry CAS, v.v.i , Prague , Czech Republic
| | - Petr Chytil
- b Department of Biomedical Polymers , Institute of Macromolecular Chemistry CAS, v.v.i , Prague , Czech Republic
| | - Blanka Říhová
- a Laboratory of Tumor Immunology , Institute of Microbiology CAS, v.v.i , Prague , Czech Republic
| | - Martin Studenovský
- b Department of Biomedical Polymers , Institute of Macromolecular Chemistry CAS, v.v.i , Prague , Czech Republic
| |
Collapse
|
16
|
Kostka L, Etrych T. High-molecular-weight HPMA-based polymer drug carriers for delivery to tumor. Physiol Res 2017; 65:S179-S190. [PMID: 27762584 DOI: 10.33549/physiolres.933420] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In this work, design and synthesis of high-molecular-weight N-(2-hydroxypropyl)methacrylamide-based polymer drug delivery systems tailored for cancer therapy is summarized. Moreover, the influence of their architecture on tumor accumulation and in vivo anti-cancer efficacy is discussed. Mainly, the high-molecular-weight delivery systems, such as branched, grafted, multi-block, star-like or micellar systems, with molecular weights greater than the renal threshold are discussed and reviewed in detail.
Collapse
Affiliation(s)
- L Kostka
- Department of Biomedicinal Polymers, Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| | | |
Collapse
|
17
|
Influence of molar mass, dispersity, and type and location of hydrophobic side chain moieties on the critical micellar concentration and stability of amphiphilic HPMA-based polymer drug carriers. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-017-4027-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
18
|
Braunová A, Kostka L, Sivák L, Cuchalová L, Hvězdová Z, Laga R, Filippov S, Černoch P, Pechar M, Janoušková O, Šírová M, Etrych T. Tumor-targeted micelle-forming block copolymers for overcoming of multidrug resistance. J Control Release 2016; 245:41-51. [PMID: 27871991 DOI: 10.1016/j.jconrel.2016.11.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/31/2016] [Accepted: 11/17/2016] [Indexed: 11/17/2022]
Abstract
New amphiphilic diblock polymer nanotherapeutics serving simultaneously as a drug delivery system and an inhibitor of multidrug resistance were designed, synthesized, and evaluated for their physico-chemical and biological characteristics. The amphiphilic character of the diblock polymer, containing a hydrophilic block based on the N-(2-hydroxypropyl)methacrylamide copolymer and a hydrophobic poly(propylene oxide) block (PPO), caused self-assembly into polymer micelles with an increased hydrodynamic radius (Rh of approximately 15nm) in aqueous solutions. Doxorubicin (Dox), as a cytostatic drug, was bound to the diblock polymer through a pH-sensitive hydrazone bond, enabling prolonged circulation in blood, the delivery of Dox into a solid tumor and the subsequent stimuli-sensitive controlled release within the tumor mass and tumor cells at a decreased pH. The applicability of micellar nanotherapeutics as drug carriers was confirmed by an in vivo evaluation using EL4 lymphoma-bearing C57BL/6 mice. We observed significantly higher accumulation of micellar conjugates in a solid tumor because of the EPR effect compared with similar polymer-drug conjugates that do not form micellar structures or with the parent free drug. In addition, highly increased anti-tumor efficacy of the micellar polymer nanotherapeutics, even at a sub-optimal dose, was observed. The presence of PPO in the structure of the diblock polymer ensured, during in vitro tests on human and mouse drug-sensitive and resistant cancer cell lines, the inhibition of P-glycoprotein, one of the most frequently expressed ATP-dependent efflux pump that causes multidrug resistance. In addition, we observed highly increased rate of the uptake of the diblock polymer nanotherapeutics within the cells. We suppose that combination of unique properties based on MDR inhibition, stimuli sensitiveness (pH sensitive activation of drug), improved pharmacokinetics and increased uptake into the cells made the described polymer micelle a good candidate for investigation as potential drug delivery system.
