1
|
Ozimek J, Malarz K, Mrozek-Wilczkiewicz A, Hebda E, Pielichowski K. Thermoplastic polyurethane/POSS nanohybrids: Synthesis, morphology, and biological properties. J Biomed Mater Res B Appl Biomater 2024; 112:e35381. [PMID: 38348489 DOI: 10.1002/jbm.b.35381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/21/2023] [Accepted: 01/09/2024] [Indexed: 02/15/2024]
Abstract
Recent studies show good osteoinductive properties of polyurethanes modified with polyhedral oligomeric silsesquioxanes (POSS). In this work, three types of POSS; propanediolisobutyl-POSS (PHI-POSS), disilanolisobutyl-POSS (DSI-POSS), and octahydroxybutyl-POSS (OCTA-POSS) were chemically incorporated into linear polyurethane based on an aliphatic isocyanate, hexamethylene diisocyanate (HDI), to obtain new nanohybrid PU-POSS materials. The full conversion of POSS was confirmed by Fourier transform infrared spectroscopy (FTIR-ATR) spectra of the model reactions with pure HDI. The materials obtained were investigated by FTIR, SEM-EDS, and DSC. The DSC studies showed the thermoplasticity of the obtained materials and apparently good recovery. 30-day immersion in SBF (simulated body fluid) revealed an increase in the rate of deposition of hydroxyapatite (HAp) for the highest POSS loadings, resulting in thick layers of hydroxyapatite (~60-40 μm), and the Ca/P ratio 1.67 (even 1.785). The structure and properties of the inorganic layer depend on the type of POSS, the number of hard segments, and those containing POSS, which can be tailored by changing the HDI/poly(tetramethylene glycol) (PTMG) ratio. Furthermore, the obtained composites revealed good biocompatibility, as confirmed by cytotoxicity tests conducted on two cell lines; normal human dermal fibroblasts (NHDF) and primary human osteoblasts (HOB). Adherent cells seeded on the tested materials showed viability even after a 48-h incubation. After this time, the population of viable, and proliferating cells exceeded 90%. Bioimaging studies have shown the fibroblast and osteoblast cells were well attached to the surface of the tested materials.
Collapse
Affiliation(s)
- Jan Ozimek
- Department of Chemistry and Technology of Polymers, Cracow University of Technology, Kraków, Poland
| | - Katarzyna Malarz
- Biotechnology Center, Silesian University of Technology, Gliwice, Poland
- A. Chelkowski Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, Chorzow, Poland
| | - Anna Mrozek-Wilczkiewicz
- Biotechnology Center, Silesian University of Technology, Gliwice, Poland
- A. Chelkowski Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, Chorzow, Poland
| | - Edyta Hebda
- Department of Chemistry and Technology of Polymers, Cracow University of Technology, Kraków, Poland
| | - Krzysztof Pielichowski
- Department of Chemistry and Technology of Polymers, Cracow University of Technology, Kraków, Poland
| |
Collapse
|
2
|
POSS and SSQ Materials in Dental Applications: Recent Advances and Future Outlooks. Int J Mol Sci 2023; 24:ijms24054493. [PMID: 36901923 PMCID: PMC10003367 DOI: 10.3390/ijms24054493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/07/2023] [Accepted: 02/11/2023] [Indexed: 03/03/2023] Open
Abstract
Recently, silsesquioxanes (SSQ) and polyhedral oligomeric silsesquioxanes (POSS) have gained much interest in the area of biomaterials, mainly due to their intrinsic properties such as biocompatibility, complete non-toxicity, the ability to self-assemble and to form a porous structure, facilitating cell proliferation, creating a superhydrophobic surface, osteoinductivity, and ability to bind hydroxyapatite. All the above has resulted in new developments in medicine. However, the application of POSS-containing materials in dentistry is still at initial stage and deserves a systematic description to ensure future development. Significant problems, such as reduction of polymerization shrinkage, water absorption, hydrolysis rate, poor adhesion and strength, unsatisfactory biocompatibility, and corrosion resistance of dental alloys, can be addressed by the design of multifunctional POSS-containing materials. Because of the presence of silsesquioxanes, it is possible to obtain smart materials that allow the stimulation of phosphates deposition and repairing of micro-cracks in dental fillings. Hybrid composites result in materials exhibiting shape memory, as well as antibacterial, self-cleaning, and self-healing properties. Moreover, introducing POSS into polymer matrix allows for materials for bone reconstruction, and wound healing. This review covers the recent developments in the field of POSS application in dental materials and gives the future perspectives within a promising field of biomedical material science and chemical engineering.
