1
|
Santomasi G, Aquilino R, Brouwer M, De Gisi S, Smeding I, Todaro F, Notarnicola M, Thoden van Velzen EU. Strategies to enhance the circularity of non-bottle PET packaging waste based on a detailed material characterisation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 186:293-306. [PMID: 38954921 DOI: 10.1016/j.wasman.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/30/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024]
Abstract
The compositions of Dutch lightweight packaging waste (LWP) and sorted products named "PET (Polyethylene terephthalate) trays" have been determined on object level. Additionally, the PET trays from both waste types were sorted in 16 categories representing their packaging use and material build-up. The material composition of at least 10 representative trays from each category was determined with chemical and thermal analysis, based on which the average material composition per category was established. Based on this data the average material composition of sorted PET tray products was approximated. The recyclability of the various categories of PET trays was assessed based on their material build-up. The most ubiquitous PET trays in Dutch LWP and sorted products were only found to be suitable to produce opaque recycled PET with mechanical recycling processes. Whereas only some more uncommon PET trays can be used to produce transparent recycled PET with mechanical recycling processes. Depolymerisation is deemed to be a more appropriate recycling process that will allow the production of transparent food-grade recycled PET.
Collapse
Affiliation(s)
- Giusy Santomasi
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via E. Orabona n.4, I-70125 Bari, Italy.
| | - Rosiana Aquilino
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via E. Orabona n.4, I-70125 Bari, Italy
| | - Marieke Brouwer
- Wageningen Food & Biobased Research, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Sabino De Gisi
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via E. Orabona n.4, I-70125 Bari, Italy
| | - Ingeborg Smeding
- Wageningen Food & Biobased Research, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Francesco Todaro
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via E. Orabona n.4, I-70125 Bari, Italy
| | - Michele Notarnicola
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via E. Orabona n.4, I-70125 Bari, Italy
| | - Eggo U Thoden van Velzen
- Wageningen Food & Biobased Research, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| |
Collapse
|
2
|
Gall M, Mileva D, Stockreiter W, Salles C, Gahleitner M. Comparing End-of-Life Vehicle (ELV) and Packaging-Based Recyclates as Components in Polypropylene-Based Compounds for Automotive Applications. Polymers (Basel) 2024; 16:1927. [PMID: 39000782 PMCID: PMC11243903 DOI: 10.3390/polym16131927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/17/2024] Open
Abstract
Increasing recycled plastic content in cars to 25% by 2030 is one of the key measures for decarbonizing the automotive industry defined by the European Commission. This should include the recovery of plastics from end-of-life vehicles (ELVs), but such materials are hardly used in compounds today. To close the knowledge gap, two ELV recyclate grades largely based on bumper recycling were analyzed in comparison to a packaging-based post-consumer recyclate (PCR). The composition data were used to design polypropylene (PP) compounds for automotive applications with virgin base material and mineral reinforcement, which were characterized in relation to a commercial virgin-based compound. A compound with a 40 wt.-% ELV-based bumper recyclate can exceed one with just a 25 wt.-% packaging-based recyclate in terms of stiffness/impact balance. While the virgin reference can nearly be matched regarding mechanics, the flowability is not reached by any of the PCR compounds, making further development work necessary.
Collapse
Affiliation(s)
- Markus Gall
- Borealis Polyolefine GmbH, Innovation Headquarters, St Peterstr. 25, 4021 Linz, Austria
| | - Daniela Mileva
- Borealis Polyolefine GmbH, Innovation Headquarters, St Peterstr. 25, 4021 Linz, Austria
| | - Wolfgang Stockreiter
- Borealis Polyolefine GmbH, Innovation Headquarters, St Peterstr. 25, 4021 Linz, Austria
| | | | - Markus Gahleitner
- Borealis Polyolefine GmbH, Innovation Headquarters, St Peterstr. 25, 4021 Linz, Austria
| |
Collapse
|
3
|
Nordahl SL, Scown CD. Recommendations for life-cycle assessment of recyclable plastics in a circular economy. Chem Sci 2024; 15:9397-9407. [PMID: 38939149 PMCID: PMC11206198 DOI: 10.1039/d4sc01340a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/21/2024] [Indexed: 06/29/2024] Open
Abstract
Technologies that enable plastic circularity offer a path to reducing waste generation, improving environmental quality, and reducing reliance on fossil feedstocks. However, life-cycle assessment (LCA) methods commonly applied to these systems fall far short of capturing the full suite of advantages and tradeoffs. This perspective highlights inconsistencies in both the research questions and methodological choices across the growing body of LCA literature for plastics recycling. We assert that conducting LCAs on the basis of tonnes of waste managed vs. tonnes of recycled plastics yields results with fundamentally different conclusions; in most cases, analyses of recyclable plastics should focus on the unit of recycled product yielded. We also offer straightforward paths to better approach LCAs for recycling processes and plastics in a circular economy by rethinking study design (metrics, functional unit, system boundaries, counterfactual scenarios), upstream assumptions (waste feedstock variability, pre-processing requirements), and downstream assumptions (closed-loop vs. open-loop systems, material substitution). Specifically, we recommend expanding to metrics beyond greenhouse gases by including fossil carbon balances, net diversion of waste from landfill, and quantity of avoided plastic waste leakage to the environment. Furthermore, we highlight the role that plastic waste plays as a problematic contaminant in preventing greater diversion of all wastes to recycling, energy recovery, and composting, suggesting that plastics may hold a shared responsibility for the system-wide greenhouse gas emissions that occur when mixed wastes are landfilled.