Collapse
Affiliation(s)
- Alena Braunová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Libor Kostka
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Ladislav Sivák
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Lucie Cuchalová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Zuzana Hvězdová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Richard Laga
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Sergey Filippov
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Peter Černoch
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Michal Pechar
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Olga Janoušková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Milada Šírová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic.
| |
Collapse
|
19
|
Lomkova EA, Chytil P, Janoušková O, Mueller T, Lucas H, Filippov SK, Trhlíková O, Aleshunin PA, Skorik YA, Ulbrich K, Etrych T. Biodegradable Micellar HPMA-Based Polymer-Drug Conjugates with Betulinic Acid for Passive Tumor Targeting. Biomacromolecules 2016; 17:3493-3507. [PMID: 27636143 DOI: 10.1021/acs.biomac.6b00947] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here, we present the synthesis, physicochemical, and preliminary biological characterization of micellar polymer-betulinic acid (BA) conjugates based on N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer carriers, enabling the controlled release of cytotoxic BA derivatives in solid tumors or tumor cells. Various HPMA copolymer conjugates differing in the structure of the spacer between the drug and the carrier were synthesized, all designed for pH-triggered drug release in tumor tissue or tumor cells. The high molecular weight of the micellar conjugates should improve the uptake of the drug in solid tumors due to the Enhanced permeability and retention (EPR) effect. Nevertheless, only the conjugate containing BA with methylated carboxyl groups enabled pH-dependent controlled release in vitro. Moreover, drug release led to the disassembly of the micellar structure, which facilitated elimination of the water-soluble HPMA copolymer carrier from the body by renal filtration. The methylated BA derivative and its polymer conjugate exhibited high cytostatic activity against DLD-1, HT-29, and HeLa carcinoma cell lines and enhanced tumor accumulation in HT-29 xenograft in mice.
Collapse
Affiliation(s)
- Ekaterina A Lomkova
- Institute of Macromolecular Chemistry, The Czech Academy of Sciences , Heyrovsky Sq. 2, Prague 6, 162 06, Czech Republic.,St. Petersburg State Chemical Pharmaceutical Academy, 14 Prof. Popov St., St. Petersburg 197022, Russian Federation
| | - Petr Chytil
- Institute of Macromolecular Chemistry, The Czech Academy of Sciences , Heyrovsky Sq. 2, Prague 6, 162 06, Czech Republic
| | - Olga Janoušková
- Institute of Macromolecular Chemistry, The Czech Academy of Sciences , Heyrovsky Sq. 2, Prague 6, 162 06, Czech Republic
| | - Thomas Mueller
- Martin-Luther-University Halle-Wittenberg , Department of Internal Medicine IV, Oncology and Haematology, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Henrike Lucas
- Martin-Luther-University Halle-Wittenberg , Institute of Pharmacy, AG Pharmaceutical Technology, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany
| | - Sergey K Filippov
- Institute of Macromolecular Chemistry, The Czech Academy of Sciences , Heyrovsky Sq. 2, Prague 6, 162 06, Czech Republic
| | - Olga Trhlíková
- Institute of Macromolecular Chemistry, The Czech Academy of Sciences , Heyrovsky Sq. 2, Prague 6, 162 06, Czech Republic
| | - Pavel A Aleshunin
- St. Petersburg State Technological Institute (Technical University), 26 Moskovsky Pr., St. Petersburg, 190013, Russian Federation
| | - Yury A Skorik
- St. Petersburg State Chemical Pharmaceutical Academy, 14 Prof. Popov St., St. Petersburg 197022, Russian Federation.,Institute of Macromolecular Compounds, Russian Academy of Sciences , 31 Bolshoy pr. VO, St. Petersburg 199004, Russian Federation
| | - Karel Ulbrich
- Institute of Macromolecular Chemistry, The Czech Academy of Sciences , Heyrovsky Sq. 2, Prague 6, 162 06, Czech Republic
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry, The Czech Academy of Sciences , Heyrovsky Sq. 2, Prague 6, 162 06, Czech Republic
| |
Collapse
|
20
|
Abstract
A tumor-targeting drug delivery system consists of a tumor recognition moiety and a directly linked cytotoxic agent or an agent attached to a water-soluble synthetic polymer carrier through a suitable linker. Conjugation of a drug with a polymer carrier can change its solubility, toxicity, biodistribution, blood clearance and therapeutic specificity. Increased therapeutic specificity of a polymer drug can be achieved by the attachment of a targeting moiety (e.g. a lectin, protein, antibody, or peptide) that specifically interacts with receptors on the target cells. A large number of tumor-specific peptides were described in recent years. After a short introduction, some important examples of peptide-targeted conjugates will be described and discussed.
