1
|
Jang SY, Kim IB, Kim Y, Lim DH, Kang H, Heeney M, Kim DY. Facile direct C-H arylation polymerization of conjugated polymer, PDCBT, for organic solar cells. Macromol Rapid Commun 2022; 43:e2200405. [PMID: 35938972 DOI: 10.1002/marc.202200405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/25/2022] [Indexed: 11/09/2022]
Abstract
Direct arylation polymerization (DArP) is a synthetic method for conjugated polymers; in DArP, organometallic functionalization steps are omitted and there are no toxic byproducts. As a result, it is considered a more sustainable alternative compared to conventional methods such as Stille polymerization. To explore the possibility of DArP-based polymers as donor materials in organic solar cells (OSCs), a series of conjugated polymers based on the structure of PDCBT are synthesized using DArP and Stille polymerization. By controlling the monomer concentration and reaction time in DArP, DArP-5 with the highest Mn (21.9 kDa) can be obtained and its optoelectronic properties, electrochemical properties, and microscopic molecular ordering are comparable to those of Stille-based PDCBT (Stille-P). Analysis of the polymer structure indicates no structural defects such as crosslinking from undesired β-coupling reactions in DArP-5. Upon blending with the PC71 BM acceptor molecule, an increase in the crystallite size of DArP-5 is also observed. In OSC devices with a polymer:PC71 BM bulk-heterojunction photoactive layer, DArP-5 demonstrates a comparable power conversion efficiency of 5.8% with that of Stille-P (5.5%). These results prove that DArP is suitable for synthesizing PDCBT, and DArP-based PDCBT can be used in OSCs as an alternative of Stille-based one. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Soo-Young Jang
- Research Institute for Solar and Sustainable Energies, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - In-Bok Kim
- Research Institute for Solar and Sustainable Energies, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Yunseul Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Dae-Hee Lim
- Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), 29 Geumgu-gil, Jeongeup, 56212, Republic of Korea
| | - Hongkyu Kang
- Center for Research Innovation, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Martin Heeney
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Molecular Sciences Research Hub, (White City Campus), 80 Wood Lane Shepherd's Bush, London, W12 0BZ, UK
| | - Dong-Yu Kim
- School of Materials Science and Engineering, Research Institute for Solar and Sustainable Energies, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| |
Collapse
|
2
|
Ye L, Thompson BC. Improving the efficiency and sustainability of catalysts for direct arylation polymerization (DArP). JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210524] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Liwei Ye
- Department of Chemistry and Loker Hydrocarbon Research Institute University of Southern California Los Angeles California USA
| | - Barry C. Thompson
- Department of Chemistry and Loker Hydrocarbon Research Institute University of Southern California Los Angeles California USA
| |
Collapse
|
3
|
Chua MH, Png ZM, Zhu Q, Xu J. Synthesis of Conjugated Polymers via Transition Metal Catalysed C-H Bond Activation. Chem Asian J 2021; 16:2896-2919. [PMID: 34390547 DOI: 10.1002/asia.202100749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/04/2021] [Indexed: 11/10/2022]
Abstract
Transition metal catalysed C-H bond activation chemistry has emerged as an exciting and promising approach in organic synthesis. This allows us to synthesize a wider range of functional molecules and conjugated polymers in a more convenient and more atom economical way. The formation of C-C bonds in the construction of pi-conjugated systems, particularly for conjugated polymers, has benefited much from the advances in C-H bond activation chemistry. Compared to conventional transition-metal catalysed cross-coupling polymerization such as Suzuki and Stille cross-coupling, pre-functionalization of aromatic monomers, such as halogenation, borylation and stannylation, is no longer required for direct arylation polymerization (DArP), which involve C-H/C-X cross-coupling, and oxidative direct arylation polymerization (Ox-DArP), which involves C-H/C-H cross-coupling protocols driven by the activation of monomers' C(sp2 )-H bonds. Furthermore, poly(annulation) via C-H bond activation chemistry leads to the formation of unique pi-conjugated moieties as part of the polymeric backbone. This review thus summarises advances to date in the synthesis of conjugated polymers utilizing transition metal catalysed C-H bond activation chemistry. A variety of conjugated polymers via DArP including poly(thiophene), thieno[3,4-c]pyrrole-4,6-dione)-containing, fluorenyl-containing, benzothiadiazole-containing and diketopyrrolopyrrole-containing copolymers, were summarized. Conjugated polymers obtained through Ox-DArP were outlined and compared. Furthermore, poly(annulation) using transition metal catalysed C-H bond activation chemistry was also reviewed. In the last part of this review, difficulties and perspective to make use of transition metal catalysed C-H activation polymerization to prepare conjugated polymers were discussed and commented.