Collapse
|
3
|
Lam KY, Lee CS, Pichika MR, Cheng SF, Hang Tan RY. Light-responsive polyurethanes: classification of light-responsive moieties, light-responsive reactions, and their applications. RSC Adv 2022; 12:15261-15283. [PMID: 35693222 PMCID: PMC9118056 DOI: 10.1039/d2ra01506d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/01/2022] [Indexed: 11/24/2022] Open
Abstract
Stimuli responsiveness has been an attractive feature of smart material design, wherein the chemical and physical properties of the material can be varied in response to small environmental change. Polyurethane (PU), a widely used synthetic polymer can be upgraded into a light-responsive smart polymer by introducing a light-sensitive moiety into the polymer matrix. For instance, azobenzene, spiropyran, and coumarin result in reversible light-induced reactions, while o-nitrobenzyl can result in irreversible light-induced reactions. These variations of light-stimulus properties endow PU with wide ranges of physical, mechanical, and chemical changes upon exposure to different wavelengths of light. PU responsiveness has rarely been reviewed even though it is known to be one of the most versatile polymers with diverse ranges of applications in household, automotive, electronic, construction, medical, and biomedical industries. This review focuses on the classes of light-responsive moieties used in PU systems, their synthesis, and the response mechanism of light-responsive PU-based materials, which also include dual- or multi-responsive light-responsive PU systems. The advantages and limitations of light-responsive PU are reviewed and challenges in the development of light-responsive PU are discussed.
Collapse
Affiliation(s)
- Ki Yan Lam
- School of Postgraduate, International Medical University No. 126, Jalan Jalil Perkasa 19, Bukit Jalil 57000 Kuala Lumpur Malaysia
| | - Choy Sin Lee
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University No. 126, Jalan Jalil Perkasa 19, Bukit Jalil 57000 Kuala Lumpur Malaysia
| | - Mallikarjuna Rao Pichika
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University No. 126, Jalan Jalil Perkasa 19, Bukit Jalil 57000 Kuala Lumpur Malaysia
- Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation No. 126, Jalan Jalil Perkasa 19, Bukit Jalil 57000 Kuala Lumpur Malaysia
| | - Sit Foon Cheng
- Unit of Research on Lipids (URL), Department of Chemistry, Faculty of Science, University of Malaya Kuala Lumpur 50603 Malaysia
| | - Rachel Yie Hang Tan
- School of Postgraduate, International Medical University No. 126, Jalan Jalil Perkasa 19, Bukit Jalil 57000 Kuala Lumpur Malaysia
| |
Collapse
|
4
|
Qiu W, Scofield JMP, Gurr PA, Qiao GG. Mechanochromophore-linked Polymeric Materials with Visible Color Changes. Macromol Rapid Commun 2022; 43:e2100866. [PMID: 35338794 DOI: 10.1002/marc.202100866] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/19/2022] [Indexed: 11/07/2022]
Abstract
Mechanical force as a type of stimuli for smart materials has obtained much attention in the past decade. Color-changing materials in response to mechanical stimuli have shown great potential in the applications such as sensors and displays. Mechanochromophore-linked polymeric materials, which are a growing sub-class of these materials, are discussed in detail in this review. Two main types of mechanochromophores which exhibit visible color change, summarized herein, involve either isomerization or radical generation mechanisms. This review focuses on their synthesis and incorporation into polymer matrices, the type of mechanical force used, factors affecting the mechanochromic properties, and their applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wenlian Qiu
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Joel M P Scofield
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Paul A Gurr
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Greg G Qiao
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
5
|
Kortekaas L, Browne WR. Correction: The evolution of spiropyran: fundamentals and progress of an extraordinarily versatile photochrome. Chem Soc Rev 2021; 50:2211. [PMID: 33524091 DOI: 10.1039/d1cs90005f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Correction for 'The evolution of spiropyran: fundamentals and progress of an extraordinarily versatile photochrome' by Luuk Kortekaas et al., Chem. Soc. Rev., 2019, 48, 3406-3424, DOI: 10.1039/C9CS00203K.