Collapse
Affiliation(s)
| | - R. POLA
- Department of Biomedicinal Polymers, Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
21
|
Overcoming multidrug resistance in Dox-resistant neuroblastoma cell lines via treatment with HPMA copolymer conjugates containing anthracyclines and P-gp inhibitors. J Control Release 2016; 233:136-46. [PMID: 27189135 DOI: 10.1016/j.jconrel.2016.05.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/09/2016] [Accepted: 05/13/2016] [Indexed: 01/13/2023]
Abstract
Water-soluble N-(2-hydroxypropyl)methacrylamide copolymer conjugates bearing the anticancer drugs doxorubicin (Dox) or pirarubicin (THP), P-gp inhibitors derived from reversin 121 (REV) or ritonavir (RIT)), or both anticancer drug and P-gp inhibitor were designed and synthesized. All biologically active molecules were attached to the polymer carrier via pH-sensitive spacer enabling controlled release in mild acidic environment modeling endosomes and lysosomes of tumor cells. The cytotoxicity of the conjugates against three sensitive and Dox-resistant neuroblastoma (NB) cell lines, applied alone or in combination, was studied in vitro. All conjugates containing THP displayed higher cytotoxicity against all three Dox-resistant NB cell lines compared with the corresponding Dox-containing conjugates. Furthermore, the cytotoxicity of conjugates containing both drug and P-gp inhibitor was up to 10 times higher than that of the conjugate containing only drug. In general, the polymer-drug conjugates showed higher cytotoxicity when conjugates containing inhibitors were added 8 or 16h prior to treatment compared with conjugates bearing both the inhibitor and the drug. The difference in cytotoxicity was more pronounced at the 16-h time point. Moreover, higher inhibitor:drug ratios resulted in higher cytotoxicity. The cytotoxicity of the polymer-drug used in combination with polymer P-gp inhibitor was up to 84 times higher than that of the polymer-drug alone.
Collapse
|
22
|
Ulbrich K, Holá K, Šubr V, Bakandritsos A, Tuček J, Zbořil R. Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies. Chem Rev 2016; 116:5338-431. [DOI: 10.1021/acs.chemrev.5b00589] [Citation(s) in RCA: 1120] [Impact Index Per Article: 124.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Karel Ulbrich
- Institute
of Macromolecular Chemistry, The Czech Academy of Sciences, v.v.i., Heyrovsky Square 2, 162 06 Prague 6, Czech Republic
| | - Kateřina Holá
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Vladimir Šubr
- Institute
of Macromolecular Chemistry, The Czech Academy of Sciences, v.v.i., Heyrovsky Square 2, 162 06 Prague 6, Czech Republic
| | - Aristides Bakandritsos
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Jiří Tuček
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Radek Zbořil
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| |
Collapse
|
23
|
Jiang HT, Ding K, Meng FN, Bao LL, Chai YD, Gong YK. Anti-phagocytosis and tumor cell targeting micelles prepared from multifunctional cell membrane mimetic polymers. J Mater Chem B 2016; 4:5464-5474. [DOI: 10.1039/c6tb00953k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
“Stealthy bio-missile” kinds of micelles were fabricated for developing advanced anticancer formulations by cell membrane mimicking.
Collapse
Affiliation(s)
- Hai-Tao Jiang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xian 710127
- China
| | - Kai Ding
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xian 710127
- China
| | - Fan-Ning Meng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xian 710127
- China
| | - Li-Li Bao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xian 710127
- China
| | - Yu-Dong Chai
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xian 710127
- China
| | - Yong-Kuan Gong
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xian 710127
- China
| |
Collapse
|
24
|
Ercole F, Whittaker MR, Quinn JF, Davis TP. Cholesterol Modified Self-Assemblies and Their Application to Nanomedicine. Biomacromolecules 2015; 16:1886-914. [DOI: 10.1021/acs.biomac.5b00550] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Francesca Ercole
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Michael R. Whittaker
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - John F. Quinn
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Thomas P. Davis
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Department
of Chemistry, University of Warwick, Coventry, ULCV4 7AL, United Kingdom
| |
Collapse
|
25
|
Cai T, Chen Y, Wang Y, Wang H, Liu X, Jin Q, Agarwal S, Ji J. One-Step Preparation of Reduction-Responsive Biodegradable Polymers as Efficient Intracellular Drug Delivery Platforms. MACROMOL CHEM PHYS 2014. [DOI: 10.1002/macp.201400311] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Tongjiang Cai
