1
|
Cui S, Murphy EA, Zhang W, Zografos A, Shen L, Bates FS, Lodge TP. Cylinders-in-Undulating-Lamellae Morphology from ABC Bottlebrush Block Terpolymers. J Am Chem Soc 2024; 146:6796-6805. [PMID: 38421320 DOI: 10.1021/jacs.3c13543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Block polymer self-assembly affords a versatile bottom-up strategy to develop materials with the desired properties dictated by specific symmetries and dimensions. Owing to distinct properties compared with linear counterparts, bottlebrush block polymers with side chains densely grafted on a backbone have attracted extensive attention. However, the morphologies found in bottlebrush block polymers so far are limited, and only lamellar and cylindrical ordered phases have been reported in diblock bottlebrushes. The absence of complex morphologies, such as networks, might originate from the intrinsically stiff backbone architecture. We experimentally investigated the morphologies of nonfrustrated ABC bottlebrush block terpolymers, based on two chemistries, poly(ethylene-alt-propylene)-b-polystyrene-b-poly(dl-lactic acid) (PEP-PS-PLA) and PEP-b-PS-b-poly(ethylene oxide) (PEP-PS-PEO), synthesized by ring-opening metathesis polymerization of norbornene-terminated macromonomers. Structural characterization based on small-angle X-ray scattering and transmission electron microscopy measurements revealed an unprecedented cylinders-in-undulating-lamellae (CUL) morphology with p2 symmetry for both systems. Additionally, automated liquid chromatography was employed to fractionate the PEP-PS-PLA bottlebrush polymer, leading to fractions with a spectrum of morphologies, including the CUL. These findings underscore the significance of macromolecular dispersity in nominally narrow dispersity bottlebrush polymers while demonstrating the power of this fractionation technique.
Collapse
Affiliation(s)
| | - Elizabeth A Murphy
- Materials Research Laboratory and Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| | | | | | | | | | | |
Collapse
|
2
|
Toshikj N, Richard J, Ramonda M, Robin JJ, Blanquer S. Self-assembled biodegradable block copolymer precursors for the generation of nanoporous poly(trimethylene carbonate) thin films. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
3
|
Liu Y, Yao Z, Mei Z, Wei H, Yuan B, Zhang W. Fluorine-Containing Triblock Copolymer Vesicles with Microphase-Separated Structure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2652-2658. [PMID: 36763984 DOI: 10.1021/acs.langmuir.2c03114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Introduction of a fluorine-containing block into block copolymers is an effective method to tune block copolymer nanoassemblies with a microphase-separated structure. However, this microphase-separated structure is difficult to clearly observe due to its nanoscale size. In this work, fluorine-containing ABC triblock copolymer vesicles of poly(ethylene glycol)-block-polystyrene-block-poly(4-vinylbenzyl pentafluorophenyl ether) (PEG-b-PS-b-PVBFP) are synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization under dispersed condition. Owing to the choice of a suitable degree of polymerization of the three blocks, the synthesized PEG45-b-PS197-b-PVBFP233 vesicles have a relatively large size of around 216 nm and a thin vesicular membrane with a thickness of around 28 nm. Ascribed to the relatively large size of the vesicles and the thin vesicular membrane, it is concluded that the fluorine-containing PVBFP block forms 9 nm columnar microdomains shielded by the PS phase in the vesicular membrane.
