1
|
Rohland P, Schröter E, Nolte O, Newkome GR, Hager MD, Schubert US. Redox-active polymers: The magic key towards energy storage – a polymer design guideline progress in polymer science. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2021.101474] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
2
|
Schara S, Blau R, Church DC, Pokorski JK, Lipomi DJ. Polymer Chemistry for Haptics, Soft Robotics, and Human-Machine Interfaces. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2008375. [PMID: 34924911 PMCID: PMC8673772 DOI: 10.1002/adfm.202008375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Indexed: 05/05/2023]
Abstract
Progress in the field of soft devices-i.e., haptics, robotics, and human-machine interfaces (HRHMIs)-has its basis in the science of polymeric materials and chemical synthesis. However, in examining the relevant literature, we find that most developments have been enabled by off-the-shelf materials used either alone or as components of physical blends and composites. In this Progress Report, we take the position that a greater awareness of the capabilities of synthetic chemistry will accelerate the capabilities of HRHMIs. Conversely, an awareness of the applications sought by engineers working in this area may spark the development of new molecular designs and synthetic methodologies by chemists. We highlight several applications of active, stimuli-responsive polymers, which have demonstrated or shown potential use in HRHMIs. These materials share the fact that they are products of state-of-the-art synthetic techniques. The Progress Report is thus organized by the chemistry by which the materials were synthesized, including controlled radical polymerization, metal-mediated cross-coupling polymerization, ring-opening polymerization, various strategies for crosslinking, and hybrid approaches. These methods can afford polymers with multiple properties (i.e. conductivity, stimuli-responsiveness, self-healing and degradable abilities, biocompatibility, adhesiveness, and mechanical robustness) that are of great interest to scientists and engineers concerned with soft devices for human interaction.
Collapse
Affiliation(s)
- Steven Schara
- Department of NanoEngineering, University of California, San Diego 9500 Gilman Drive, Mail Code 0448, La Jolla, CA 92093-0448
| | - Rachel Blau
- Department of NanoEngineering, University of California, San Diego 9500 Gilman Drive, Mail Code 0448, La Jolla, CA 92093-0448
| | - Derek C. Church
- Department of NanoEngineering, University of California, San Diego 9500 Gilman Drive, Mail Code 0448, La Jolla, CA 92093-0448
| | - Jonathan K. Pokorski
- Department of NanoEngineering, University of California, San Diego 9500 Gilman Drive, Mail Code 0448, La Jolla, CA 92093-0448
| | - Darren J. Lipomi
- Department of NanoEngineering, University of California, San Diego 9500 Gilman Drive, Mail Code 0448, La Jolla, CA 92093-0448
| |
Collapse
|
3
|
Abstract
The development of degradable polymers has commanded significant attention over the past half century. Approaches have predominantly relied on ring-opening polymerization of cyclic esters (e.g., lactones, lactides) and N-carboxyanhydrides, as well as radical ring-opening polymerizations of cyclic ketene acetals. In recent years, there has been a significant effort applied to expand the family of degradable polymers accessible via olefin metathesis polymerization. Given the excellent functional group tolerance of olefin metathesis polymerization reactions generally, a broad range of conceivable degradable moieties can be incorporated into appropriate monomers and thus into polymer backbones. This approach has proven particularly versatile in synthesizing a broad spectrum of degradable polymers including poly(ester), poly(amino acid), poly(acetal), poly(carbonate), poly(phosphoester), poly(phosphoramidate), poly(enol ether), poly(azobenzene), poly(disulfide), poly(sulfonate ester), poly(silyl ether), and poly(oxazinone) among others. In this review, we will highlight the main olefin metathesis polymerization strategies that have been used to access degradable polymers, including (i) acyclic diene metathesis polymerization, (ii) entropy-driven and (iii) enthalpy-driven ring-opening metathesis polymerization, as well as (iv) cascade enyne metathesis polymerization. In addition, the livingness or control of polymerization reactions via different strategies are highlighted and compared. Potential applications, challenges and future perspectives of this new library of degradable polyolefins are discussed. It is clear from recent and accelerating developments in this field that olefin metathesis polymerization represents a powerful synthetic tool towards degradable polymers with novel structures and properties inaccessible by other polymerization approaches.