Collapse
Affiliation(s)
- Ming Hui Chua
- Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, 138634, Singapore, Singapore
| | - Zhuang Mao Png
- Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, 138634, Singapore, Singapore
| | - Qiang Zhu
- Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, 138634, Singapore, Singapore
| | - Jianwei Xu
- Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, 138634, Singapore, Singapore.,Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| |
Collapse
|
4
|
Ranathunge TA, Nirmani LPT, Nelson TL, Watkins DL. Benzodithiophene‐
S,S
‐tetraoxide (BDTT) as an Acceptor Towards Donor‐Acceptor (D‐A)‐Type Semiconducting Electropolymers. ChemElectroChem 2021. [DOI: 10.1002/celc.202100219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tharindu A. Ranathunge
- Department of Chemistry and Biochemistry University of Mississippi University Mississippi MS 38677–1848 USA
| | | | - Toby L. Nelson
- Department of Chemistry Oklahoma State University Stillwater OK 74078 USA
| | - Davita L. Watkins
- Department of Chemistry and Biochemistry University of Mississippi University Mississippi MS 38677–1848 USA
| |
Collapse
|
5
|
Lin K, Yin Q, Wang Z, Xie B, Duan C, Huang F, Cao Y. Direct arylation polycondensation towards water/alcohol-soluble conjugated polymers as the electron transporting layers for organic solar cells. Chem Commun (Camb) 2021; 57:5798-5801. [PMID: 33999064 DOI: 10.1039/d1cc01128f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two water/alcohol soluble conjugated polymers (WSCPs), based on naphthalenediimide and amino-functionalized 3,4-(propylenedioxy)thiophene, were synthesized via direct arylation polycondensation (DArP). The polymers worked well as electron transporting layers (ETLs) for fullerene-based and fullerene-free organic solar cells (OSCs), presenting an enhancement by above 40% compared to the control devices, respectively. The doping properties and high electron mobilities of these WSCPs endow them with high performance. The research study developed an effective method to synthesize ETLs for highly efficient OSCs, which was rarely reported.
Collapse
Affiliation(s)
- Kaiwen Lin
- Department of Materials and Food, University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan, 528402, P. R. China. and Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Qingwu Yin
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Zhenfeng Wang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Boming Xie
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Chunhui Duan
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China. and Beijing National Laboratory for Molecular Sciences, Beijing, P. R. China
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Yong Cao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China.
| |
Collapse
|
6
|
Jones AL, De Keersmaecker M, Pelse I, Reynolds JR. Curious Case of BiEDOT: MALDI-TOF Mass Spectrometry Reveals Unbalanced Monomer Incorporation with Direct (Hetero)arylation Polymerization. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01093] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Austin L. Jones
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, and Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Michel De Keersmaecker
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, and Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ian Pelse
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, and Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - John R. Reynolds
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, and Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
7
|
Green JP, Dai H, Aniés F, Heeney M. Functional 4 H-Dithieno[3,2- b:2′,3′- d]pyrrole Derivatives in Base-Dopable Conjugated Polymers and Oligomers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joshua P. Green
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, White City Campus, London W12 0BZ, U.K
| | - Haojie Dai
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, White City Campus, London W12 0BZ, U.K
| | - Filip Aniés
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, White City Campus, London W12 0BZ, U.K
| | - Martin Heeney
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, White City Campus, London W12 0BZ, U.K
| |
Collapse
|
8
|
Kuwabara J, Kanbara T. Facile Synthesis of π-Conjugated Polymers via Direct Arylation Polycondensation. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180249] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Junpei Kuwabara
- Tsukuba Research Center for Energy Materials Science (TREMS), Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Takaki Kanbara
- Tsukuba Research Center for Energy Materials Science (TREMS), Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
9
|
Drozdov FV, Surin NM, Peregudova SM, Trukhanov VA, Dmitryakov PV, Chvalun SN, Parashchuk DY, Ponomarenko SA. Synthesis and Properties of Alternating Copolymers Based on 4H-Cyclopenta[2,1-b:3,4-b']dithiophene and 4H-Dithieno[3,2-b:2',3'-d]silol. POLYMER SCIENCE SERIES B 2019. [DOI: 10.1134/s1560090419010032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Yamashita A, Nishiyama H, Inagi S, Tomita I. Synthesis of π-conjugated poly(arylene)s by polycondensation of 1,4-bis(3-methylpyridin-2-yl)benzene and aryl dibromides through regiospecific C-H functionalization process. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.29265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Akira Yamashita
