1
|
Lee MJ, Espinosa-Marzal RM. Intrinsic and Extrinsic Tunability of Double-Network Hydrogel Strength and Lubricity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20495-20507. [PMID: 37053001 PMCID: PMC10141240 DOI: 10.1021/acsami.3c00949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Double-network (DN) hydrogels are promising materials for tissue engineering due to their biocompatibility, high strength, and toughness, but understanding of their microstructure-property relationships still remains limited. This work investigates a DN hydrogel comprising a physically crosslinked agarose, as the first network, and a chemically crosslinked copolymer with a varying ratio of acrylamide and acrylic acid, as the second network. The charge, intrinsic to most DN hydrogels, introduces a responsive behavior to chemical and electrical stimuli. The DN strengthens agarose hydrogels, but the strengthening decreases with the swelling ratio resulting from increasing acrylic acid content or reducing salt concentration. Through careful imaging by atomic force microscopy, the heterogenous surface structure and properties arising from the DN are resolved, while the lubrication mechanisms are elucidated by studying the heterogeneous frictional response to extrinsic stimuli. This method reveals the action of the first (agarose) network (forming grain boundaries), copolymer-rich and poor regions (in grains), charge and swelling in providing lubrication. Friction arises from the shear of the polymeric network, whereas hydrodynamic lift and viscoelastic deformation become more significant at higher sliding velocities. We identify the copolymer-rich phase as the main source of the stimulus-responsive behavior. Salt concentration enhances effective charge density and reduces viscoelastic deformation, while electric bias swells the gel and improves lubrication. This work also demonstrates the dynamic control of interfacial properties like hydrogel friction and adhesion, which has implications for other areas of study like soft robotics and tissue replacements.
Collapse
Affiliation(s)
- Ming Jun Lee
- Department
of Materials Science and Engineering, University
of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Rosa M. Espinosa-Marzal
- Department
of Materials Science and Engineering, University
of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department
of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
2
|
Yan J, Wang L, Zhao C, Xiang D, Li H, Lai J, Wang B, Li Z, Lu H, Zhou H, Wu Y. Stretchable Semi-Interpenetrating Carboxymethyl Guar Gum-Based Composite Hydrogel for Moisture-Proof Wearable Strain Sensor. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1061-1071. [PMID: 36623252 DOI: 10.1021/acs.langmuir.2c02725] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Wearable strain sensors of conductive hydrogels have very broad application prospects in electronic skins and human-machine interfaces. However, conductive hydrogels suffer from unstable signal transmission due to environmental humidity and inherent shortcomings of their materials. Herein, we introduce a novel moisture-proof conductive hydrogel with high toughness (2.89 MJ m-3), mechanical strength (1.00 MPa), and high moisture-proof sensing performance by using dopamine-functionalized gold nanoparticles as conductive fillers into carboxymethyl guar gum and acrylamide. Moreover, the hydrogel can realize real-time monitoring of major and subtle human movements with good sensitivity and repeatability. In addition, the hydrogel-assembled strain sensor exhibits stable sensing signals after being left for 1 h, and the relative resistance change rate under different strains (25-300%) shows no obvious noise signal up to 99% relative humidity. Notably, the wearable strain sensing is suitable for wearable sensor devices with high relative humidity.
