1
|
Valeo M, Marie S, Rémy M, Menguy T, Le Coz C, Molinari M, Feuillie C, Granier F, Durrieu MC. Bioactive hydrogels based on lysine dendrigrafts as crosslinkers: tailoring elastic properties to influence hMSC osteogenic differentiation. J Mater Chem B 2024; 12:12508-12522. [PMID: 39576239 DOI: 10.1039/d4tb01578a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Dendrigrafts are multivalent macromolecules with less ordered topology and higher branching than dendrimers. Exhibiting a high density of terminal amines, poly-L-lysine dendrigrafts of the fifth generation (DGL G5) allow hydrogel formation with tailorable crosslinking density and surface modification. This work presents DGL G5 as multifunctional crosslinkers in biomimetic PEG hydrogels to favour the osteogenic differentiation of human mesenchymal stem cells (hMSCs). DGL G5 reaction with dicarboxylic-acid PEG chains yielded amide networks of variable stiffness, measured at the macro and surface nanoscale. Oscillatory rheometry and compression afforded consistent values of Young's modulus, increasing from 8 to more than 30 kPa and correlating with DGL G5 concentration. At the surface level, AFM measurements showed the same tendency but higher E values, from approximately 15 to more than 100 kPa, respectively. To promote cell adhesion and differentiation, the hydrogels were functionalised with a GRGDSPC peptide and a biomimetic of the bone morphogenetic protein 2 (BMP-2), ensuring the same grafting concentrations (between 2.15 ± 0.54 and 2.28 ± 0.23 pmols mm-2) but different hydrogel stiffness. 6 h after seeding on functionalised hydrogels in serum-less media, hMSC showed nascent adhesions on the stiffer gels and greater spreading than on glass controls with serum. After two weeks in osteogenic media, hMSC seeded on the stiffer gels showed greater spreading, more polygonal morphologies and increased levels of osteopontin, an osteoblast marker, compared to controls, which peaked on 22 kPa-gels. Together, these results demonstrate that DGL G5-PEG hydrogel bioactivity can influence the adhesion, spreading and early commitment of hMSCs.
Collapse
Affiliation(s)
- Michele Valeo
- Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.
| | | | - Murielle Rémy
- Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.
| | | | - Cédric Le Coz
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, ENSMAC, F-33600 Pessac, France
| | - Michael Molinari
- Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.
| | - Cécile Feuillie
- Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.
| | | | | |
Collapse
|
2
|
Levin M, Tang Y, Eisenbach CD, Valentine MT, Cohen N. Understanding the Response of Poly(ethylene glycol) diacrylate (PEGDA) Hydrogel Networks: A Statistical Mechanics-Based Framework. Macromolecules 2024; 57:7074-7086. [PMID: 39156193 PMCID: PMC11325651 DOI: 10.1021/acs.macromol.3c02635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/31/2024] [Accepted: 06/28/2024] [Indexed: 08/20/2024]
Abstract
Thanks to many promising properties, including biocompatibility and the ability to experience large deformations, poly(ethylene glycol) diacrylate (PEGDA) hydrogels are excellent candidate materials for a wide range of applications. Interestingly, the polymerization of PEGDA leads to a network microstructure that is fundamentally different from that of the "classic" polymeric gels. Specifically, PEGDA hydrogels comprise PEG chains that are interconnected by multifunctional densely grafted rod-like polyacrylates (PAs), which serve as cross-linkers. In this work, we derive a microstructurally motivated model that captures the essential features which enable deformation in PEGDA hydrogels: (1) entropic elasticity of PEG chains, (2) deformation of PA rods, and (3) PA-PA interactions. Expressions for the energy-density functions and the stress associated with each of the three contributions are derived. The model demonstrates the microstructural evolution of the network during loading and reveals the role of key microscopic quantities. To validate the model, we fabricate and compress PEGDA hydrogel discs. The model is in excellent agreement with our experimental findings for a broad range of PEGDA compositions. Interestingly, we show that the response of PEGDA hydrogels with short PEG chains and long PA rods is governed by PA-PA interactions, whereas networks with longer PEG chains are dominated by entropy. To enable design, we employ the model to investigate the influence of key microstructural quantities, such as the length of the PEG and the PA chains, on the macroscopic properties and response. The findings from this work pave the way to the efficient design of PEGDA hydrogels with tunable properties and behaviors, which will enable the optimization of their performance in various applications.