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology; Tokyo Institute of Technology; Nagatsuta-cho 4259-G1-9, Midori-ku, Yokohama 226-8502 Japan
| | - Hiroki Nishiyama
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology; Tokyo Institute of Technology; Nagatsuta-cho 4259-G1-9, Midori-ku, Yokohama 226-8502 Japan
| | - Shinsuke Inagi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology; Tokyo Institute of Technology; Nagatsuta-cho 4259-G1-9, Midori-ku, Yokohama 226-8502 Japan
| | - Ikuyoshi Tomita
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology; Tokyo Institute of Technology; Nagatsuta-cho 4259-G1-9, Midori-ku, Yokohama 226-8502 Japan
| |
Collapse
|
11
|
Blaskovits JT, Leclerc M. CH Activation as a Shortcut to Conjugated Polymer Synthesis. Macromol Rapid Commun 2018; 40:e1800512. [DOI: 10.1002/marc.201800512] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/08/2018] [Indexed: 11/11/2022]
|
12
|
|
13
|
|
14
|
Chiu ST, Chiang HY, Lin YJ, Lu YY, Tanaka H, Hosokai T, Horie M. Self-assembly and ring-opening metathesis polymerization of cyclic conjugated molecules on highly ordered pyrolytic graphite. Chem Commun (Camb) 2018; 54:5546-5549. [PMID: 29761181 DOI: 10.1039/c8cc02224k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclic conjugated monomers comprising cyclopentadithiophene-vinylene trimers and their polymers on HOPG are observed using STM and AFM. ROMP of the monomers is performed using a Grubbs catalyst. Their STM images exhibit single chains of planar polymers, whereas their AFM images show elongation of the polymer chains on HOPG.
Collapse
Affiliation(s)
- Shih-Ting Chiu
- Department of Chemical Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
15
|
Hendsbee AD, Li Y. Performance Comparisons of Polymer Semiconductors Synthesized by Direct (Hetero)Arylation Polymerization (DHAP) and Conventional Methods for Organic Thin Film Transistors and Organic Photovoltaics. Molecules 2018; 23:E1255. [PMID: 29794982 PMCID: PMC6100596 DOI: 10.3390/molecules23061255] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 05/20/2018] [Accepted: 05/22/2018] [Indexed: 11/17/2022] Open
Abstract
C-C bond forming reactions are central to the construction of π-conjugated polymers. Classical C-C bond forming reactions such as the Stille and Suzuki coupling reactions have been widely used in the past for this purpose. More recently, direct (hetero)arylation polymerization (DHAP) has earned a place in the spotlight with an increasing number of π-conjugated polymers being produced using this atom-economic and more sustainable chemistry. As semiconductors in organic electronics, the device performances of the polymers made by DHAP are of great interest and importance. This review compares the device performances of some representative π-conjugated polymers made using the DHAP method with those made using the conventional C-C bond forming reactions when they are used as semiconductors in organic thin film transistors (OTFTs) and organic photovoltaics (OPVs).
Collapse
Affiliation(s)
- Arthur D Hendsbee
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave West, Waterloo, ON N2L 3G1, Canada.
| | - Yuning Li
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave West, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
16
|
Wakioka M, Ozawa F. Highly Efficient Catalysts for Direct Arylation Polymerization (DArP). ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800227] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Masayuki Wakioka
- International Research Center for Elements Science (IRCELS); Institute for Chemical Research & IRCCS; Kyoto University; Uji Kyoto 611-0011 Japan
| | - Fumiyuki Ozawa
- International Research Center for Elements Science (IRCELS); Institute for Chemical Research & IRCCS; Kyoto University; Uji Kyoto 611-0011 Japan
| |
Collapse
|
17
|
Li M, An C, Pisula W, Müllen K. Cyclopentadithiophene-Benzothiadiazole Donor-Acceptor Polymers as Prototypical Semiconductors for High-Performance Field-Effect Transistors. Acc Chem Res 2018; 51:1196-1205. [PMID: 29664608 DOI: 10.1021/acs.accounts.8b00025] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Donor-acceptor (D-A) conjugated polymers are of great interest as organic semiconductors, because they offer a rational tailoring of the electronic properties by modification of the donor and acceptor units. Nowadays, D-A polymers exhibit field-effect mobilities on the order of 10-2-100 cm2 V-1 s-1, while several examples showed a mobility over 10 cm2 V-1 s-1. The development of cyclopentadithiophene-benzothiadiazole (CDT-BTZ) copolymers one decade ago represents an important step toward high-performance organic semiconductors for field-effect transistors. The significant rise in field-effect mobility of CDT-BTZ in comparison to the existing D-A polymers at that time opened the door to a new research field with a large number of novel D-A systems. From this point, the device performance of CDT-BTZ was gradually improved by a systematic optimization of the synthesis and polymer structure as well as by an efficient