1
|
Kruse J, Sanromán‐Iglesias M, Marauri A, Rivilla I, Grzelczak M. Coupling Reversible Clustering of DNA‐Coated Gold Nanoparticles with Chemothermal Cycloaddition Reaction. CHEMSYSTEMSCHEM 2022. [DOI: 10.1002/syst.202200031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Joscha Kruse
- Donostia International Physics Center (DIPC) Paseo Manuel de Lardizabal 4 20018 Donostia-San Sebastián Spain
- CIC nanoGUNE BRTA Tolosa Hiribidea 76 20018 Donostia-Sebastián Spain
| | - Maria Sanromán‐Iglesias
- Centro de Física de Materiales CSIC-UPV/EHU Paseo Manuel de Lardizabal 5 20018 Donostia San-Sebastián Spain
| | - Aimar Marauri
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) Lardizabal Pasealekua 3 20018 Donostia-San Sebastián Spain
| | - Ivan Rivilla
- Donostia International Physics Center (DIPC) Paseo Manuel de Lardizabal 4 20018 Donostia-San Sebastián Spain
- Ikerbasque, Basque Foundation for Science 48013 Bilbao Spain
| | - Marek Grzelczak
- Donostia International Physics Center (DIPC) Paseo Manuel de Lardizabal 4 20018 Donostia-San Sebastián Spain
- Centro de Física de Materiales CSIC-UPV/EHU Paseo Manuel de Lardizabal 5 20018 Donostia San-Sebastián Spain
| |
Collapse
|
2
|
Mezzasalma SA, Kruse J, Ibarra AI, Arbe A, Grzelczak M. Statistical thermodynamics in reversible clustering of gold nanoparticles. A first step towards nanocluster heat engines. J Colloid Interface Sci 2022; 628:205-214. [DOI: 10.1016/j.jcis.2022.07.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/08/2022] [Accepted: 07/06/2022] [Indexed: 12/01/2022]
|
3
|
Flemming P, Münch AS, Fery A, Uhlmann P. Constrained thermoresponsive polymers - new insights into fundamentals and applications. Beilstein J Org Chem 2021; 17:2123-2163. [PMID: 34476018 PMCID: PMC8381851 DOI: 10.3762/bjoc.17.138] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
In the last decades, numerous stimuli-responsive polymers have been developed and investigated regarding their switching properties. In particular, thermoresponsive polymers, which form a miscibility gap with the ambient solvent with a lower or upper critical demixing point depending on the temperature, have been intensively studied in solution. For the application of such polymers in novel sensors, drug delivery systems or as multifunctional coatings, they typically have to be transferred into specific arrangements, such as micelles, polymer films or grafted nanoparticles. However, it turns out that the thermodynamic concept for the phase transition of free polymer chains fails, when thermoresponsive polymers are assembled into such sterically confined architectures. Whereas many published studies focus on synthetic aspects as well as individual applications of thermoresponsive polymers, the underlying structure-property relationships governing the thermoresponse of sterically constrained assemblies, are still poorly understood. Furthermore, the clear majority of publications deals with polymers that exhibit a lower critical solution temperature (LCST) behavior, with PNIPAAM as their main representative. In contrast, for polymer arrangements with an upper critical solution temperature (UCST), there is only limited knowledge about preparation, application and precise physical understanding of the phase transition. This review article provides an overview about the current knowledge of thermoresponsive polymers with limited mobility focusing on UCST behavior and the possibilities for influencing their thermoresponsive switching characteristics. It comprises star polymers, micelles as well as polymer chains grafted to flat substrates and particulate inorganic surfaces. The elaboration of the physicochemical interplay between the architecture of the polymer assembly and the resulting thermoresponsive switching behavior will be in the foreground of this consideration.
Collapse
Affiliation(s)
- Patricia Flemming
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| | - Alexander S Münch
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| | - Petra Uhlmann
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
- University of Nebraska-Lincoln, NE 68588, Lincoln, USA
| |
Collapse
|
4
|
Fan X, Wu L, Yang L. Fabrication and characterization of thermoresponsive composite carriers: PNIPAAm-grafted glass spheres. E-POLYMERS 2021. [DOI: 10.1515/epoly-2021-0023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Abstract
Processing capacity and product yield of three-dimensional (3D) smart responsive carriers are markedly superior to those of two-dimensional substrates with the same compositions due to the special structure; therefore, more attempts have been made to develop the 3D intelligent systems in recent decades. A novel preparation strategy of thermoresponsive glass sphere-based composite carriers was reported in this study. First, PNIPAAm copolymers were synthesized by free-radical polymerization of N-isopropylacrylamide (NIPAAm), hydroxypropyl methacrylate (HPM), and 3-trimethoxysilypropyl methacrylate (TMSPM). Then, the copolymer solution was sprayed on the surfaces of glass spheres using a self-made bottom-spray fluidized bed reactor, and the bonding between copolymers and glass spheres was fabricated by thermal annealing to form PNIPAAm copolymer/glass sphere composite carriers. The coating effects of PNIPAAm copolymers on sphere surfaces were investigated, including characteristic functional groups, surface microstructure, grafting density, equilibrium swelling, as well as biocompatibility and potential application for cell culture. The results show that the temperature-responsive PNIPAAm copolymers can be linked to the surfaces of glass spheres by bottom-spray coating technology, and the copolymer layers can be formed on the sphere surfaces. The composite carriers have excellent thermosensitivity and favorable biocompatibility, and they are available for effective cell adhesion and spontaneous cell detachment by the use of smart responsiveness.