Collapse
Affiliation(s)
- Michal Levin
- Department
of Materials Science and Engineering, Technion
- Israel Institute of Technology, Haifa 3200003, Israel
| | - Yongkui Tang
- Department
of Mechanical Engineering, University of
California, Santa
Barbara, California 93106, United States
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Claus D. Eisenbach
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Institut
for Polymerchemie, University of Stuttgart, Stuttgart D-70569, Germany
| | - Megan T. Valentine
- Department
of Mechanical Engineering, University of
California, Santa
Barbara, California 93106, United States
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Noy Cohen
- Department
of Materials Science and Engineering, Technion
- Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
3
|
López-Serrano C, Côté-Paradis Y, Habenstein B, Loquet A, Le Coz C, Ruel J, Laroche G, Durrieu MC. Integrating Mechanics and Bioactivity: A Detailed Assessment of Elasticity and Viscoelasticity at Different Scales in 2D Biofunctionalized PEGDA Hydrogels for Targeted Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39165-39180. [PMID: 39041490 PMCID: PMC11600396 DOI: 10.1021/acsami.4c10755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
Methods for promoting and controlling the differentiation of human mesenchymal stem cells (hMSCs) in vitro before in vivo transplantation are crucial for the advancement of tissue engineering and regenerative medicine. In this study, we developed poly(ethylene glycol) diacrylate (PEGDA) hydrogels with tunable mechanical properties, including elasticity and viscoelasticity, coupled with bioactivity achieved through the immobilization of a mixture of RGD and a mimetic peptide of the BMP-2 protein. Despite the key relevance of hydrogel mechanical properties for cell culture, a standard for its characterization has not been proposed, and comparisons between studies are challenging due to the different techniques employed. Here, a comprehensive approach was employed to characterize the elasticity and viscoelasticity of these hydrogels, integrating compression testing, rheology, and atomic force microscopy (AFM) microindentation. Distinct mechanical behaviors were observed across different PEGDA compositions, and some consistent trends across multiple techniques were identified. Using a photoactivated cross-linker, we controlled the functionalization density independently of the mechanical properties. X-ray photoelectrin spectroscopy and fluorescence microscopy were employed to evaluate the functionalization density of the materials before the culturing of hMSCs on them. The cells cultured on all functionalized hydrogels expressed an early osteoblast marker (Runx2) after 2 weeks, even in the absence of a differentiation-inducing medium compared to our controls. Additionally, after only 1 week of culture with osteogenic differentiation medium, cells showed accelerated differentiation, with clear morphological differences observed among cells in the different conditions. Notably, cells on stiff but stress-relaxing hydrogels exhibited an overexpression of the osteocyte marker E11. This suggests that the combination of the functionalization procedure with the mechanical properties of the hydrogel provides a potent approach to promoting the osteogenic differentiation of hMSCs.
Collapse
Affiliation(s)
- Cristina López-Serrano
- Univ.
Bordeaux, CNRS, Bordeaux INP, CBMN, UMR
5248, Pessac 33600, France
- Laboratoire
d’Ingénierie de Surface, Centre de Recherche sur les
Matériaux Avancés, Département de Génie
des Mines, de la Métallurgie et des Matériaux, Université Laval, Québec, QC G1 V 0A6, Canada
- Axe
médecine régénératrice, Centre de Recherche
du Centre Hospitalier Universitaire de Québec, Hôpital
St-François d’Assise, Québec, QC G1L
3L5, Canada
| | - Yeva Côté-Paradis
- Laboratoire
d’Ingénierie de Surface, Centre de Recherche sur les
Matériaux Avancés, Département de Génie
des Mines, de la Métallurgie et des Matériaux, Université Laval, Québec, QC G1 V 0A6, Canada
- Axe
médecine régénératrice, Centre de Recherche
du Centre Hospitalier Universitaire de Québec, Hôpital
St-François d’Assise, Québec, QC G1L
3L5, Canada
| | - Birgit Habenstein
- Univ.
Bordeaux, CNRS, INSERM, IECB, US1, UAR 3033, F-33600 Pessac, France
| | - Antoine Loquet
- Univ.