Collapse
Affiliation(s)
- Hao Sun
- Department of Chemistry, International Institute for
Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| | - Yifei Liang
- Department of Chemistry, International Institute for
Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| | - Matthew P. Thompson
- Department of Chemistry, International Institute for
Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| | - Nathan C. Gianneschi
- Department of Chemistry, International Institute for
Nanotechnology, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science & Engineering,
Department of Biomedical Engineering, Department of Pharmacology, Chemistry of Life
Processes Institute, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
4
|
Soheilmoghaddam F, Rumble M, Cooper-White J. High-Throughput Routes to Biomaterials Discovery. Chem Rev 2021; 121:10792-10864. [PMID: 34213880 DOI: 10.1021/acs.chemrev.0c01026] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many existing clinical treatments are limited in their ability to completely restore decreased or lost tissue and organ function, an unenviable situation only further exacerbated by a globally aging population. As a result, the demand for new medical interventions has increased substantially over the past 20 years, with the burgeoning fields of gene therapy, tissue engineering, and regenerative medicine showing promise to offer solutions for full repair or replacement of damaged or aging tissues. Success in these fields, however, inherently relies on biomaterials that are engendered with the ability to provide the necessary biological cues mimicking native extracellular matrixes that support cell fate. Accelerating the development of such "directive" biomaterials requires a shift in current design practices toward those that enable rapid synthesis and characterization of polymeric materials and the coupling of these processes with techniques that enable similarly rapid quantification and optimization of the interactions between these new material systems and target cells and tissues. This manuscript reviews recent advances in combinatorial and high-throughput (HT) technologies applied to polymeric biomaterial synthesis, fabrication, and chemical, physical, and biological screening with targeted end-point applications in the fields of gene therapy, tissue engineering, and regenerative medicine. Limitations of, and future opportunities for, the further application of these research tools and methodologies are also discussed.
Collapse
Affiliation(s)
- Farhad Soheilmoghaddam
- Tissue Engineering and Microfluidics Laboratory (TEaM), Australian Institute for Bioengineering and Nanotechnology (AIBN), University Of Queensland, St. Lucia, Queensland, Australia 4072.,School of Chemical Engineering, University Of Queensland, St. Lucia, Queensland, Australia 4072
| | - Madeleine Rumble
- Tissue Engineering and Microfluidics Laboratory (TEaM), Australian Institute for Bioengineering and Nanotechnology (AIBN), University Of Queensland, St. Lucia, Queensland, Australia 4072.,School of Chemical Engineering, University Of Queensland, St. Lucia, Queensland, Australia 4072
| | - Justin Cooper-White
- Tissue Engineering and Microfluidics Laboratory (TEaM), Australian Institute for Bioengineering and Nanotechnology (AIBN), University Of Queensland, St. Lucia, Queensland, Australia 4072.,School of Chemical Engineering, University Of Queensland, St. Lucia, Queensland, Australia 4072
| |
Collapse
|
5
|
Cassin SR, Chambon P, Rannard SP. Hyperbranched polymers with step-growth chemistries from transfer-dominated branching radical telomerisation (TBRT) of divinyl monomers. Polym Chem 2020. [DOI: 10.1039/d0py01309a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The commercially relevant synthesis of novel materials with step-growth backbones has been achieved by applying conventional chemistries to the radical telomerisation of divinyl monomers leading to high molecular weight branched polymers.
Collapse
Affiliation(s)
- Savannah R. Cassin
- Department of Chemistry
- University of Liverpool
- UK
- Materials Innovation Factory
- University of Liverpool
| | - Pierre Chambon
- Department of Chemistry
- University of Liverpool
- UK
- Materials Innovation Factory
- University of Liverpool
| | - Steve P. Rannard
- Department of Chemistry
- University of Liverpool
- UK
- Materials Innovation Factory
- University of Liverpool
| |
Collapse
|
6
|
Yang Y, Muhich CL, Green MD. Kinetics and mechanisms of polycondensation reactions between aryl halides and bisphenol A. Polym Chem 2020. [DOI: 10.1039/d0py00740d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Computational and experimental verification of a second-order rate expression for polysulfones synthesized using diphenyldichloro sulfone versus a third-order rate expression for polysulfones synthesized using diphenyldifluoro sulfone.