Collapse
Affiliation(s)
- Xiaoguang Fan
- College of Engineering, Shenyang Agricultural University , Shenyang 110866 , China
| | - Liyan Wu
- College of Engineering, Shenyang Agricultural University , Shenyang 110866 , China
| | - Lei Yang
- School of Petrochemical Engineering, Liaoning Petrochemical University , Fushun 113001 , China
| |
Collapse
|
5
|
Peng W, Cai Y, Fanslau L, Vana P. Nanoengineering with RAFT polymers: from nanocomposite design to applications. Polym Chem 2021. [DOI: 10.1039/d1py01172c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Reversible addition–fragmentation chain-transfer (RAFT) polymerization is a powerful tool for the precise formation of macromolecular building blocks that can be used for the construction of well-defined nanocomposites.
Collapse
Affiliation(s)
- Wentao Peng
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Yingying Cai
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Luise Fanslau
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Philipp Vana
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| |
Collapse
|
6
|
Albright V, Palanisamy A, Zhou Q, Selin V, Sukhishvili SA. Functional Surfaces through Controlled Assemblies of Upper Critical Solution Temperature Block and Star Copolymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10677-10688. [PMID: 30346775 DOI: 10.1021/acs.langmuir.8b02535] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Endowing surfaces with multiple advanced functionalities, such as temperature-controlled swelling or the triggered release of functional small molecules, is attractive for a large variety of applications ranging from smart textiles to advanced biomedical applications. This Invited Feature Article summarizes recent advances in the development of upper critical solution temperature (UCST) behavior of copolymers in aqueous solutions and compares the fundamental differences between lower critical solution temperature (LCST) and UCST transitions. The effect of polymer chemistry and architecture on UCST transitions is discussed for block copolymer micelles (BCMs) and star polymers in solution and assembled at surfaces. The inclusion of such nanocontainers (i.e., BCMs and star polymers) in layer-by-layer (LbL) coatings and how to control their responsive behavior through deposition conditions and binding partners is explored. Finally, the inclusion and temperature-triggered release of functional small molecules is explored for nanocontainers in LbL coatings. Taken together, UCST nanocontainers containing LbL films are promising building blocks for the development of new generations of practical, functional surface coatings.
Collapse
Affiliation(s)
- Victoria Albright
- Department of Materials Science and Engineering , Texas A&M University , 575 Ross Street , College Station , Texas 77843 , United States
| | - Anbazhagan Palanisamy
- Department of Materials Science and Engineering , Texas A&M University , 575 Ross Street , College Station , Texas 77843 , United States
| | - Qing Zhou
- Department of Materials Science and Engineering , Texas A&M University , 575 Ross Street , College Station , Texas 77843 , United States
| | - Victor Selin
- Department of Materials Science and Engineering , Texas A&M University , 575 Ross Street , College Station , Texas 77843 , United States
| | - Svetlana A Sukhishvili
- Department of Materials Science and Engineering , Texas A&M University , 575 Ross Street , College Station , Texas 77843 , United States
| |
Collapse
|
7
|
|
8
|
Tao H, Galati E, Kumacheva E. Temperature-Responsive Self-Assembly of Nanoparticles Grafted with UCST Polymer Ligands. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01058] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Huachen Tao
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Elizabeth Galati
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|
9
|
Iida R, Mitomo H, Niikura K, Matsuo Y, Ijiro K. Two-Step Assembly of Thermoresponsive Gold Nanorods Coated with a Single Kind of Ligand. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1704230. [PMID: 29457380 DOI: 10.1002/smll.201704230] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/08/2018] [Indexed: 05/24/2023]
Abstract
Gold nanorods (GNRs) coated with a single kind of ligand show thermoreponsive two-step assembly to provide a hierarchical structure. The GNRs (33 nm in length × 14 nm in diameter) coated with a hexa(ethylene glycol) (HEG) derivative form side-by-side assemblies at 30 °C (TA1 ) as a steady state through dehydration. By further heating to over 40 °C (TA2 ), larger assemblies, which are composed of the side-by-side assembled units, are formed as hierarchical structures. The dehydration temperature of the HEG derivative varies depending on the free volume of the HEG unit, which corresponds to the curvature of the GNRs. Upon heating, dehydration first occurs from the ligands on the side portions with a lower curvature, and then from the ligands on the edge portions with a higher curvature. The different sized GNRs (33 × 8 and 54 × 15 nm) also show two-step assembly. Both the TA1 and TA2 are dependent on the diameter of the GNRs, but independent of their length. This result supports that the dehydration is dependent on the free volume, which corresponds to the curvature. Anisotropic assembly focusing on differences in curvature provides new guidelines for the fabrication of hierarchical structures.