Collapse
Affiliation(s)
- Jiao Yan
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, School of New Energy and Materials, Southwest Petroleum University, Chengdu610500, China
| | - Li Wang
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, School of New Energy and Materials, Southwest Petroleum University, Chengdu610500, China
| | - Chunxia Zhao
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, School of New Energy and Materials, Southwest Petroleum University, Chengdu610500, China
| | - Dong Xiang
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, School of New Energy and Materials, Southwest Petroleum University, Chengdu610500, China
| | - Hui Li
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, School of New Energy and Materials, Southwest Petroleum University, Chengdu610500, China
| | - Jingjuan Lai
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, School of New Energy and Materials, Southwest Petroleum University, Chengdu610500, China
| | - Bin Wang
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, School of New Energy and Materials, Southwest Petroleum University, Chengdu610500, China
| | - Zhenyu Li
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, School of New Energy and Materials, Southwest Petroleum University, Chengdu610500, China
| | - Hongsheng Lu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu610500, China
| | - Hongwei Zhou
- Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an710021, China
| | - Yuanpeng Wu
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, School of New Energy and Materials, Southwest Petroleum University, Chengdu610500, China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu610500, China
- Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application, Southwest Petroleum University, Chengdu610500, China
| |
Collapse
|
3
|
Safronov AP, Terziyan TV, Kyzy AM, Adamova LV. Thermodynamic Compatibility of Polyacrylamide with Agarose: The Effect of Polysaccharide Chain Stiffness. POLYMER SCIENCE SERIES A 2022. [DOI: 10.1134/s0965545x22010072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Surjadi JU, Zhou Y, Wang T, Yang Y, Kai JJ, Lu Y, Wang Z. 3D architected temperature-tolerant organohydrogels with ultra-tunable energy absorption. iScience 2021; 24:102789. [PMID: 34278275 PMCID: PMC8271157 DOI: 10.1016/j.isci.2021.102789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/07/2021] [Accepted: 06/23/2021] [Indexed: 11/22/2022] Open
Abstract
The properties of mechanical metamaterials such as strength and energy absorption are often “locked” upon being manufactured. While there have been attempts to achieve tunable mechanical properties, state-of-the-art approaches still cannot achieve high strength/energy absorption with versatile tunability simultaneously. Herein, we fabricate for the first time, 3D architected organohydrogels with specific energy absorption that is readily tunable in an unprecedented range up to 5 × 103 (from 0.0035 to 18.5 J g−1) by leveraging on the energy dissipation induced by the synergistic combination of hydrogen bonding and metal coordination. The 3D architected organohydrogels also possess anti-freezing and non-drying properties facilitated by the hydrogen bonding between ethylene glycol and water. In a broader perspective, this work demonstrates a new type of architected metamaterials with the ability to produce a large range of mechanical properties using only a single material system, pushing forward the applications of mechanical metamaterials to broader possibilities. The first fabrication of 3D architected organohydrogels by Digital Light Processing Two-step toughening effect of organohydrogels by metal coordination and hydrogen bonding 3D structures achieved ultra-tunable range of specific energy absorption up to 5000 x 3D architected organohydrogels were demonstrated as tunable impact attenuators
Collapse
Affiliation(s)
- James Utama Surjadi
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Yongsen Zhou
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Tianyu Wang
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Yong Yang
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Ji-Jung Kai
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Yang Lu
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China.,Nano-Manufacturing Laboratory (NML), Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Zuankai Wang
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
5
|
Wang J, Liu Y, Wang S, Liu X, Chen Y, Qi P, Liu X. Molybdenum disulfide enhanced polyacrylamide-acrylic acid-Fe3+ ionic conductive hydrogel with high mechanical properties and anti-fatigue abilities as strain sensors. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
6
|
Wang M, Zhuge J, Li C, Jiang L, Yang H. Self-healing quadruple shape memory hydrogels based on coordination, borate bonds and temperature with tunable mechanical properties. IRANIAN POLYMER JOURNAL 2020. [DOI: 10.1007/s13726-020-00821-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Lv Y, Pan Z, Song C, Chen Y, Qian X. Locust bean gum/gellan gum double-network hydrogels with superior self-healing and pH-driven shape-memory properties. SOFT MATTER 2019; 15:6171-6179. [PMID: 31318005 DOI: 10.1039/c9sm00861f] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this work, we prepared locust bean gum (LBG)/gellan gum (Gg) double network (DN) hydrogels based on pH-sensitive borate-ester bonds in the LBG network and hydrogen-bond-associated double-helix bundles in the Gg network by using two novel natural polysaccharide polymers. The DN hydrogels with optimized Gg and borax concentrations exhibit good mechanical properties (the fracture tensile stress is almost three times that of the LBG single network hydrogel). Because of their unique thermo- and pH-sensitive DN structure, the LBG/Gg DN hydrogels also show excellent self-healing, thermo-processability, and pH-driven shape memory properties. Such novel DN hydrogels demonstrate strong potentiality in many challenging applications such as biomedicine, soft robotics and other fields.