Collapse
Affiliation(s)
- Yi Yang
- Department of Chemical Engineering; School for Engineering of Matter
- Transport and Energy
- Arizona State University
- Tempe
- USA
| | - Christopher L. Muhich
- Department of Chemical Engineering; School for Engineering of Matter
- Transport and Energy
- Arizona State University
- Tempe
- USA
| | - Matthew D. Green
- Department of Chemical Engineering; School for Engineering of Matter
- Transport and Energy
- Arizona State University
- Tempe
- USA
| |
Collapse
|
7
|
“Michael addition” reaction onto vinyl sulfonyl(trifluoromethylsulfonyl)imide: An easy access to sulfonyl(trifluoromethylsulfonyl)imide-based monomers and polymers. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.07.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Hurrle S, Goldmann AS, Gliemann H, Mutlu H, Barner-Kowollik C. Light-Induced Step-Growth Polymerization of AB-Type Photo-Monomers at Ambient Temperature. ACS Macro Lett 2018; 7:201-207. [PMID: 35610893 DOI: 10.1021/acsmacrolett.7b01001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We introduce two AB-type monomers able to undergo a facile catalyst-free photoinduced polycycloaddition of photocaged dienes, enabling rapid Diels-Alder ligations under UV-irradiation (λmax = 350 nm) at ambient temperature, closely adhering to Carother's equation established by a careful kinetic study (17800 g mol-1 < Mw < 24700 g mol-1). The resulting macromolecules were in-depth analyzed via size exclusion chromatography (SEC) and nuclear magnetic resonance (NMR) spectroscopy. Additionally, SEC hyphenated to high resolution-electrospray ionization-mass spectrometry (HR-ESI-MS) enabled the careful mapping of the end group structure of the generated polymers. Furthermore, we demonstrate that both monomer systems can be readily copolymerized. The study thus demonstrates that Diels-Alder ligation resting upon photocaged dienes is a powerful tool for accessing step-growth polymers.
Collapse
Affiliation(s)
- Silvana Hurrle
- Macromolecular
Architectures, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstraße 18, 76128 Karlsruhe, Germany
| | - Anja S. Goldmann
- School
of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
- Macromolecular
Architectures, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstraße 18, 76128 Karlsruhe, Germany
| | - Hartmut Gliemann
- Institut
für Funktionelle Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Karlsruhe, Germany
| | - Hatice Mutlu
- School
of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
- Soft
Matter Synthesis Laboratory, Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Christopher Barner-Kowollik
- School
of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
- Macromolecular
Architectures, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstraße 18, 76128 Karlsruhe, Germany
- Soft
Matter Synthesis Laboratory, Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
9
|
Li ZL, Zeng FR, Li HC, Zeng WL, Cai HC, Jiang H. Marriage of ring-opening metathesis polymerization and thiol-maleimide chemistries: Direct polymerization of prefunctionalized monomers or postpolymerization modification? POLYMER 2017. [DOI: 10.1016/j.polymer.2017.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Ding L, Wang C, Lin L, Zhu Z. One-Pot Sequential Ring-Opening Metathesis Polymerization and Acyclic Diene Metathesis Polymerization Synthesis of Unsaturated Block Polyphosphoesters. MACROMOL CHEM PHYS 2015. [DOI: 10.1002/macp.201400579] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Liang Ding
- School of Materials Engineering; Yancheng Institute of Technology; Yancheng 224051 P.R. China
| | - Chengshuang Wang
- School of Materials Engineering; Yancheng Institute of Technology; Yancheng 224051 P.R. China
| | - Ling Lin
- School of Materials Engineering; Yancheng Institute of Technology; Yancheng 224051 P.R. China
- Key Laboratory of Eco-Textile; Ministry of Education; Jiangnan University; Wuxi 214122 P.R. China
| | - Zhenshu Zhu
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 117578 Singapore
| |
Collapse
|
11
|
Zhao Y, Yu Y, Zhang Y, Wang X, Yang B, Zhang Y, Zhang Q, Fu C, Wei Y, Tao L. From drug to adhesive: a new application of poly(dihydropyrimidin-2(1H)-one)s via the Biginelli polycondensation. Polym Chem 2015. [DOI: 10.1039/c5py00684h] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(dihydropyrimidin-2(1H)-one)s can be synthesizedviathe Biginelli polycondensation in a short time. Thein situBiginelli polycondensation could glue two metal sheets together.
Collapse
|
12
|
Affiliation(s)
- Andrew P. Dove
- Department of Chemistry; University of Warwick; Coventry CV4 7AL UK
| | - Michael A. R. Meier
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT); 76131 Karlsruhe Germany
| |
Collapse
|