Collapse
Affiliation(s)
- Sarah L Nordahl
- Energy Technologies Area, Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
| | - Corinne D Scown
- Energy Technologies Area, Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
- Joint BioEnergy Institute 5885 Hollis Street Emeryville CA 94608 USA
- Biosciences Area, Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
- Energy & Biosciences Institute, University of California Berkeley CA 94720 USA
| |
Collapse
|
4
|
Sharma S, Lai WL, Roy S, Maji PK, Ramakrishna S, Goh KL. Gate-to-grave assessment of plastic from recycling to manufacturing of TENG: a comparison between India and Singapore. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:42698-42718. [PMID: 38878244 PMCID: PMC11222216 DOI: 10.1007/s11356-024-33867-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
This study assesses the viability of recycled plastic-based triboelectric nanogenerators (TENGs) for sustainable energy harvesting in India and Singapore, concurrently examining plastic waste management. Using material flow analysis and life cycle assessment, the findings revealed that in Singapore, waste-to-energy incineration has a lower environmental impact than landfilling and mechanical recycling, attributed to natural gas usage. In India, recycling offsets impacts from incineration and landfilling, contributing to a lower net environmental impact. Economic performance of a TENG module from PET recyclates showed a 20% carbon footprint reduction when scaling up from lab to industrial "freeze-drying" processes. Key challenges in TENG manufacturing processes are also assessed for future development. This research highlights the potential of recycled plastic-based TENGs in sustainable energy and waste management.
Collapse
Affiliation(s)
- Shreya Sharma
- Newcastle Research & Innovation Institute (NewRIIS), 80 Jurong East Street 21, #05-04, Singapore, 609607, Singapore
- Department of Inorganic Chemistry, University of Oxford, S Parks Rd, Oxford, OX1 3QR, UK
| | - Wei Liang Lai
- Newcastle Research & Innovation Institute (NewRIIS), 80 Jurong East Street 21, #05-04, Singapore, 609607, Singapore.
- Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK.
- School of Engineering, Republic Polytechnic, 9 Woodlands Ave 9, Singapore, 738964, Singapore.
| | - Sunanda Roy
- Mechanical Engineering, Alliance University, Bangalore, 562106, India
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur, Uttar Pradesh, 247001, India
| | - Pradip Kumar Maji
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur, Uttar Pradesh, 247001, India
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Kheng Lim Goh
- Newcastle Research & Innovation Institute (NewRIIS), 80 Jurong East Street 21, #05-04, Singapore, 609607, Singapore
- Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| |
Collapse
|
5
|
Morganti P, Coltelli MB, Gagliardini A, Lazzeri A, Morganti G, Simonetti G, Fritsch T, Calabrese V, Fusco A, Donnarumma G. Biopolymer- and Natural Fiber-Based Biomimetic Tissues to Realize Smart Cosmeceuticals and Nutraceuticals Using an Innovative Approach. Pharmaceutics 2023; 15:2525. [PMID: 38004505 PMCID: PMC10674939 DOI: 10.3390/pharmaceutics15112525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/21/2023] [Accepted: 10/11/2023] [Indexed: 11/26/2023] Open
Abstract
More sustainable and smart cosmeceuticals and nutraceuticals are necessary due to the ecological transition. In this study, a pullulan-based water solution containing chitin nanofibril-nano-lignin (CN-LG) complexes that encapsulate fish collagen polypeptide, allantoin and nicotinamide was electrospun onto a nonwoven substrate made of bamboo fibers to obtain a smart nanostructured bilayer system for releasing active molecules onto the skin or other body tissues. Infrared spectroscopy was used to characterize the composition of the bilayer system before and after rapid washing of the sample with distilled water and liquids mimicking physiological fluids. The viability of keratinocytes was studied as well as the antioxidant activity, protective activity towards UV light, metalloproteinase release of aged fibroblasts and the inhibitor activity against collagen degradation. Immunomodulatory tests were performed to investigate the anti-inflammatory activity of the bilayer system as well as its indirect antimicrobial activity. The results indicate that the bilayer system can be used in the production of innovative sustainable cosmeceuticals. In general, the adopted strategy can be extended to several smart treatments for fast release that can be commercialized as solid products, thus avoiding the use of preservatives and water.