Collapse
Affiliation(s)
- Yukai Lv
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Zheng Pan
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Cunzheng Song
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yulong Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Xin Qian
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
8
|
Chen F, Yang K, Zhao D, Yang H. Thermal- and salt-activated shape memory hydrogels based on a gelatin/polyacrylamide double network. RSC Adv 2019; 9:18619-18626. [PMID: 35515246 PMCID: PMC9064822 DOI: 10.1039/c9ra02842k] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/24/2019] [Indexed: 12/25/2022] Open
Abstract
Shape memory hydrogels have been extensively studied in the past decades owing to their exceptionally promising potential in a wide range of applications. Here, we present a gelatin/polyacrylamide double network hydrogel with thermal- and salt-activated shape memory effect. The thermally activated behavior is attributed to the reversible triple helix transformation of gelatin, and the salt-activated performance can be ascribed to the formation of hydrophobic interaction domains under the Hofmeister effect. The hydrogel can memorize a temporary shape successfully through soaking with (NH4)2SO4 solution or decreasing temperature, and recovers its permanent shape by extracting ions with deionized water or increasing temperature. In particular, the hydrogel exhibits excellent shape fixity and recovery ratio. The presented strategy may enrich the construction as well as application of biopolymer based shape memory hydrogels.
Collapse
Affiliation(s)
- Fang Chen
- CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China Hefei 230026 China +86-551-63607549
| | - Kaixiang Yang
- CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China Hefei 230026 China +86-551-63607549
| | - Dinglei Zhao
- CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China Hefei 230026 China +86-551-63607549
| | - Haiyang Yang
- CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China Hefei 230026 China +86-551-63607549
| |
Collapse
|
9
|
Molecular design, synthesis and biomedical applications of stimuli-responsive shape memory hydrogels. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.03.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Tian T, Wang J, Wu S, Shao Z, Xiang T, Zhou S. A body temperature and water-induced shape memory hydrogel with excellent mechanical properties. Polym Chem 2019. [DOI: 10.1039/c9py00502a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A body temperature and water-induced shape memory hydrogel with excellent mechanical properties was prepared by crosslinking dopamine-terminated tetra-poly(ethylene glycol) with an oxidation reaction.
Collapse
Affiliation(s)
- Tian Tian
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Jiao Wang
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Shanshan Wu
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Zijian Shao
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Tao Xiang
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| |
Collapse
|
11
|
Jiao C, Chen Y, Liu T, Peng X, Zhao Y, Zhang J, Wu Y, Wang H. Rigid and Strong Thermoresponsive Shape Memory Hydrogels Transformed from Poly(vinylpyrrolidone- co-acryloxy acetophenone) Organogels. ACS APPLIED MATERIALS & INTERFACES 2018; 10:32707-32716. [PMID: 30165020 DOI: 10.1021/acsami.8b11391] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Shape memory hydrogels (SMHs) have a wide range of potential practical applications. However, the mechanically weak and soft nature of most SMHs strongly impedes their applications. Here, we report a novel kind of thermal-responsive SMH with high tensile strength and high elastic moduli. Organogels are first prepared by the copolymerization of a hydrophilic monomer N-vinylpyrrolidone (NVP) and a hydrophobic monomer acryloxy acetophenone (AAP) in N, N'-dimethylformamide (DMF) solutions, and then, poly(vinylpyrrolidone- co-acryloxy acetophenone) [poly(NVP- co-AAP)] hydrogels are obtained by solvent exchange with water. Because of the strong and reversible hydrophobic association and π-π stacking of acetophenone groups, the poly(NVP- co-AAP) hydrogels exhibit tensile strengths up to 8.41 ± 0.83 MPa and Young's moduli up to 94.2 ± 1.3 MPa, which are more than 1 or 3 orders of magnitude higher than those of the organogels, respectively. The poly(NVP- co-AAP) hydrogels exhibit good shape memory behaviors, with a complete fixation ratio and a recovery ratio of 74-89%, as well as very fast shape-fixing and recovering rates (in seconds). These rigid and strong hydrogels are demonstrated to be an ideal shape memory material for surgical fixation devices to wrap around and support various shapes of limbs.