Bordeaux, CNRS, INSERM, IECB, US1, UAR 3033, F-33600 Pessac, France
| | - Cédric Le Coz
- Univ.
Bordeaux, CNRS, Bordeaux INP, LCPO, UMR
5629, F-33600 Pessac, France
| | - Jean Ruel
- Département
de Génie Mécanique, Université
Laval, Québec, QC G1V 0A6, Canada
| | - Gaétan Laroche
- Laboratoire
d’Ingénierie de Surface, Centre de Recherche sur les
Matériaux Avancés, Département de Génie
des Mines, de la Métallurgie et des Matériaux, Université Laval, Québec, QC G1 V 0A6, Canada
- Axe
médecine régénératrice, Centre de Recherche
du Centre Hospitalier Universitaire de Québec, Hôpital
St-François d’Assise, Québec, QC G1L
3L5, Canada
| | | |
Collapse
|
4
|
Abdel Aziz I, Gladisch J, Musumeci C, Moser M, Griggs S, Kousseff CJ, Berggren M, McCulloch I, Stavrinidou E. Electrochemical modulation of mechanical properties of glycolated polythiophenes. MATERIALS HORIZONS 2024; 11:2021-2031. [PMID: 38372393 DOI: 10.1039/d3mh01827j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Electrochemical doping of organic mixed ionic-electronic conductors is key for modulating their conductivity, charge storage and volume enabling high performing bioelectronic devices such as recording and stimulating electrodes, transistors-based sensors and actuators. However, electrochemical doping has not been explored to the same extent for modulating the mechanical properties of OMIECs on demand. Here, we report a qualitative and quantitative study on how the mechanical properties of a glycolated polythiophene, p(g3T2), change in situ during electrochemical doping and de-doping. The Young's modulus of p(g3T2) changes from 69 MPa in the dry state to less than 10 MPa in the hydrated state and then further decreases down to 0.4 MPa when electrochemically doped. With electrochemical doping-dedoping the Young's modulus of p(g3T2) changes by more than one order of magnitude reversibly, representing the largest modulation reported for an OMIEC. Furthermore, we show that the electrolyte concentration affects the magnitude of the change, demonstrating that in less concentrated electrolytes more water is driven into the film due to osmosis and therefore the film becomes softer. Finally, we find that the oligo ethylene glycol side chain functionality, specifically the length and asymmetry, affects the extent of modulation. Our findings show that glycolated polythiophenes are promising materials for mechanical actuators with a tunable modulus similar to the range of biological tissues, thus opening a pathway for new mechanostimulation devices.
Collapse
Affiliation(s)
- Ilaria Abdel Aziz
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping 601 74, Sweden.
- POLYMAT, University of the Basque Country UPV/EHU, Avenida Tolosa 72, Donostia-San Sebastian, Gipuzkoa 20018, Spain
| | - Johannes Gladisch
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping 601 74, Sweden.
| | - Chiara Musumeci
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping 601 74, Sweden.
| | | | - Sophie Griggs
- Department of Chemistry, Oxford University, Oxford, UK
| | | | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping 601 74, Sweden.
- Wallenberg Initiative Materials Science for Sustainability, Department of Science and Technology, Linköping University, Norrköping 601 74, Sweden
| | | | - Eleni Stavrinidou
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping 601 74, Sweden.
| |
Collapse
|
5
|
Palmese LL, LeValley PJ, Pradhan L, Parsons AL, Oakey JS, Abraham M, D'Addio SM, Kloxin AM, Liang Y, Kiick KL. Injectable liposome-containing click hydrogel microparticles for release of macromolecular cargos. SOFT MATTER 2024; 20:1736-1745. [PMID: 38288734 PMCID: PMC10880143 DOI: 10.1039/d3sm01009k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/16/2023] [Indexed: 02/22/2024]
Abstract
Hydrogel microparticles ranging from 0.1-100 μm, referred to as microgels, are attractive for biological applications afforded by their injectability and modularity, which allows facile delivery of mixed populations for tailored combinations of therapeutics. Significant efforts have been made to broaden methods for microgel production including via the materials and chemistries by which they are made. Via droplet-based-microfluidics we have established a method for producing click poly-(ethylene)-glycol (PEG)-based microgels with or without chemically crosslinked liposomes (lipo-microgels) through the Michael-type addition reaction between thiol and either vinyl-sulfone or maleimide groups. Unifom spherical microgels and lipo-microgels were generated with sizes of 74 ± 16 μm and 82 ± 25 μm, respectively, suggesting injectability that was further supported by rheological analyses. Super-resolution confocal microscopy was used to further verify the presence of liposomes within the lipo-microgels and determine their distribution. Atomic force microscopy (AFM) was conducted to compare the mechanical properties and network architecture of bulk hydrogels, microgels, and lipo-microgels. Further, encapsulation and release of model cargo (FITC-Dextran 5 kDa) and protein (equine myoglobin) showed sustained release for up to 3 weeks and retention of protein composition and secondary structure, indicating their ability to both protect and release cargos of interest.