Collapse
Affiliation(s)
- Yuan Liu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhekan Yao
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zeyu Mei
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Haixia Wei
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Bing Yuan
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
4
|
Shi X, Bian T, Liu L, Zhao H. Surface Coassembly of Binary Mixed Polymer Brushes and Linear Block Copolymer Chains. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14217-14226. [PMID: 36342322 DOI: 10.1021/acs.langmuir.2c02230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Binary mixed polymer brushes (BMPBs) are two different homopolymer chains that are covalently anchored to the solid surfaces at high grafting densities. One feature of the BMPBs is the unique ability to make surface phase separation under external stimuli. In this research, we demonstrate that different surface nanostructures can be fabricated by surface coassembly of BMPBs and free block copolymer (BCP) chains. Polystyrene/poly(2-(dimethylamino)ethyl methacrylate) (PS/PDMAEMA) BMPBs on silica particles (PS-PDMAEMA-SiO2) are synthesized by a two-step "grafting to" approach. PDMAEMA-b-PS block copolymer (BCP) chains and PS-PDMAEMA-SiO2 make surface self-assembly and a variety of surface nanostructures are formed in methanol. The grafting densities of PS and PDMAEMA brushes, solvent, and the BCP structures all exert significant influences on the surface morphology. With an increase in PDMAEMA grafting density, the surface structures change from perforated layers, to rods, and to spherical surface micelles (s-micelles). The PS grafting density also exerts an effect on the formation of the surface nanostructures. At low PS grafting density, sparsely distributed s-micelles are produced, and at high density, densely distributed s-micelles are observed. Based on transmission electron microscopy and scanning electron microscopy results, a surface phase diagram is constructed, which provides a guide to the surface morphology control.
Collapse
Affiliation(s)
- Xiaoyu Shi
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, Tianjin 300071, China
| | - Tianshun Bian
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, Tianjin 300071, China
| | - Li Liu
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, Tianjin 300071, China
| | - Hanying Zhao
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
Butzelaar AJ, Röring P, Mach TP, Hoffmann M, Jeschull F, Wilhelm M, Winter M, Brunklaus G, Théato P. Styrene-Based Poly(ethylene oxide) Side-Chain Block Copolymers as Solid Polymer Electrolytes for High-Voltage Lithium-Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39257-39270. [PMID: 34374509 DOI: 10.1021/acsami.1c08841] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Herein, we report the design of styrene-based poly(ethylene oxide) (PEO) side-chain block copolymers featuring a microphase separation and their application as solid polymer electrolytes in high-voltage lithium-metal batteries. A straightforward synthesis was established, overcoming typical drawbacks of PEO block copolymers prepared by anionic polymerization or ester-based PEO side-chain copolymers. Both the PEO side-chain length and the LiTFSI content were varied, and the underlying relationships were elucidated in view of polymer compositions with high ionic conductivity. Subsequently, a selected composition was subjected to further analyses, including phase-separated morphology, providing not only excellent self-standing films with intrinsic mechanical stability but also the ability to suppress lithium dendrite growth as well as good flexibility, wettability, and good contacts with the electrodes. Furthermore, good thermal and electrochemical stability was demonstrated. To do so, linear sweep and cyclic voltammetry, lithium plating/stripping tests, and galvanostatic overcharging using high-voltage cathodes were conducted, demonstrating stable lithium-metal interfaces and a high oxidative stability of around 4.75 V. Consequently, cycling of Li||NMC622 cells did not exhibit commonly observed rapid cell failure or voltage noise associated with PEO-based electrolytes in Li||NMC622 cells, attributed to the high mechanical stability. A comprehensive view is provided, highlighting that the combination of PEO and high-voltage cathodes is not impossible per se.
