1
|
Fan L, Wang X, Wu D. Polyhedral Oligomeric Silsesquioxanes (
POSS
)‐based Hybrid Materials: Molecular Design, Solution
Self‐Assembly
and Biomedical Applications. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000536] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Linfeng Fan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Decheng Wu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- Department of Biomedical Engineering, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
2
|
Pang B, Liu R, Han G, Wang W, Zhang W. The synthesis of thermoresponsive POSS-based eight-arm star poly( N-isopropylacrylamide): A comparison between Z-RAFT and R-RAFT strategies. Polym Chem 2021. [DOI: 10.1039/d1py00087j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Z-Type POSS-based eight-arm star poly(N-isopropylacrylamide), POSS-(PNIPAM)8-Z, is synthesized and demonstrated to be a thermoresponsive switchable emulsifier.
Collapse
Affiliation(s)
- Bo Pang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Rui Liu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Guang Han
- State Key Laboratory of Special Functional Waterproof Materials
- Beijing Oriental Yuhong Waterproof Technology Co
- Ltd
- Beijing 100123
- China
| | - Wei Wang
- School of Chemistry & Material Science
- Langfang Normal University
- Langfang
- China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| |
Collapse
|
3
|
Xiang B, Xue Y, Liu Z, Tian J, Frey H, Gao Y, Zhang W. Water-soluble hyperbranched polyglycerol photosensitizer for enhanced photodynamic therapy. Polym Chem 2020. [DOI: 10.1039/d0py00431f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Herein, we successfully fabricated a new type of water-soluble, hyperbranched polyglycerol photosensitizer through one-step esterification between water-soluble hyperbranched polyglycerol (hbPG) and fluorophenylporphyrin (FP).
Collapse
Affiliation(s)
- Bowen Xiang
- Shanghai Key Laboratory of Functional Materials Chemistry
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Yudong Xue
- Shanghai Key Laboratory of Functional Materials Chemistry
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Zhiyong Liu
- Shanghai Key Laboratory of Functional Materials Chemistry
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Holger Frey
- Institute of Organic Chemistry
- Johannes Gutenberg University
- 55128 Mainz
- Germany
| | - Yun Gao
- Shanghai Key Laboratory of Functional Materials Chemistry
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
4
|
Chen F, Lin F, Zhang Q, Cai R, Wu Y, Ma X. Polyhedral Oligomeric Silsesquioxane Hybrid Polymers: Well‐Defined Architectural Design and Potential Functional Applications. Macromol Rapid Commun 2019; 40:e1900101. [DOI: 10.1002/marc.201900101] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/12/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Fang Chen
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen Shenzhen 518097 P. R. China
- The Key Laboratory of Space Applied Physics and ChemistryMinistry of EducationNorthwestern Polytechnical University Xi'an 710129 P. R. China
| | - Feng Lin
- The Key Laboratory of Space Applied Physics and ChemistryMinistry of EducationNorthwestern Polytechnical University Xi'an 710129 P. R. China
| | - Qi Zhang
- The Key Laboratory of Space Applied Physics and ChemistryMinistry of EducationNorthwestern Polytechnical University Xi'an 710129 P. R. China
| | - Rong Cai
- The Key Laboratory of Space Applied Physics and ChemistryMinistry of EducationNorthwestern Polytechnical University Xi'an 710129 P. R. China
| | - Yadong Wu
- The Key Laboratory of Space Applied Physics and ChemistryMinistry of EducationNorthwestern Polytechnical University Xi'an 710129 P. R. China
| | - Xiaoyan Ma
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen Shenzhen 518097 P. R. China
- The Key Laboratory of Space Applied Physics and ChemistryMinistry of EducationNorthwestern Polytechnical University Xi'an 710129 P. R. China
| |
Collapse
|
5
|
Meng W, He Q, Yu M, Zhou Y, Wang C, Yu B, Zhang B, Bu W. Telechelic amphiphilic metallopolymers end-functionalized with platinum(ii) complexes: synthesis, luminescence enhancement, and their self-assembly into flowerlike vesicles and giant flowerlike vesicles. Polym Chem 2019. [DOI: 10.1039/c9py00652d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Telechelic amphiphilic metallopolymers can self-assemble in solution to create nanosized flowerlike vesicles, where the two platinum(ii) complex ends are connected to the same vesicular core and the central PEG chains form loops as a corona.
