1
|
Kumar S, Arora A, Kumar S, Kumar R, Maity J, Singh BK. Passerini reaction: Synthesis and applications in polymer chemistry. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.112004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
2
|
Marx F, Pal S, Sautaux J, Pallab N, Stoclet G, Weder C, Schrettl S. Plasticization of a Semicrystalline Metallosupramolecular Polymer Network. ACS POLYMERS AU 2022; 3:132-140. [PMID: 36785838 PMCID: PMC9912337 DOI: 10.1021/acspolymersau.2c00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022]
Abstract
The assembly of ligand-functionalized (macro)monomers with suitable metal ions affords metallosupramolecular polymers (MSPs). On account of the reversible and dynamic nature of the metal-ligand complexes, these materials can be temporarily (dis-)assembled upon exposure to a suitable stimulus, and this effect can be exploited to heal damaged samples, to facilitate processing and recycling, or to enable reversible adhesion. We here report on the plasticization of a semicrystalline, stimuli-responsive MSP network that was assembled by combining a low-molecular-weight building block carrying three 2,6-bis(1'-methylbenzimidazolyl) pyridine (Mebip) ligands and zinc bis(trifluoromethylsulfonyl)imide (Zn(NTf2)2). The pristine material exhibits high melting (T m = 230 °C) and glass transition (T g ≈ 157 °C) temperatures and offers robust mechanical properties between these temperatures. We show that this regime can be substantially extended through plasticization. To achieve this, the MSP network was blended with diisodecyl phthalate. The weight fraction of this plasticizer was systematically varied, and the thermal and mechanical properties of the resulting materials were investigated. We show that the T g can be lowered by more than 60 °C and the toughness above the T g is considerably increased.
Collapse
Affiliation(s)
- Franziska Marx
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg 1700, Switzerland
| | - Subhajit Pal
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg 1700, Switzerland
| | - Julien Sautaux
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg 1700, Switzerland
| | - Nazim Pallab
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg 1700, Switzerland
| | - Grégory Stoclet
- CNRS,
INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux
et Transformations, Univ. Lille, Lille F-59000, France
| | - Christoph Weder
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg 1700, Switzerland,
| | - Stephen Schrettl
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg 1700, Switzerland,TUM
School of Life Sciences, Technical University
of Munich, Maximus-von-Imhof-Forum 2, Freising 85354, Germany,
| |
Collapse
|
3
|
Schade O, Dannecker PK, Kalz KF, Steinbach D, Meier MAR, Grunwaldt JD. Direct Catalytic Route to Biomass-Derived 2,5-Furandicarboxylic Acid and Its Use as Monomer in a Multicomponent Polymerization. ACS OMEGA 2019; 4:16972-16979. [PMID: 31646244 PMCID: PMC6797053 DOI: 10.1021/acsomega.9b02373] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 08/19/2019] [Indexed: 05/08/2023]
Abstract
Efficient synthesis of valuable platform chemicals from renewable feedstock is a challenging, yet essential strategy for developing technologies that are both economical and sustainable. In the present study, we investigated the synthesis of 2,5-furandicarboxylic acid (FDCA) in a two-step catalytic process starting from sucrose as largely available biomass feedstock. In the first step, 5-(hydroxymethyl)furfural (HMF) was synthesized by hydrolysis and dehydration of sucrose using sulfuric acid in a continuous reactor in 34% yield. In a second step, the resulting reaction solution was directly oxidized to FDCA without further purification over a Au/ZrO2 catalyst with 84% yield (87% selectivity, batch process), corresponding to 29% overall yield with respect to sucrose. This two-step process could afford the production of pure FDCA after the respective extraction/crystallization despite the impure intermediate HMF solution. To demonstrate the direct application of the biomass-derived FDCA as monomer, the isolated product was used for Ugi-multicomponent polymerizations, establishing a new application possibility for FDCA. In the future, this efficient two-step process strategy toward FDCA should be extended to further renewable feedstock.
Collapse
Affiliation(s)
- Oliver
R. Schade
- Institute
for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstr. 20, 76131 Karlsruhe, Germany
- Institute
of Catalysis Research and Technology (IKFT), KIT, Hermann-von-Helmholtz-Platz
1, 76344 Eggenstein-Leopoldshafen, Germany
| | | | - Kai F. Kalz
- Institute
for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstr. 20, 76131 Karlsruhe, Germany
- Institute
of Catalysis Research and Technology (IKFT), KIT, Hermann-von-Helmholtz-Platz
1, 76344 Eggenstein-Leopoldshafen, Germany
| | - David Steinbach
- Institute
of Catalysis Research and Technology (IKFT), KIT, Hermann-von-Helmholtz-Platz
1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute
of Agricultural Engineering, Conversion Technologies of Biobased Resources, University of Hohenheim, Garbenstraße 9, 70599 Stuttgart, Germany
| | - Michael A. R. Meier
- Institute
for Organic Chemistry (IOC), KIT, Straße am Forum 7, 76131 Karlsruhe, Germany
- E-mail: (M.A.R.M.)
| | - Jan-Dierk Grunwaldt
- Institute
for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstr. 20, 76131 Karlsruhe, Germany
- Institute
of Catalysis Research and Technology (IKFT), KIT, Hermann-von-Helmholtz-Platz
1, 76344 Eggenstein-Leopoldshafen, Germany
- E-mail: (J.-D.G.)
| |
Collapse
|