Collapse
Affiliation(s)
- Luisa L Palmese
- Materials Science and Engineering, University of Delaware, Newark, DE, USA.
| | - Paige J LeValley
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Lina Pradhan
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Amanda L Parsons
- Chemical and Biomedical Engineering, University of Wyoming, Laramie, WY, USA
| | - John S Oakey
- Chemical and Biomedical Engineering, University of Wyoming, Laramie, WY, USA
| | - Mathew Abraham
- Translational Imaging, Merck & Co., Inc., West Point, PA, USA
| | - Suzanne M D'Addio
- Discovery Pharmaceutical Sciences, Merck & Co., Inc., West Point, PA, USA.
| | - April M Kloxin
- Materials Science and Engineering, University of Delaware, Newark, DE, USA.
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Yingkai Liang
- Discovery Pharmaceutical Sciences, Merck & Co., Inc., West Point, PA, USA.
| | - Kristi L Kiick
- Materials Science and Engineering, University of Delaware, Newark, DE, USA.
- Biomedical Engineering, University of Delaware, Newark, DE, USA
| |
Collapse
|
6
|
Jimenez JM, Tuttle T, Guo Y, Miles D, Buganza-Tepole A, Calve S. Multiscale mechanical characterization and computational modeling of fibrin gels. Acta Biomater 2023; 162:292-303. [PMID: 36965611 PMCID: PMC10313219 DOI: 10.1016/j.actbio.2023.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/28/2023] [Accepted: 03/17/2023] [Indexed: 03/27/2023]
Abstract
Fibrin is a naturally occurring protein network that forms a temporary structure to enable remodeling during wound healing. It is also a common tissue engineering scaffold because the structural properties can be controlled. However, to fully characterize the wound healing process and improve the design of regenerative scaffolds, understanding fibrin mechanics at multiple scales is necessary. Here, we present a strategy to quantify both the macroscale (1-10 mm) stress-strain response and the deformation of the mesoscale (10-1000 µm) network structure during unidirectional tensile tests. The experimental data were then used to inform a computational model to accurately capture the mechanical response of fibrin gels. Simultaneous mechanical testing and confocal microscopy imaging of fluorophore-conjugated fibrin gels revealed up to an 88% decrease in volume coupled with increase in volume fraction in deformed gels, and non-affine fiber alignment in the direction of deformation. Combination of the computational model with finite element analysis enabled us to predict the strain fields that were observed experimentally within heterogenous fibrin gels with spatial variations in material properties. These strategies can be expanded to characterize and predict the macroscale mechanics and mesoscale network organization of other heterogeneous biological tissues and matrices. STATEMENT OF SIGNIFICANCE: Fibrin is a naturally-occurring scaffold that supports cellular growth and assembly of de novo tissue and has tunable material properties. Characterization of meso- and macro-scale mechanics of fibrin gel networks can advance understanding of the wound healing process and impact future tissue engineering approaches. Using structural and mechanical characteristics of fibrin gels, a theoretical and computational model that can predict multiscale fibrin network mechanics was developed. These data and model can be used to design gels with tunable properties.