Collapse
Affiliation(s)
- Luuk Kortekaas
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands.
| | - Wesley R Browne
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands.
| |
Collapse
|
6
|
Zhang R, Han L, Ma H, Lei L, Li C, Zhang S, Bai H, Li Y. Well-controlled spiropyran functionalized polystyrenes via a combination of anionic polymerization and hydrosilylation for photoinduced solvatochromism. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Tian S, Chen Y, Zhu Y, Fan H. A Fluorescent Polyurethane with Covalently Cross-Linked Rhodamine Derivatives. Polymers (Basel) 2020; 12:E1989. [PMID: 32882833 PMCID: PMC7564602 DOI: 10.3390/polym12091989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/29/2020] [Accepted: 08/29/2020] [Indexed: 01/05/2023] Open
Abstract
Rhodamine derivatives (RDs) with three reactive hydrogens were synthesized and well characterized by Fourier transform infra-red spectroscopy (FTIR), 1H nuclear magnetic resonance (1H NMR) and electrospray ionization mass spectra (ESI mass). Then, the obtained RD was covalently cross-linked into polyurethane (PU) matrix through chemical linkages to fabricate a network structure, and the fluorescent properties, mechanical properties, thermal stability, and emulsion particle size were systematically investigated. Results demonstrate that PU-RD maintains initial fluorescent properties and emits desirable yellow fluorescence under ultraviolet irradiation. Moreover, compared with linear PU without fluorescers, PU-RD shows clearly improved mechanical properties and thermal stability, on account of the formed network structures.
Collapse
Affiliation(s)
- Saiqi Tian
- College of Education, Wenzhou University, Wenzhou 325035, China; (Y.C.); (Y.Z.)
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China;
| | - Yinyan Chen
- College of Education, Wenzhou University, Wenzhou 325035, China; (Y.C.); (Y.Z.)
| | - Yifan Zhu
- College of Education, Wenzhou University, Wenzhou 325035, China; (Y.C.); (Y.Z.)
| | - Haojun Fan
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China;
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
8
|
|
9
|
Deneke N, Rencheck ML, Davis CS. An engineer's introduction to mechanophores. SOFT MATTER 2020; 16:6230-6252. [PMID: 32567642 DOI: 10.1039/d0sm00465k] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mechanophores (MPs) are a class of stimuli-responsive materials that are of increasing interest to engineers due to their potential applications as stress sensors. These mechanically responsive molecules change color or become fluorescent upon application of a mechanical stimulus as they undergo a chemical reaction when a load is applied. By incorporating MPs such as spirolactam, spiropyran, or dianthracene into a material system, the real-time stress distribution of the matrix can be directly observed through a visual response, ideal for damage and failure sensing applications. A wide array of applications that require continuous structural health monitoring could benefit from MPs including flexible electronics, protective coatings, and polymer matrix composites. However, there are significant technical challenges preventing MP implementation in industry. Effective strategies to quantitatively calibrate the photo response of the MP with applied stress magnitudes must be developed. Additionally, environmental conditions, including temperature, humidity, and ultraviolet light exposure can potentially impact the performance of MPs. By addressing these limitations, engineers can work to move MPs from the synthetic chemistry bench to the field. This review aims to highlight recent progress in MP research, discuss barriers to implementation, and provide an outlook on the future of MPs, specifically focused on polymeric material systems. Although the focus is on engineering MPs for bulk materials, a brief overview of mechanochemistry will be discussed followed by methods for activation and quantification of MP photo response (concentrating specifically on fluorescently active species). Finally, current challenges and future directions in MP research will be addressed.