Collapse
Affiliation(s)
- Andreas J Butzelaar
- Karlsruhe Institute of Technology (KIT), Institute for Chemical Technology and Polymer Chemistry (ITCP), Engesserstraße 18, 76131 Karlsruhe, Germany
| | - Philipp Röring
- Helmholtz-Institute Münster, IEK-12, Forschungszentrum Jülich GmbH, Corrensstraße 46, 48149 Münster, Germany
| | - Tim P Mach
- Karlsruhe Institute of Technology (KIT), Institute for Chemical Technology and Polymer Chemistry (ITCP), Engesserstraße 18, 76131 Karlsruhe, Germany
| | - Maxi Hoffmann
- Karlsruhe Institute of Technology (KIT), Institute for Chemical Technology and Polymer Chemistry (ITCP), Engesserstraße 18, 76131 Karlsruhe, Germany
| | - Fabian Jeschull
- Karlsruhe Institute of Technology (KIT), Institute for Applied Materials-Energy Storage Systems (IAM-ESS), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Manfred Wilhelm
- Karlsruhe Institute of Technology (KIT), Institute for Chemical Technology and Polymer Chemistry (ITCP), Engesserstraße 18, 76131 Karlsruhe, Germany
| | - Martin Winter
- Helmholtz-Institute Münster, IEK-12, Forschungszentrum Jülich GmbH, Corrensstraße 46, 48149 Münster, Germany
- MEET Battery Research Center/Institute of Physical Chemistry, University of Münster, Corrensstraße 46, 48149 Münster, Germany
| | - Gunther Brunklaus
- Helmholtz-Institute Münster, IEK-12, Forschungszentrum Jülich GmbH, Corrensstraße 46, 48149 Münster, Germany
- MEET Battery Research Center/Institute of Physical Chemistry, University of Münster, Corrensstraße 46, 48149 Münster, Germany
| | - Patrick Théato
- Karlsruhe Institute of Technology (KIT), Institute for Chemical Technology and Polymer Chemistry (ITCP), Engesserstraße 18, 76131 Karlsruhe, Germany
- Karlsruhe Institute of Technology (KIT), Soft Matter Laboratory-Institute for Biological Interfaces III (IBG-3), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
6
|
Li M, Pester CW. Mixed Polymer Brushes for "Smart" Surfaces. Polymers (Basel) 2020; 12:E1553. [PMID: 32668820 PMCID: PMC7408536 DOI: 10.3390/polym12071553] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/26/2022] Open
Abstract
Mixed polymer brushes (MPBs) are composed of two or more disparate polymers covalently tethered to a substrate. The resulting phase segregated morphologies have been extensively studied as responsive "smart" materials, as they can be reversible tuned and switched by external stimuli. Both computational and experimental work has attempted to establish an understanding of the resulting nanostructures that vary as a function of many factors. This contribution highlights state-of-the-art MPBs studies, covering synthetic approaches, phase behavior, responsiveness to external stimuli as well as novel applications of MPBs. Current limitations are recognized and possible directions for future studies are identified.
Collapse
Affiliation(s)
- Mingxiao Li
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Christian W. Pester
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA;
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
7
|
Gu Y, Zhou S, Yang J. Aza‐
Michael Addition Chemistry for Tuning the Phase Separation of PDMS/PEG Blend Coatings and Their Anti‐Fouling Potentials. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.201900477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yunjiao Gu
- Department of Materials ScienceState Key Laboratory of Molecular Engineering of PolymersAdvanced Coatings Research Center of Ministry of Education of ChinaFudan University Shanghai 200433 China
| | - Shuxue Zhou
- Department of Materials ScienceState Key Laboratory of Molecular Engineering of PolymersAdvanced Coatings Research Center of Ministry of Education of ChinaFudan University Shanghai 200433 China
| | - Jinlong Yang
- International Research Center for Marine BiosciencesMinistry of Science and TechnologyShanghai Ocean University Shanghai 201306 China
| |
Collapse
|
8
|
Li H, He G, Chen Y, Zhao J, Zhang G. One-Step Approach to Polyester-Polyether Block Copolymers Using Highly Tunable Bicomponent Catalyst. ACS Macro Lett 2019; 8:973-978. [PMID: 35619475 DOI: 10.1021/acsmacrolett.9b00439] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Phthalic anhydride and propylene/ethylene oxide are copolymerized at room temperature by a bicomponent metal-free catalyst comprising a mild phosphazene base and triethylborane. Provided with proper loadings of the two catalytic components, block copolymers with strict (AB)nBm type sequence structures and controlled molar mass (up to 60 kg mol-1) can be generated in one synthetic step, and the block architecture can be enriched by the use of mono-, di-, or tetrahydroxy initiators. The obtained polyester-polyether block copolymers readily undergo microphase-separation in bulk and nanoaggregation in selective (aqueous and alcoholic) solvents.