Collapse
Affiliation(s)
- Julian M Jimenez
- Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907, United States
| | - Tyler Tuttle
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Dr, Boulder, CO 80309, United States
| | - Yifan Guo
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Dalton Miles
- Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO 80303, United States
| | - Adrian Buganza-Tepole
- Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907, United States; School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, United States.
| | - Sarah Calve
- Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907, United States; Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Dr, Boulder, CO 80309, United States.
| |
Collapse
|
7
|
Bakulina AA, Musina GR, Gavdush AA, Efremov YM, Komandin GA, Vosough M, Shpichka AI, Zaytsev KI, Timashev PS. PEG-fibrin conjugates: the PEG impact on the polymerization dynamics. SOFT MATTER 2023; 19:2430-2437. [PMID: 36930054 DOI: 10.1039/d2sm01504h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Fibrin and its modifications, particularly those with functionalized polyethylene glycol (PEG), remain highly attractive as a biomaterial in drug delivery and regenerative medicine. Despite the extensive knowledge of fibrinogenesis, there is little information on the processes occurring after its modification. Previously, we found structural differences between native fibrin and its conjugates with PEG that allows us to hypothesize that a combination of methods such as terahertz (THz) pulsed spectroscopy and rheology may contribute to the characterization of gelation and reveal the effect of PEG on the polymerization dynamics. Compared to native fibrin, PEGylated fibrins had a homogenously soft surface; PEGylation also led to a significant decrease in the gelation time: from 42.75 min for native fibrin to 31.26 min and 35.09 min for 5 : 1 and 10 : 1 PEGylated fibrin, respectively. It is worth noting that THz pulsed spectroscopy makes it possible to reliably investigate only the polymerization process itself, while it does not allow us to observe statistically significant differences between the distinct PEGylated fibrin gels. The polymerization time constant of native fibrin measured by THz pulsed spectroscopy was 14.4 ± 2.8 min. However, it could not be calculated for PEGylated fibrin because the structural changes were too rapid. These results, together with those previously reported, led us to speculate that PEG-fibrin conjugates formed homogenously distributed highly water-shelled aggregates without bundling compared to native fibrin, ensuring rapid gelation and stabilization of the system without increasing its complexity.
Collapse
Affiliation(s)
- Alesia A Bakulina
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.
| | - Guzel R Musina
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia.
| | - Arsenii A Gavdush
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia.
| | - Yuri M Efremov
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.
| | - Gennady A Komandin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia.
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Anastasia I Shpichka
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Kirill I Zaytsev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia.
| | - Peter S Timashev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
8
|
Nanocomposite Hydrogels as Functional Extracellular Matrices. Gels 2023; 9:gels9020153. [PMID: 36826323 PMCID: PMC9957407 DOI: 10.3390/gels9020153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Over recent years, nano-engineered materials have become an important component of artificial extracellular matrices. On one hand, these materials enable static enhancement of the bulk properties of cell scaffolds, for instance, they can alter mechanical properties or electrical conductivity, in order to better mimic the in vivo cell environment. Yet, many nanomaterials also exhibit dynamic, remotely tunable optical, electrical, magnetic, or acoustic properties, and therefore, can be used to non-invasively deliver localized, dynamic stimuli to cells cultured in artificial ECMs in three dimensions. Vice versa, the same, functional nanomaterials, can also report changing environmental conditions-whether or not, as a result of a dynamically applied stimulus-and as such provide means for wireless, long-term monitoring of the cell status inside the culture. In this review article, we present an overview of the technological advances regarding the incorporation of functional nanomaterials in artificial extracellular matrices, highlighting both passive and dynamically tunable nano-engineered components.