Collapse
Affiliation(s)
- Naomi Deneke
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47906, USA.
| | - Mitchell L Rencheck
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47906, USA.
| | - Chelsea S Davis
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47906, USA.
| |
Collapse
|
10
|
Imoto H, Ueda Y, Sato Y, Nakamura M, Mitamura K, Watase S, Naka K. Corner‐ and Side‐Opened Cage Silsesquioxanes: Structural Effects on the Materials Properties. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.201901182] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering Graduate School of Science and Technology Kyoto Institute of Technology Goshokaido‐cho, Matsugasaki, Sakyo‐ku 606‐8585 Kyoto Japan
- Materials Innovation Lab Kyoto Institute of Technology Goshokaido‐cho, Matsugasaki, Sakyo‐ku 606‐8585 Kyoto Japan
| | - Yukiho Ueda
- Faculty of Molecular Chemistry and Engineering Graduate School of Science and Technology Kyoto Institute of Technology Goshokaido‐cho, Matsugasaki, Sakyo‐ku 606‐8585 Kyoto Japan
| | - Yuri Sato
- Faculty of Molecular Chemistry and Engineering Graduate School of Science and Technology Kyoto Institute of Technology Goshokaido‐cho, Matsugasaki, Sakyo‐ku 606‐8585 Kyoto Japan
| | - Masashi Nakamura
- Morinomiya Center Osaka Research Institute of Industrial Science and Technology Morinomiya Center 1‐6–50 Morinomiya, Joto‐ku 536‐8553 Osaka Japan
| | - Koji Mitamura
- Morinomiya Center Osaka Research Institute of Industrial Science and Technology Morinomiya Center 1‐6–50 Morinomiya, Joto‐ku 536‐8553 Osaka Japan
| | - Seiji Watase
- Morinomiya Center Osaka Research Institute of Industrial Science and Technology Morinomiya Center 1‐6–50 Morinomiya, Joto‐ku 536‐8553 Osaka Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering Graduate School of Science and Technology Kyoto Institute of Technology Goshokaido‐cho, Matsugasaki, Sakyo‐ku 606‐8585 Kyoto Japan
- Materials Innovation Lab Kyoto Institute of Technology Goshokaido‐cho, Matsugasaki, Sakyo‐ku 606‐8585 Kyoto Japan
| |
Collapse
|
11
|
Biewend M, Michael P, Binder WH. Detection of stress in polymers: mechanochemical activation of CuAAC click reactions in poly(urethane) networks. SOFT MATTER 2020; 16:1137-1141. [PMID: 31938798 DOI: 10.1039/c9sm02185j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report on copper(i)-bis(N-heterocyclic carbene)s (NHC) for quantitative stress-sensing, embedded within polyurethane networks, triggering a fluorogenic copper(i) azide alkyne cycloaddition (CuAAC) of 8-azido-2-naphtol and 3-hydroxy phenylacetylene. A completely transparent, force responsive poly(urethane) material is generated, allowing a quantification of the applied stress.
Collapse
Affiliation(s)
- Michel Biewend
- Macromolecular Chemistry, Division of Technical and Macromolecular Chemistry, Institute of Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, Halle D-06120, Germany.
| | | | | |
Collapse
|
12
|
Izak-Nau E, Campagna D, Baumann C, Göstl R. Polymer mechanochemistry-enabled pericyclic reactions. Polym Chem 2020. [DOI: 10.1039/c9py01937e] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Polymer mechanochemical pericyclic reactions are reviewed with regard to their structural features and substitution prerequisites to the polymer framework.