Collapse
Affiliation(s)
- Ryo Iida
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-8628, Japan
| | - Hideyuki Mitomo
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 001-0021, Japan
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, 001-0021, Japan
| | - Kenichi Niikura
- Department of Innovative Systems Engineering, and, Graduate School of Environmental Symbiotic System Major, Nippon Institute of Technology, Miyashiro, Saitama, 345-8501, Japan
| | - Yasutaka Matsuo
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Kuniharu Ijiro
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 001-0021, Japan
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, 001-0021, Japan
| |
Collapse
|
10
|
Hill AP, Kunstmann-Olsen C, Grzelczak MP, Brust M. Entropy-Driven Reversible Agglomeration of Crown Ether Capped Gold Nanoparticles. Chemistry 2018; 24:3151-3155. [PMID: 29383767 DOI: 10.1002/chem.201705820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/02/2018] [Indexed: 01/13/2023]
Abstract
It is shown that plasmonic gold nanoparticles functionalised with a thiolated 18-crown-6 ligand shell agglomerate spontaneously from aqueous dispersion at elevated temperatures. This process takes place over a narrow temperature range, is accompanied by a colour change from red to purple-blue and is fully reversible. Moreover, the temperature at which it occurs can be adjusted by the degree of complexation of the crown ether moiety with appropriate cations. More complexation leads to higher transition temperatures. The process has been studied by UV/Vis spectroscopy, electron microscopy, dynamic light scattering and zeta potential measurements. A thermodynamic rationale is provided to suggest an entropy-driven endothermic agglomeration process based on attractive hydrophobic interactions of the complexed crowns that are competing against electrostatic repulsion of the charged ligand shells.
Collapse
Affiliation(s)
- Alexander P Hill
- Department of Chemistry, University of Liverpool, Liverpool, L7 7ZD, UK
| | | | | | - Mathias Brust
- Department of Chemistry, University of Liverpool, Liverpool, L7 7ZD, UK
| |
Collapse
|
11
|
Yang D, Viitasuo M, Pooch F, Tenhu H, Hietala S. Poly(N-acryloylglycinamide) microgels as nanocatalyst platform. Polym Chem 2018. [DOI: 10.1039/c7py01950e] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report the synthesis of thermophilic poly(N-acryloylglycinamide) (PNAGA) microgels that swell in water upon heating and their use as nanocatalyst hosts.
Collapse
Affiliation(s)
- Dong Yang
- Department of Chemistry
- University of Helsinki
- FIN-00014
- Finland
| | - Milla Viitasuo
- Department of Chemistry
- University of Helsinki
- FIN-00014
- Finland
| | - Fabian Pooch
- Department of Chemistry
- University of Helsinki
- FIN-00014
- Finland
| | - Heikki Tenhu
- Department of Chemistry
- University of Helsinki
- FIN-00014
- Finland
| | - Sami Hietala
- Department of Chemistry
- University of Helsinki
- FIN-00014
- Finland
| |
Collapse
|
12
|
Xu Z, Liu W. Poly(N-acryloyl glycinamide): a fascinating polymer that exhibits a range of properties from UCST to high-strength hydrogels. Chem Commun (Camb) 2018; 54:10540-10553. [DOI: 10.1039/c8cc04614j] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This feature article introduces the diverse intriguing properties of poly(N-acryloyl glycinamide) aqueous systems spanning from low to high concentrations.