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education; Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Yangjun Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education; Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Yin Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education; Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Haibo Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education; Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Xiangsheng Liu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education; Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education; Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Seema Agarwal
- University of Bayreuth; Macromolecular Chemistry II; Bayreuth Center for Colloids and Interfaces; Universitätsstrasse 30 95440 Bayreuth Germany
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education; Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| |
Collapse
|
26
|
Zhou Z, Li L, Yang Y, Xu X, Huang Y. Tumor targeting by pH-sensitive, biodegradable, cross-linked N-(2-hydroxypropyl) methacrylamide copolymer micelles. Biomaterials 2014; 35:6622-35. [DOI: 10.1016/j.biomaterials.2014.04.059] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 04/16/2014] [Indexed: 01/22/2023]
|
27
|
Polymer conjugates of doxorubicin bound through an amide and hydrazone bond: Impact of the carrier structure onto synergistic action in the treatment of solid tumours. Eur J Pharm Sci 2014; 58:1-12. [DOI: 10.1016/j.ejps.2014.02.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 02/26/2014] [Accepted: 02/27/2014] [Indexed: 11/23/2022]
|
28
|
Radwan AA, Alanazi FK. Targeting cancer using cholesterol conjugates. Saudi Pharm J 2014; 22:3-16. [PMID: 24493968 PMCID: PMC3909757 DOI: 10.1016/j.jsps.2013.01.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 01/10/2013] [Indexed: 11/28/2022] Open
Abstract
Conjugation of cholesterol moiety to active compounds for either cancer treatment or diagnosis is an attractive approach. Cholesterol derivatives are widely studied as cancer diagnostic agents and as anticancer derivatives either in vitro or in vivo using animal models. In largely growing studies, anticancer agents have been chemically conjugated to cholesterol molecules, to enhance their pharmacokinetic behavior, cellular uptake, target specificity, and safety. To efficiently deliver anticancer agents to the target cells and tissues, many different cholesterol-anticancer conjugates were synthesized and characterized, and their anticancer efficiencies were tested in vitro and in vivo.
Collapse
Affiliation(s)
- Awwad A. Radwan
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Fares K. Alanazi
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
29
|
Tucker BS, Sumerlin BS. Poly(N-(2-hydroxypropyl) methacrylamide)-based nanotherapeutics. Polym Chem 2014. [DOI: 10.1039/c3py01279d] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Filippov SK, Franklin JM, Konarev PV, Chytil P, Etrych T, Bogomolova A, Dyakonova M, Papadakis CM, Radulescu A, Ulbrich K, Stepanek P, Svergun DI. Hydrolytically Degradable Polymer Micelles for Drug Delivery: A SAXS/SANS Kinetic Study. Biomacromolecules 2013; 14:4061-70. [DOI: 10.1021/bm401186z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Sergey K. Filippov
- Institute of Macromolecular Chemistry, AS CR, Heyrovsky Sq.
2, Prague, Prague 6, 162
06, Czech Republic
| | - John M. Franklin
- European Molecular
Biology Laboratory, EMBL c/o DESY, Notkestrasse 85, Hamburg, D-22603, Germany
| | - Petr V. Konarev
- European Molecular
Biology Laboratory, EMBL c/o DESY, Notkestrasse 85, Hamburg, D-22603, Germany
| | - Petr Chytil
- Institute of Macromolecular Chemistry, AS CR, Heyrovsky Sq.
2, Prague, Prague 6, 162
06, Czech Republic
| | - Tomas Etrych
- Institute of Macromolecular Chemistry, AS CR, Heyrovsky Sq.
2, Prague, Prague 6, 162
06, Czech Republic
| | - Anna Bogomolova
- Institute of Macromolecular Chemistry, AS CR, Heyrovsky Sq.
2, Prague, Prague 6, 162
06, Czech Republic
| | - Margarita Dyakonova
- Technische Universität München, Physik-Department, Fachgebiet Physik weicher Materie, James-Franck-Str. 1, 85748 Garching, Germany
| | - Christine M. Papadakis
- Technische Universität München, Physik-Department, Fachgebiet Physik weicher Materie, James-Franck-Str. 1, 85748 Garching, Germany
| | - Aurel Radulescu
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science JCNS, Lichtenbergstraße 1, 85748 Garching, Germany
| | - Karel Ulbrich
- Institute of Macromolecular Chemistry, AS CR, Heyrovsky Sq.
2, Prague, Prague 6, 162
06, Czech Republic
| | - Petr Stepanek
- Institute of Macromolecular Chemistry, AS CR, Heyrovsky Sq.