Collapse
Affiliation(s)
- Emilia Izak-Nau
- DWI – Leibniz Institute for Interactive Materials
- 52056 Aachen
- Germany
| | - Davide Campagna
- DWI – Leibniz Institute for Interactive Materials
- 52056 Aachen
- Germany
- Institute for Technical and Macromolecular Chemistry
- RWTH Aachen University
| | - Christoph Baumann
- DWI – Leibniz Institute for Interactive Materials
- 52056 Aachen
- Germany
- Institute for Technical and Macromolecular Chemistry
- RWTH Aachen University
| | - Robert Göstl
- DWI – Leibniz Institute for Interactive Materials
- 52056 Aachen
- Germany
| |
Collapse
|
13
|
Imoto H, Ishida A, Hashimoto M, Mizoue Y, Yusa SI, Naka K. Soluble Network Polymers Based on Trifunctional Open-cage Silsesquioxanes. CHEM LETT 2019. [DOI: 10.1246/cl.190536] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
- Materials Innovation Lab, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Ayano Ishida
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Mari Hashimoto
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Yoko Mizoue
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Shin-ichi Yusa
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
- Materials Innovation Lab, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
14
|
Wada S, Imoto H, Naka K. Palladium-Catalyzed Arylation of Open-Cage Silsesquioxanes toward Thermally Stable and Highly Dispersible Nanofillers. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20190027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Satoshi Wada
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
15
|
Imoto H, Wada S, Yumura T, Naka K. Transition‐Metal‐Catalyzed Direct Arylation of Caged Silsesquioxanes: Substrate Scope and Mechanistic Study. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering Graduate School of Science and Technology Kyoto Institute of Technology Goshokaido‐cho, Matsugasaki, Sakyo‐ku Kyoto 606‐8585 Japan
| | - Satoshi Wada
- Faculty of Molecular Chemistry and Engineering Graduate School of Science and Technology Kyoto Institute of Technology Goshokaido‐cho, Matsugasaki, Sakyo‐ku Kyoto 606‐8585 Japan
| | - Takashi Yumura
- Faculty of Material Science and Technology Graduate School of Science and Technology Kyoto Institute of Technology Goshokaido‐cho, Matsugasaki, Sakyo‐ku Kyoto 606‐8585 Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering Graduate School of Science and Technology Kyoto Institute of Technology Goshokaido‐cho, Matsugasaki, Sakyo‐ku Kyoto 606‐8585 Japan
| |
Collapse
|
16
|
Kortekaas L, Browne WR. The evolution of spiropyran: fundamentals and progress of an extraordinarily versatile photochrome. Chem Soc Rev 2019; 48:3406-3424. [DOI: 10.1039/c9cs00203k] [Citation(s) in RCA: 250] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Spiropyrans have played a pivotal role in the emergence of the field of chromism following their discovery in the early 20th century, with almost ubiquitous use in materials applications especially since their photochromism was discovered in 1952.
Collapse
Affiliation(s)
- Luuk Kortekaas
- Molecular Inorganic Chemistry
- Stratingh institute for Chemistry
- University of Groningen
- 9747AG Groningen
- The Netherlands
| | - Wesley R. Browne
- Molecular Inorganic Chemistry
- Stratingh institute for Chemistry
- University of Groningen
- 9747AG Groningen
- The Netherlands
| |
Collapse
|
17
|
Katoh R, Imoto H, Naka K. One-pot strategy for synthesis of open-cage silsesquioxane monomers. Polym Chem 2019. [DOI: 10.1039/c9py00036d] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel synthetic strategy to access POSS monomers has been proposed; one reaction site of an open-cage POSS was capped, and the remaining two silanol groups were functionalized for polymerization. Importantly, the monomer can be obtained by one-pot synthesis without any troublesome isolation process.
Collapse
Affiliation(s)
- Ryoichi Katoh
- Faculty of Molecular Chemistry and Engineering
- Graduate School of Science and Technology
- Kyoto Institute of Technology
- Kyoto 606-8585
- Japan
| | - Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering
- Graduate School of Science and Technology
- Kyoto Institute of Technology
- Kyoto 606-8585
- Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering
- Graduate School of Science and Technology
- Kyoto Institute of Technology
- Kyoto 606-8585
- Japan
| |
Collapse
|