Collapse
Affiliation(s)
- Ziyang Xu
- School of Materials Science and Engineering
- Tianjin Key Laboratory of Composite and Functional Materials
- Tianjin University
- Tianjin 300350
- China
| | - Wenguang Liu
- School of Materials Science and Engineering
- Tianjin Key Laboratory of Composite and Functional Materials
- Tianjin University
- Tianjin 300350
- China
| |
Collapse
|
13
|
Methyl matters: An autonomic rapid self-healing supramolecular poly(N-methacryloyl glycinamide) hydrogel. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.08.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Li M, Xu Y, Liu T, Li Y, Ling Y, Tang H. Preparation and Thermoresponsive Properties of UCST-Type Polypeptide Bearing p
-Tolyl Pendants and 3-Methyl-1,2,3-triazolium Linkages in Methanol or Ethanol/Water Solvent Mixtures. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Minjie Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education; Key Laboratory of Polymeric Materials and Application Technology of Hunan Province; Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province; College of Chemistry; Xiangtan University; Xiangtan Hunan 411105 China
| | - Yanzhi Xu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education; Key Laboratory of Polymeric Materials and Application Technology of Hunan Province; Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province; College of Chemistry; Xiangtan University; Xiangtan Hunan 411105 China
| | - Tingting Liu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education; Key Laboratory of Polymeric Materials and Application Technology of Hunan Province; Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province; College of Chemistry; Xiangtan University; Xiangtan Hunan 411105 China
| | - Yin Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education; Key Laboratory of Polymeric Materials and Application Technology of Hunan Province; Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province; College of Chemistry; Xiangtan University; Xiangtan Hunan 411105 China
| | - Ying Ling
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education; Key Laboratory of Polymeric Materials and Application Technology of Hunan Province; Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province; College of Chemistry; Xiangtan University; Xiangtan Hunan 411105 China
| | - Haoyu Tang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education; Key Laboratory of Polymeric Materials and Application Technology of Hunan Province; Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province; College of Chemistry; Xiangtan University; Xiangtan Hunan 411105 China
| |
Collapse
|
15
|
Käfer F, Lerch A, Agarwal S. Tunable, concentration-independent, sharp, hysteresis-free UCST phase transition from poly(N-acryloyl glycinamide-acrylonitrile) system. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28374] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Florian Käfer
- Macromolecular Chemistry II, University of Bayreuth; Bayreuth 95440 Germany
| | - Arne Lerch
- Physical Chemistry I, University of Bayreuth; Bayreuth 95440 Germany
| | - Seema Agarwal
- Macromolecular Chemistry II, University of Bayreuth; Bayreuth 95440 Germany
| |
Collapse
|
16
|
Mäkinen L, Varadharajan D, Tenhu H, Hietala S. Triple Hydrophilic UCST–LCST Block Copolymers. Macromolecules 2016. [DOI: 10.1021/acs.macromol.5b02543] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Lauri Mäkinen
- Laboratory of Polymer Chemistry,
Department of Chemistry, University of Helsinki, P.O. Box 55, Helsinki FIN-00014, Finland
| | - Divya Varadharajan
- Laboratory of Polymer Chemistry,
Department of Chemistry, University of Helsinki, P.O. Box 55, Helsinki FIN-00014, Finland
| | - Heikki Tenhu
- Laboratory of Polymer Chemistry,
Department of Chemistry, University of Helsinki, P.O. Box 55, Helsinki FIN-00014, Finland
| | - Sami Hietala
- Laboratory of Polymer Chemistry,
Department of Chemistry, University of Helsinki, P.O. Box 55, Helsinki FIN-00014, Finland
| |
Collapse
|
17
|
Pineda-Contreras BA, Schmalz H, Agarwal S. pH dependent thermoresponsive behavior of acrylamide–acrylonitrile UCST-type copolymers in aqueous media. Polym Chem 2016. [DOI: 10.1039/c6py00162a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
pH-dependent UCST-transitions and influence of sacrificial additives on the thermoresponsivity of acrylamide- acrylonitrile copolymers is shown.
Collapse
Affiliation(s)
- Beatriz A. Pineda-Contreras
- University of Bayreuth
- Faculty of Biology
- Chemistry and Earth Sciences
- Macromolecular Chemistry II
- Bayreuth Center for Colloids and Interfaces
| | - Holger Schmalz
- University of Bayreuth
- Faculty of Biology
- Chemistry and Earth Sciences
- Macromolecular Chemistry II
- Bayreuth Center for Colloids and Interfaces
| | - Seema Agarwal
- University of Bayreuth
- Faculty of Biology
- Chemistry and Earth Sciences
- Macromolecular Chemistry II
- Bayreuth Center for Colloids and Interfaces
| |
Collapse
|
18
|
Reversible Addition-Fragmentation Chain Transfer Polymerization from Surfaces. CONTROLLED RADICAL POLYMERIZATION AT AND FROM SOLID SURFACES 2015. [DOI: 10.1007/12_2015_316] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|