Collapse
Affiliation(s)
- Weisheng Meng
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province
- State Key Laboratory of Applied Organic Chemistry
- and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
| | - Qun He
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province
- State Key Laboratory of Applied Organic Chemistry
- and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
| | - Manman Yu
- State Key Laboratory of Chemical Resource Engineering
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Yufeng Zhou
- School of Materials Science & Engineering
- Zhengzhou University
- Zhengzhou
- China
| | - Chen Wang
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province
- State Key Laboratory of Applied Organic Chemistry
- and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
| | - Bingran Yu
- State Key Laboratory of Chemical Resource Engineering
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Bin Zhang
- School of Materials Science & Engineering
- Zhengzhou University
- Zhengzhou
- China
| | - Weifeng Bu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province
- State Key Laboratory of Applied Organic Chemistry
- and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
| |
Collapse
|
6
|
Chi H, Wang M, Xiao Y, Wang F, K S J. Self-Assembly and Applications of Amphiphilic Hybrid POSS Copolymers. Molecules 2018; 23:E2481. [PMID: 30262758 PMCID: PMC6222655 DOI: 10.3390/molecules23102481] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 01/22/2023] Open
Abstract
Understanding the mechanism of molecular self-assembly to form well-organized nanostructures is essential in the field of supramolecular chemistry. Particularly, amphiphilic copolymers incorporated with polyhedral oligomeric silsesquioxanes (POSSs) have been one of the most promising materials in material science, engineering, and biomedical fields. In this review, new ideas and research works which have been carried out over the last several years in this relatively new area with a main focus on their mechanism in self-assembly and applications are discussed. In addition, insights into the unique role of POSSs in synthesis, microphase separation, and confined size were encompassed. Finally, perspectives and challenges related to the further advancement of POSS-based amphiphilics are discussed, followed by the proposed design considerations to address the challenges that we may face in the future.
Collapse
Affiliation(s)
- Hong Chi
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry of Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Mingyue Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry of Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Yiting Xiao
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry of Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Fuke Wang
- Polymeric Materials Department, Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore.
| | - Joshy K S
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala, India.
| |
Collapse
|
7
|
Zhang Z, Xue Y, Zhang P, Müller AHE, Zhang W. Hollow Polymeric Capsules from POSS-Based Block Copolymer for Photodynamic Therapy. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b02414] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zhenghe Zhang
- Shanghai
Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Yudong Xue
- Shanghai
Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Pengcheng Zhang
- Shanghai
Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Axel H. E. Müller
- Institut
für Organische Chemie, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
| | - Weian Zhang
- Shanghai
Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
8
|
Ullah A, Ullah S, Khan GS, Shah SM, Hussain Z, Muhammad S, Siddiq M, Hussain H. Water soluble polyhedral oligomeric silsesquioxane based amphiphilic hybrid polymers: Synthesis, self-assembly, and applications. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2015.11.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Zhang Z, Zhang P, Wang Y, Zhang W. Recent advances in organic–inorganic well-defined hybrid polymers using controlled living radical polymerization techniques. Polym Chem 2016. [DOI: 10.1039/c6py00675b] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Controlled living radical polymerizations, such as ATRP and RAFT polymerization, could be utilized for the preparation of well-defined organic–inorganic hybrid polymers based on POSS, PDMS, silica nanoparticles, graphene, CNTs and fullerene.
Collapse
Affiliation(s)
- Zhenghe Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Pengcheng Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
10
|
Polarz S, Odendal JA, Hermann S, Klaiber A. Amphiphilic hybrids containing inorganic constituent: More than soap. Curr Opin Colloid Interface Sci 2015. [DOI: 10.1016/j.cocis.2015.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Li S, Ji S, Zhou Z, Chen G, Li Q. Synthesis and Self-Assembly of o
-Nitrobenzyl-Based Amphiphilic Hybrid Polymer with Light and pH Dual Response. MACROMOL CHEM PHYS 2015. [DOI: 10.1002/macp.201500044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Shasha Li
- State Key Laboratory of Chemical Resource Engineering, and College of Materials Science and Engineering; Beijing University of Chemical Technology; Beijing 100029 P.R. China
| | - Sha Ji
- State Key Laboratory of Chemical Resource Engineering, and College of Materials Science and Engineering; Beijing University of Chemical Technology; Beijing 100029 P.R. China
| | - Zheng Zhou
- State Key Laboratory of Chemical Resource Engineering, and College of Materials Science and Engineering; Beijing University of Chemical Technology; Beijing 100029 P.R. China
| | - Guangxin Chen
- State Key Laboratory of Chemical Resource Engineering, and College of Materials Science and Engineering; Beijing University of Chemical Technology; Beijing 100029 P.R. China
| | - Qifang Li
- State Key Laboratory of Chemical Resource Engineering, and College of Materials Science and Engineering; Beijing University of Chemical Technology; Beijing 100029 P.R. China
| |
Collapse
|