Collapse
Affiliation(s)
- Heng Li
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Guanchen He
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ye Chen
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Junpeng Zhao
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Guangzhao Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
9
|
Al Nakeeb N, Nischang I, Schmidt BVKJ. Tannic Acid-Mediated Aggregate Stabilization of Poly( N-vinylpyrrolidone)- b-poly(oligo (ethylene glycol) methyl ether methacrylate) Double Hydrophilic Block Copolymers. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E662. [PMID: 31035517 PMCID: PMC6566864 DOI: 10.3390/nano9050662] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 11/16/2022]
Abstract
The self-assembly of block copolymers in aqueous solution is an important field in modern polymer science that has been extended to double hydrophilic block copolymers (DHBC) in recent years. In here, a significant improvement of the self-assembly process of DHBC in aqueous solution by utilizing a linear-brush macromolecular architecture is presented. The improved self-assembly behavior of poly(N-vinylpyrrolidone)-b-poly(oligo(ethylene glycol) methyl ether methacrylate) (PVP-b-P(OEGMA)) and its concentration dependency is investigated via dynamic light scattering (DLS) (apparent hydrodynamic radii ≈ 100-120 nm). Moreover, the DHBC assemblies can be non-covalently crosslinked with tannic acid via hydrogen bonding, which leads to the formation of small aggregates as well (apparent hydrodynamic radius ≈ 15 nm). Non-covalent crosslinking improves the self-assembly and stabilizes the aggregates upon dilution, reducing the concentration dependency of aggregate self-assembly. Additionally, the non-covalent aggregates can be disassembled in basic media. The presence of aggregates was studied via cryogenic scanning electron microscopy (cryo-SEM) and DLS before and after non-covalent crosslinking. Furthermore, analytical ultracentrifugation of the formed aggregate structures was performed, clearly showing the existence of polymer assemblies, particularly after non-covalent crosslinking. In summary, we report on the completely hydrophilic self-assembled structures in solution formed from fully biocompatible building entities in water.
Collapse
Affiliation(s)
- Noah Al Nakeeb
- Max-Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Ivo Nischang
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany.
| | - Bernhard V K J Schmidt
- Max-Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Am Mühlenberg 1, 14476 Potsdam, Germany.
| |
Collapse
|
10
|
Zong C, Zhao Y, Ji H, Xie J, Han X, Wang J, Cao Y, Lu C, Li H, Jiang S. Patterning Surfaces on Azo-Based Multilayer Films via Surface Wrinkling Combined with Visible Light Irradiation. Macromol Rapid Commun 2016; 37:1288-94. [DOI: 10.1002/marc.201600229] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/24/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Chuanyong Zong
- School of Materials Science and Engineering; Tianjin University; Tianjin 300072 P. R. China
| | - Yan Zhao
- AML, Department of Engineering Mechanics; Tsinghua University; Beijing 100084 P. R. China
| | - Haipeng Ji
- School of Materials Science and Engineering; Tianjin University; Tianjin 300072 P. R. China
| | - Jixun Xie
- School of Materials Science and Engineering; Tianjin University; Tianjin 300072 P. R. China
| | - Xue Han
- School of Materials Science and Engineering; Tianjin University; Tianjin 300072 P. R. China
| | - Juanjuan Wang
- School of Materials Science and Engineering; Tianjin University; Tianjin 300072 P. R. China
| | - Yanping Cao
- AML, Department of Engineering Mechanics; Tsinghua University; Beijing 100084 P. R. China
| | - Conghua Lu
- School of Materials Science and Engineering; Tianjin University; Tianjin 300072 P. R. China
| | - Hongfei Li
- State Key Laboratory of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| | - Shichun Jiang
- School of Materials Science and Engineering; Tianjin University; Tianjin 300072 P. R. China
| |
Collapse
|
11
|
Directed self-assembly of block copolymers by chemical or topographical guiding patterns: Optimizing molecular architecture, thin-film properties, and kinetics. Prog Polym Sci 2016. [DOI: 10.1016/j.progpolymsci.2015.10.008] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Li W, Müller M. Defects in the Self-Assembly of Block Copolymers and Their Relevance for Directed Self-Assembly. Annu Rev Chem Biomol Eng 2015; 6:187-216. [DOI: 10.1146/annurev-chembioeng-061114-123209] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Block copolymer self-assembly provides a platform for fabricating dense, ordered nanostructures by encoding information in the chemical architecture of multicomponent macromolecules. Depending on the volume fraction of the components and chain topology, these macromolecules form a variety of spatially periodic microphases in thermodynamic equilibrium. The kinetics of self-assembly, however, often results in initial morphologies with defects, and the subsequent ordering is protracted. Different strategies have been devised to direct the self-assembly of copolymer materials by external fields to align and perfect the self-assembled nanostructures. Understanding and controlling the thermodynamics of defects, their response to external fields, and their dynamics is important because applications in microelectronics either require extremely low defect densities or aim at generating specific defects at predetermined locations to fabricate irregular device-oriented structures for integrated circuits. In this review, we discuss defect morphologies of block copolymers in the bulk and thin films, highlighting (a) analogies to and differences from defects in other crystalline materials, (b) the stability of defects and their dynamics, and (c) the influence of external fields.