Collapse
Affiliation(s)
- Pierfrancesco Morganti
- R&D Unit, Academy of History of Healthcare Art, 00193 Rome, Italy;
- Dermatology Department, China Medical University, Shenyang 110122, China
| | - Maria-Beatrice Coltelli
- R&D Unit, Academy of History of Healthcare Art, 00193 Rome, Italy;
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy;
| | | | - Andrea Lazzeri
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy;
| | | | - Giovanna Simonetti
- Environmental Department Biology, La Sapienza University, 00185 Rome, Italy;
| | | | - Vittorio Calabrese
- Department Biomedical and Biotechnological Science, School of Medicine, Catania University, 95123 Catania, Italy;
| | - Alessandra Fusco
- Department of Experimental Medicine, Campania University Luigi Vanvitelli, 80138 Naples, Italy; (A.F.); (G.D.)
| | - Giovanna Donnarumma
- Department of Experimental Medicine, Campania University Luigi Vanvitelli, 80138 Naples, Italy; (A.F.); (G.D.)
| |
Collapse
|
6
|
Current trends of unsustainable plastic production and micro(nano)plastic pollution. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
7
|
Hardy JG, Stowell AF, Mumford CI, Piacentini MG, Cronin J, Hadley C, Hendry L, Skandalis A, Verma S, Saltalippi M. Special Issue: Enabling Research in Smart Sustainable Plastic Packaging. POLYM INT 2022. [DOI: 10.1002/pi.6455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- John G. Hardy
- Department of Chemistry Lancaster University Lancaster Lancashire LA1 4YB UK
- Centre for Consumption Insights Lancaster University Management School, Lancaster University Lancaster LA1 4YX UK
- Materials Science Institute Lancaster University Lancaster Lancashire LA1 4YW UK
| | - Alison F. Stowell
- Department of Organisation, Work and Technology Lancaster University Management School, Lancaster University Lancaster LA1 4YX UK
- Centre for Consumption Insights Lancaster University Management School, Lancaster University Lancaster LA1 4YX UK
- Future Cities Research Institute Lancaster University Lancaster LA1 4YX UK
- Pentland Centre for Sustainability in Business Lancaster University Lancaster LA1 4YX UK
| | - Clare I. Mumford
- Department of Organisation, Work and Technology Lancaster University Management School, Lancaster University Lancaster LA1 4YX UK
- Centre for Consumption Insights Lancaster University Management School, Lancaster University Lancaster LA1 4YX UK
| | - Maria G. Piacentini
- Department of Marketing Lancaster University Management School, Lancaster University Lancaster LA1 4YX UK
- Centre for Consumption Insights Lancaster University Management School, Lancaster University Lancaster LA1 4YX UK
| | - James Cronin
- Department of Marketing Lancaster University Management School, Lancaster University Lancaster LA1 4YX UK
- Centre for Consumption Insights Lancaster University Management School, Lancaster University Lancaster LA1 4YX UK
| | - Charlotte Hadley
- Department of Marketing Lancaster University Management School, Lancaster University Lancaster LA1 4YX UK
- Centre for Consumption Insights Lancaster University Management School, Lancaster University Lancaster LA1 4YX UK
- Pentland Centre for Sustainability in Business Lancaster University Lancaster LA1 4YX UK
| | - Linda Hendry
- Department of Management Science, Lancaster University Management School Lancaster University LA1 4YX UK
- Centre for Consumption Insights Lancaster University Management School, Lancaster University Lancaster LA1 4YX UK
- Pentland Centre for Sustainability in Business Lancaster University Lancaster LA1 4YX UK
| | - Alexandros Skandalis
- Department of Marketing Lancaster University Management School, Lancaster University Lancaster LA1 4YX UK
- Centre for Consumption Insights Lancaster University Management School, Lancaster University Lancaster LA1 4YX UK
| | - Savita Verma
- Department of Management Science Lancaster University Management School, Lancaster University LA1 4YX UK
- Pentland Centre for Sustainability in Business Lancaster University Lancaster LA1 4YX UK
| | - Matteo Saltalippi
- Department of Organisation, Work and Technology Lancaster University Management School, Lancaster University Lancaster LA1 4YX UK
- Centre for Consumption Insights Lancaster University Management School, Lancaster University Lancaster LA1 4YX UK
| |
Collapse
|