Collapse
Affiliation(s)
- Chen Jiao
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China
| | - Yuanyuan Chen
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China
| | - Tianqi Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China
| | - Xin Peng
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China
| | - Yaxin Zhao
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China
| | - Jianan Zhang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China
| | - Yuqing Wu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China
| | - Huiliang Wang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China
| |
Collapse
|
12
|
Yang J, Li Y, Zhu L, Qin G, Chen Q. Double network hydrogels with controlled shape deformation: A mini review. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/polb.24735] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jia Yang
- School of Materials Science and Engineering; Henan Polytechnic University; Jiaozuo 454003 China
| | - Yu Li
- School of Materials Science and Engineering; Henan Polytechnic University; Jiaozuo 454003 China
| | - Lin Zhu
- School of Materials Science and Engineering; Henan Polytechnic University; Jiaozuo 454003 China
| | - Gang Qin
- School of Materials Science and Engineering; Henan Polytechnic University; Jiaozuo 454003 China
| | - Qiang Chen
- School of Materials Science and Engineering; Henan Polytechnic University; Jiaozuo 454003 China
| |
Collapse
|
13
|
Lee K, Kim HJ, Jung D, Oh Y, Lee H, Han C, Chang JY, Kim H. Rapid Accessible Fabrication and Engineering of Bilayered Hydrogels: Revisiting the Cross-Linking Effect on Superabsorbent Poly(acrylic acid). ACS OMEGA 2018; 3:3096-3103. [PMID: 31458571 PMCID: PMC6641435 DOI: 10.1021/acsomega.8b00079] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/05/2018] [Indexed: 05/20/2023]
Abstract
Superabsorbent hydrogels are significant not only in materials science but also in industries and daily life, being used in diapers or soil conditioners as typical examples. The main feature of these materials is their capacity to hold considerable amount of water, which is strongly dependent on the cross-linking density. This study focuses on the preparation of hydrogels by reweighing the effect of cross-linking density on physical properties, which provides green fabrication of bilayered hydrogels that consist of homogeneous structural motifs but show programmed responses via sequential radical polymerization. In particular, when two hydrogel layers containing different cross-linking densities are joined together, an integrated linear bilayer shows heterogeneous deformation triggered by water. We monitor the linear hydrogel bilayer bending into a circle and engineer it by incorporating disperse dyes, changing colors as well as physical properties. In addition, we demonstrate an electric circuit switch using a patterned hydrogel. Anisotropic shape change of the polyelectrolyte switch closes an open circuit and lights a light-emitting diode in red. This proposed fabrication and engineering can be expanded to other superabsorbent systems and create smart responses in cross-linked systems for biomedical or environmental applications.
Collapse
Affiliation(s)
- Kyoung
Min Lee
- School
of Polymer Science and Engineering, Chonnam
National University, Gwangju 61186, Korea
- Department
of Materials Science and Engineering, College of Engineering, Seoul National University, Seoul 08826, Korea
| | - Hea Ji Kim
- School
of Polymer Science and Engineering, Chonnam
National University, Gwangju 61186, Korea
| | - Doyoung Jung
- School
of Polymer Science and Engineering, Chonnam
National University, Gwangju 61186, Korea
| | - Yuree Oh
- School
of Polymer Science and Engineering, Chonnam
National University, Gwangju 61186, Korea
| | - Hyemin Lee
- Basic
Materials and Chemicals R&D, LG Chem, Ltd, R&D Campus Daejeon, 188 Moonji-ro, Yuseong-gu, Daejeon 34122, Korea
| | - Changsun Han
- Basic
Materials and Chemicals R&D, LG Chem, Ltd, R&D Campus Daejeon, 188 Moonji-ro, Yuseong-gu, Daejeon 34122, Korea
| | - Ji Young Chang
- Department
of Materials Science and Engineering, College of Engineering, Seoul National University, Seoul 08826, Korea
| | - Hyungwoo Kim
- School
of Polymer Science and Engineering, Chonnam
National University, Gwangju 61186, Korea
| |
Collapse
|