Collapse
Affiliation(s)
- Weihua Li
- Institute for Theoretical Physics, Georg-August University, 37077 Göttingen, Germany
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Marcus Müller
- Institute for Theoretical Physics, Georg-August University, 37077 Göttingen, Germany
| |
Collapse
|
13
|
Lai F, Borca-Tasciuc T, Plawsky J. Controlling directed self-assembly of gold nanorods in patterned PS-b-PMMA thin films. NANOTECHNOLOGY 2015; 26:055301. [PMID: 25580876 DOI: 10.1088/0957-4484/26/5/055301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We present a facile strategy for the directed self-assembly of gold nanorods (AuNRs) in patterned block copolymer (BCP) thin films. Parallel arrangement of AuNRs relative to the geometric confinement generated by selective removal of one block domain was achieved. Deposition of AuNRs with aspect ratios from 3.3 to 5.8 was accomplished and the alignment of the NRs within the channels was controlled primarily by capillary forces and the channel geometry. Ordered AuNR assembly in the BCP pattern can be achieved at high surface coverages, >30%, though the surface coverage depends on the aspect ratio of the NRs. Larger NRs align in the channels more readily, but pack at slightly lower densities.
Collapse
Affiliation(s)
- Fengyuan Lai
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | | |
Collapse
|
14
|
Wang W, Wang W, Li H, Lu X, Chen J, Kang NG, Zhang Q, Mays J. Synthesis and Characterization of Graft Copolymers Poly(isoprene-g-styrene) of High Molecular Weight by a Combination of Anionic Polymerization and Emulsion Polymerization. Ind Eng Chem Res 2015. [DOI: 10.1021/ie504457e] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Wenwen Wang
- Key Laboratory
of Applied Physics and Chemistry in Space of Ministry of Education, School of Science, Northwestern Polytechnical University, Xi’an 710072, China
| | - Weiyu Wang
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Hui Li
- Key Laboratory
of Applied Physics and Chemistry in Space of Ministry of Education, School of Science, Northwestern Polytechnical University, Xi’an 710072, China
| | - Xinyi Lu
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jihua Chen
- Center for
Nanophase
Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Nam-Goo Kang
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Qiuyu Zhang
- Key Laboratory
of Applied Physics and Chemistry in Space of Ministry of Education, School of Science, Northwestern Polytechnical University, Xi’an 710072, China
| | - Jimmy Mays
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
15
|
Martinelli E, Galli G, Glisenti A. Surface behavior of modified-polystyrene triblock copolymers with different macromolecular architectures. Eur Polym J 2014. [DOI: 10.1016/j.eurpolymj.2014.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Zhou J, Whittell GR, Manners I. Metalloblock Copolymers: New Functional Nanomaterials. Macromolecules 2014. [DOI: 10.1021/ma500106x] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Jiawen Zhou
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - George R. Whittell
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Ian Manners
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
17
|
Shan F, Lu X, Guan J, Lu Q, Feng X. Airflow-field-induced sandwich-type membrane of block copolymer for selective ion separation. Macromol Rapid Commun 2014; 35:735-40. [PMID: 24497315 DOI: 10.1002/marc.201300880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/02/2014] [Indexed: 11/09/2022]
Abstract
A simple and effective airflow method to prepare sandwich-type block copolymer films is reported. The films are composed of three layers: vertically oriented nanocylinders align in both upper and bottom layers and irregular nanocylinders exist in the bulk of the film. The vertically oriented nanocylinders in both sides can provide high accessibility to ions and ensures the exchange of chemical species between the membrane and external environment, while the irregularly oriented nanocylinders in the middle part of the film can prolong the pathway of ions transportation and enhance ions selectivity.