2, Prague, Prague 6, 162
06, Czech Republic
| | - Dmitri I. Svergun
- European Molecular
Biology Laboratory, EMBL c/o DESY, Notkestrasse 85, Hamburg, D-22603, Germany
| |
Collapse
|
31
|
Binauld S, Stenzel MH. Acid-degradable polymers for drug delivery: a decade of innovation. Chem Commun (Camb) 2013; 49:2082-102. [DOI: 10.1039/c2cc36589h] [Citation(s) in RCA: 312] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
32
|
Ye H, Gemperline E, Li L. A vision for better health: mass spectrometry imaging for clinical diagnostics. Clin Chim Acta 2012; 420:11-22. [PMID: 23078851 DOI: 10.1016/j.cca.2012.10.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 10/09/2012] [Indexed: 12/13/2022]
Abstract
BACKGROUND Mass spectrometry imaging (MSI) is a powerful tool that grants the ability to investigate a broad mass range of molecules from small molecules to large proteins by creating detailed distribution maps of selected compounds. Its usefulness in biomarker discovery towards clinical applications has obtained success by correlating the molecular expression of tissues acquired from MSI with well-established histology. RESULTS To date, MSI has demonstrated its versatility in clinical applications, such as biomarker diagnostics of different diseases, prognostics of disease severities and metabolic response to drug treatment, etc. These studies have provided significant insight in clinical studies over the years and current technical advances are further facilitating the improvement of this field. Although the underlying concept is simple, factors such as choice of ionization method, sample preparation, instrumentation and data analysis must be taken into account for successful applications of MSI. Herein, we briefly reviewed these key elements yet focused on the clinical applications of MSI that cannot be addressed by other means. CONCLUSIONS Challenges and future perspectives in this field are also discussed to conclude that the ever-growing applications with continuous development of this powerful analytical tool will lead to a better understanding of the biology of diseases and improvements in clinical diagnostics.
Collapse
Affiliation(s)
- Hui Ye
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705-2222, USA
| | | | | |
Collapse
|
33
|
Filippov SK, Chytil P, Konarev PV, Dyakonova M, Papadakis C, Zhigunov A, Plestil J, Stepanek P, Etrych T, Ulbrich K, Svergun DI. Macromolecular HPMA-Based Nanoparticles with Cholesterol for Solid-Tumor Targeting: Detailed Study of the Inner Structure of a Highly Efficient Drug Delivery System. Biomacromolecules 2012; 13:2594-604. [DOI: 10.1021/bm3008555] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Sergey K. Filippov
- Institute of Macromolecular
Chemistry, Academy of Sciences of the Czech Republic, v. v. i., Heyrovský Sq. 2, 162 06 Prague
6, Czech Republic
| | - Petr Chytil
- Institute of Macromolecular
Chemistry, Academy of Sciences of the Czech Republic, v. v. i., Heyrovský Sq. 2, 162 06 Prague
6, Czech Republic
| | - Petr V. Konarev
- European Molecular
Biology Laboratory, EMBL c/o DESY, Notkestrasse 85, D-22603 Hamburg, Germany
| | - Margarita Dyakonova
- Physik-Department, Technische Universität München, Physik-Department,
Fachgebiet
Physik weicher Materie, James-Franck-Str. 1, 85747 Garching, Germany
| | - ChristineM. Papadakis
- Physik-Department, Technische Universität München, Physik-Department,
Fachgebiet
Physik weicher Materie, James-Franck-Str. 1, 85747 Garching, Germany
| | - Alexander Zhigunov
- Institute of Macromolecular
Chemistry, Academy of Sciences of the Czech Republic, v. v. i., Heyrovský Sq. 2, 162 06 Prague
6, Czech Republic
| | - Josef Plestil
- Institute of Macromolecular
Chemistry, Academy of Sciences of the Czech Republic, v. v. i., Heyrovský Sq. 2, 162 06 Prague
6, Czech Republic
| | - Petr Stepanek
- Institute of Macromolecular
Chemistry, Academy of Sciences of the Czech Republic, v. v. i., Heyrovský Sq. 2, 162 06 Prague
6, Czech Republic
| | - Tomas Etrych
- Institute of Macromolecular
Chemistry, Academy of Sciences of the Czech Republic, v. v. i., Heyrovský Sq. 2, 162 06 Prague
6, Czech Republic
| | - Karel Ulbrich
- Institute of Macromolecular
Chemistry, Academy of Sciences of the Czech Republic, v. v. i., Heyrovský Sq. 2, 162 06 Prague
6, Czech Republic
| | - Dmitri I. Svergun
- European Molecular
Biology Laboratory, EMBL c/o DESY, Notkestrasse 85, D-22603 Hamburg, Germany
| |
Collapse
|