Collapse
|
9
|
Eskhan A, Johnson D. Microscale characterization of abiotic surfaces and prediction of their biofouling/anti-biofouling potential using the AFM colloidal probe technique. Adv Colloid Interface Sci 2022; 310:102796. [DOI: 10.1016/j.cis.2022.102796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022]
|
10
|
Advances in Fibrin-Based Materials in Wound Repair: A Review. Molecules 2022; 27:molecules27144504. [PMID: 35889381 PMCID: PMC9322155 DOI: 10.3390/molecules27144504] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/28/2022] [Accepted: 07/08/2022] [Indexed: 11/29/2022] Open
Abstract
The first bioprocess that occurs in response to wounding is the deterrence of local hemorrhage. This is accomplished by platelet aggregation and initiation of the hemostasis cascade. The resulting blood clot immediately enables the cessation of bleeding and then functions as a provisional matrix for wound healing, which begins a few days after injury. Here, fibrinogen and fibrin fibers are the key players, because they literally serve as scaffolds for tissue regeneration and promote the migration of cells, as well as the ingrowth of tissues. Fibrin is also an important modulator of healing and a host defense system against microbes that effectively maintains incoming leukocytes and acts as reservoir for growth factors. This review presents recent advances in the understanding and applications of fibrin and fibrin-fiber-incorporated biomedical materials applied to wound healing and subsequent tissue repair. It also discusses how fibrin-based materials function through several wound healing stages including physical barrier formation, the entrapment of bacteria, drug and cell delivery, and eventual degradation. Pure fibrin is not mechanically strong and stable enough to act as a singular wound repair material. To alleviate this problem, this paper will demonstrate recent advances in the modification of fibrin with next-generation materials exhibiting enhanced stability and medical efficacy, along with a detailed look at the mechanical properties of fibrin and fibrin-laden materials. Specifically, fibrin-based nanocomposites and their role in wound repair, sustained drug release, cell delivery to wound sites, skin reconstruction, and biomedical applications of drug-loaded fibrin-based materials will be demonstrated and discussed.
Collapse
|
11
|
Arifin N, Sudin I, Ngadiman NHA, Ishak MSA. A Comprehensive Review of Biopolymer Fabrication in Additive Manufacturing Processing for 3D-Tissue-Engineering Scaffolds. Polymers (Basel) 2022; 14:2119. [PMID: 35632000 PMCID: PMC9147259 DOI: 10.3390/polym14102119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 01/25/2023] Open
Abstract
The selection of a scaffold-fabrication method becomes challenging due to the variety in manufacturing methods, biomaterials and technical requirements. The design and development of tissue engineering scaffolds depend upon the porosity, which provides interconnected pores, suitable mechanical strength, and the internal scaffold architecture. The technology of the additive manufacturing (AM) method via photo-polymerization 3D printing is reported to have the capability to fabricate high resolution and finely controlled dimensions of a scaffold. This technology is also easy to operate, low cost and enables fast printing, compared to traditional methods and other additive manufacturing techniques. This article aims to review the potential of the photo-polymerization 3D-printing technique in the fabrication of tissue engineering scaffolds. This review paper also highlights the comprehensive comparative study between photo-polymerization 3D printing with other scaffold fabrication techniques. Various parameter settings that influence mechanical properties, biocompatibility and porosity behavior are also discussed in detail.
Collapse
Affiliation(s)
- Nurulhuda Arifin
- Quality Engineering, Malaysian Institute of Industrial Technology, Universiti Kuala Lumpur (UniKL), Persiaran Sinaran Ilmu, Bandar Seri Alam 81750, Johor, Malaysia;
| | - Izman Sudin
- School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru 81310, Johor, Malaysia;
| | - Nor Hasrul Akhmal Ngadiman
- School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru 81310, Johor, Malaysia;
| | - Mohamad Shaiful Ashrul Ishak
- Faculty of Mechanical Engineering Technology, Universiti Malaysia Perlis, Kampus Pauh Putra, Arau 02600, Perlis, Malaysia;
| |
Collapse
|
12
|
Lai E, Bao B, Zhu Y, Lin H. Transglutaminase-Catalyzed Bottom-Up Synthesis of Polymer Hydrogel. Front Bioeng Biotechnol 2022; 10:824747. [PMID: 35392400 PMCID: PMC8980521 DOI: 10.3389/fbioe.2022.824747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Enzyme catalysis has attracted increasing attention for application in the synthesis of polymer hydrogel due to the eco-friendly process and the devisable catalytic reaction. Moreover, bottom-up approaches combining enzyme catalysts and molecular self-assembly have been explored for synthesizing hydrogel with complex architectures. An enzyme widely distributed in nature, transglutaminase (TGase) has been confirmed to catalyze the formation of isopeptide bonds between proteins, which can effectively improve the gelation of proteins. In this mini-review, TGase-catalyzed synthesis of polymer hydrogels, including fibrin hydrogels, polyethylene glycol hydrogels, soy protein hydrogels, collagen hydrogels, gelatin hydrogels and hyaluronan hydrogels, has been reviewed in detail. The catalytic process and gel formation mechanism by TGase have also been considered. Furthermore, future perspectives and challenges in the preparation of polymer hydrogels by TGase are also highlighted.
Collapse
|