Collapse
Affiliation(s)
- Feng Shan
- School of Chemistry and Chemical Engineering, the State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | | | | | | | | |
Collapse
|
18
|
Evaporation-induced morphology pattern of triblock copolymer A5B10C5 in thin film: A multibody DPD simulation study. Chem Res Chin Univ 2013. [DOI: 10.1007/s40242-013-3260-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Seki T. Meso- and microscopic motions in photoresponsive liquid crystalline polymer films. Macromol Rapid Commun 2013; 35:271-90. [PMID: 24343758 DOI: 10.1002/marc.201300763] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 11/13/2013] [Indexed: 11/05/2022]
Abstract
Photoresponsive azobenzene-containing systems ranging from molecular to macroscopic material levels have greatly been increasing their significance in materials chemistry. This review focuses on the studies on light induced or triggered motions in azobenzene liquid crystalline (LC) polymer films at mesoscopic and microscopic levels. Due to the cooperative nature of liquid crystalline materials, highly efficient photoalignment and photo-triggered migrating motions are realized in mostly repeated manners. Here, recent advances in surface-grafted LC polymer brushes, LC block copolymer films, and LC polymer films that exhibit mass migrations are overviewed. Such newly emerged photoresponsive systems are expected to provide new possibilities and applications in polymer thin film technologies.
Collapse
Affiliation(s)
- Takahiro Seki
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8603, Japan
| |
Collapse
|
20
|
Zhang J, Posselt D, Sepe A, Shen X, Perlich J, Smilgies DM, Papadakis CM. Structural Evolution of Perpendicular Lamellae in Diblock Copolymer Thin Films during Solvent Vapor Treatment Investigated by Grazing-Incidence Small-Angle X-Ray Scattering. Macromol Rapid Commun 2013; 34:1289-95. [DOI: 10.1002/marc.201300314] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/14/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Jianqi Zhang
- Technische Universität München, Physik-Department, Physik weicher Materie; James-Franck-Str. 1 85748 Garching Germany
| | - Dorthe Posselt
- IMFUFA, Department of Science, Systems and Models; Roskilde University; P.O. Box 260, 4000 Roskilde Denmark
| | - Alessandro Sepe
- Technische Universität München, Physik-Department, Physik weicher Materie; James-Franck-Str. 1 85748 Garching Germany
| | - Xuhu Shen
- Technische Universität München, Physik-Department, Physik weicher Materie; James-Franck-Str. 1 85748 Garching Germany
| | - Jan Perlich
- Deutsches Elektronen-Synchrotron (DESY); Notkestr. 85 Hamburg Germany
| | - Detlef-M. Smilgies
- Cornell High Energy Synchrotron Source (CHESS), Wilson Laboratory,; Cornell University; Ithaca, New York 14853 USA
| | - Christine M. Papadakis
- Technische Universität München, Physik-Department, Physik weicher Materie; James-Franck-Str. 1 85748 Garching Germany
| |
Collapse
|
21
|
Ian W, Guojun L. Self-assembly and chemical processing of block copolymers: a roadmap towards a diverse array of block copolymer nanostructures. SCIENCE CHINA. LIFE SCIENCES 2013. [PMID: 23740360 DOI: 10.1007/s11427-013-4499-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/27/2013] [Indexed: 11/28/2022]
Abstract
Block copolymers can yield a diverse array of nanostructures. Their assembly structures are influenced by their inherent structures, and the wide variety of structures that can be prepared especially becomes apparent when one considers the number of routes available to prepare block copolymer assemblies. Some examples include self-assembly, directed assembly, coupling, as well as hierarchical assembly, which can yield assemblies having even higher structural order. These assembly routes can also be complemented by processing techniques such as selective crosslinking and etching, the former technique leading to permanent structures, the latter towards sculpted and the combination of the two towards permanent sculpted structures. The combination of these pathways provides extremely versatile routes towards an exciting variety of architectures. This review will attempt to highlight destinations reached by LIU Guojun and coworkers following these pathways.
Collapse
Affiliation(s)
- Wyman Ian
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, K7L 3N6, Canada
| | | |
Collapse
|
22
|
Wyman I, Liu G. Self-assembly and chemical processing of block copolymers: A roadmap towards a diverse array of block copolymer nanostructures. Sci China Chem 2013. [DOI: 10.1007/s11426-013-4951-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Acharya H, Sung J, Bae I, Kim T, Kim DH, Park C. Coassembly of Metal and Titanium Dioxide Nanocrystals Directed by Monolayered Block Copolymer Inverse Micelles for Enhanced Photocatalytic Performance. Chemistry 2012; 18:14695-701. [DOI: 10.1002/chem.201200934] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 07/14/2012] [Indexed: 11/08/2022]
|
24
|
Wang W, Zhang Q. Synthesis of block copolymer poly (n-butyl acrylate)-b-polystyrene by DPE seeded emulsion polymerization with monodisperse latex particles and morphology of self-assembly film surface. J Colloid Interface Sci 2012; 374:54-60. [DOI: 10.1016/j.jcis.2012.01.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 01/11/2012] [Accepted: 01/14/2012] [Indexed: 10/14/2022]
|
25
|
Heinzer MJ, Han S, Pople JA, Baird DG, Martin SM. In Situ Measurement of Block Copolymer Ordering Kinetics during the Drying of Solution-Cast Films Using Small-Angle X-ray Scattering. Macromolecules 2012. [DOI: 10.1021/ma2026429] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael J. Heinzer
- Department
of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0211,
United States
| | - Sangil Han
- Department
of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0211,
United States
| | - John A. Pople
- Stanford
Synchotron Radiation
Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Donald G. Baird
- Department
of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0211,
United States
| | - Stephen M. Martin
- Department
of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0211,
United States
| |
Collapse
|
26
|
|
27
|
Li YC, Liu H, Huang XR, Sun CC. Evaporation- and surface-induced morphology of symmetric diblock copolymer thin films: a multibody dissipative particle dynamics study. MOLECULAR SIMULATION 2011. [DOI: 10.1080/08927022.2011.569549] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
28
|
|
29
|
Xu Y, Zhang F, Feng X. Patterning of conjugated polymers for organic optoelectronic devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:1338-1360. [PMID: 21520501 DOI: 10.1002/smll.201002336] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Indexed: 05/30/2023]
Abstract
Conjugated polymers have been attracting more and more attention because they possess various novel electrical, magnetical, and optical properties, which render them useful in modern organic optoelectronic devices. Due to their organic nature, conjugated polymers are light-weight and can be fabricated into flexible appliances. Significant research efforts have been devoted to developing new organic materials to make them competitive with their conventional inorganic counterparts. It is foreseeable that when large-scale industrial manufacture of the devices made from organic conjugated polymers is feasible, they would be much cheaper and have more functions. On one hand, in order to improve the performance of organic optoelectronic devices, it is essential to tune their surface morphologies by techniques such as patterning. On the other hand, patterning is the routine requirement for device processing. In this review, the recent progress in the patterning of conjugated polymers for high-performance optoelectronic devices is summarized. Patterning based on the bottom-up and top-down methods are introduced. Emerging new patterning strategies and future trends for conventional patterning techniques are discussed.
Collapse
Affiliation(s)
- Youyong Xu
- College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, PR China
| | | | | |
Collapse
|
30
|
Hsu JC, Liu CL, Chen WC, Sugiyama K, Hirao A. A Supramolecular Approach on Using Poly(fluorenylstyrene)-block
-poly(2-vinylpyridine):PCBM Composite Thin Films for Non-Volatile Memory Device Applications. Macromol Rapid Commun 2011; 32:528-33. [DOI: 10.1002/marc.201000695] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Revised: 11/26/2010] [Indexed: 11/11/2022]
|
31
|
Ku SJ, Kim SM, Bak CH, Kim JB. Nanoporous hard etch masks using silicon-containing block copolymer thin films. POLYMER 2011. [DOI: 10.1016/j.polymer.2010.11.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|