solution processing into long-range ordered thin films. The key aspect was a comprehensive understanding of the relation between polymer structure and solid-state organization. Due to their fundamental role for the field of D-A polymers in general, this Account will for the first time explicitly focus on prototypical CDT-BTZ polymers, while other reviews provide an excellent general overview on D-A polymers. The first part of this Account discusses strategies for improving the charge carrier transport, focusing on chemical aspects. Improved synthesis as an essential stage toward high purity, and high molecular weight is a prerequisite for molecular order. The modification of substituents is a further crucial feature to tune the CDT-BTZ packing and self-assembly. Linear alkyl side chains facilitate intermolecular π-stacking interactions, while branched ones increase solubility and alter the polymer packing. Additional control over the supramolecular organization of CDT-BTZ polymers is introduced by alkenyl substituents via their cis-trans isomerization. The last discussed chemical concept is based on heteroatom variation within the CDT unit. The relationships found experimentally for CDT-BTZ between polymer chemical structure, solid-state organization, and charge carrier transport are explained by means of theoretical simulations. Besides the effects of molecular design, the second part of this Account discusses the processing conditions from solution. The film microstructure, defined as a mesoscopic domain organization, is critically affected by solution processing. Suitable processing techniques allow the formation of a long-range order and a uniaxial orientation of the CDT-BTZ chains, thus lowering the trapping density of grain boundaries for charge carriers. For instance, alignment of the CDT-BTZ polymer by dip-coating yields films with a pronounced structural and electrical anisotropy and favors a fast migration of charge carriers along the conjugated backbones in the deposition direction. By using film compression with the assistance of an ionic liquid, one even obtains CDT-BTZ films with a band-like transport and a transistor hole mobility of 10 cm2 V-1 s-1. This device performance is attributed to large domains in the compressed films being formed by CDT-BTZ with longer alkyl chains, which establish a fine balance between polymer interactions and growth kinetics during solvent evaporation. On the basis of the prototypical semiconductor CDT-BTZ, this Account provides general guidelines for achieving high-performance polymer transistors by taking into account the subtle balance of synthetic protocol, molecular design, and processing.
Collapse
Affiliation(s)
- Mengmeng Li
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Cunbin An
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Wojciech Pisula
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
18
|
Zimmermann D, Sprau C, Schröder J, Gregoriou VG, Avgeropoulos A, Chochos CL, Colsmann A, Janietz S, Krüger H. Synthesis of D-π
-A-π
type benzodithiophene-quinoxaline copolymers by direct arylation and their application in organic solar cells. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.29027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Diana Zimmermann
- Fraunhofer Institute for Applied Polymer Research, Department Polymers & Electronics, Geiselbergstrasse 69; Potsdam 14476 Germany
| | - Christian Sprau
- Light Technology Institute, Karlsruhe Institute of Technology (KIT), Engesserstrasse 13; Karlsruhe 76131 Germany
- Material Research Center for Energy Systems, Karlsruhe Institute of Technology (KIT), Strasse am Forum 7; Karlsruhe 76131 Germany
| | - Jonas Schröder
- Fraunhofer Institute for Applied Polymer Research, Department Polymers & Electronics, Geiselbergstrasse 69; Potsdam 14476 Germany
| | | | - Apostolos Avgeropoulos
- Department of Materials Science Engineering; University of Ioannina; Ioannina 45110 Greece
| | - Christos L. Chochos
- Advent Technologies S.A., Stadiou Str; Platani Achaias Patras 26504 Greece
- Department of Materials Science Engineering; University of Ioannina; Ioannina 45110 Greece
| | - Alexander Colsmann
- Light Technology Institute, Karlsruhe Institute of Technology (KIT), Engesserstrasse 13; Karlsruhe 76131 Germany
- Material Research Center for Energy Systems, Karlsruhe Institute of Technology (KIT), Strasse am Forum 7; Karlsruhe 76131 Germany
| | - Silvia Janietz
- Fraunhofer Institute for Applied Polymer Research, Department Polymers & Electronics, Geiselbergstrasse 69; Potsdam 14476 Germany
| | - Hartmut Krüger
- Fraunhofer Institute for Applied Polymer Research, Department Polymers & Electronics, Geiselbergstrasse 69; Potsdam 14476 Germany
| |
Collapse
|
19
|
Wakioka M, Yamashita N, Mori H, Nishihara Y, Ozawa F. Synthesis of a 1,2-Dithienylethene-Containing Donor-Acceptor Polymer via Palladium-Catalyzed Direct Arylation Polymerization (DArP). Molecules 2018; 23:E981. [PMID: 29690616 PMCID: PMC6017491 DOI: 10.3390/molecules23040981] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 11/16/2022] Open
Abstract
This paper reports the synthesis of D-A polymers containing 1,2-dithienylethene (DTE) units via palladium-catalyzed direct arylation polymerization (DArP). The reaction of dibromoisoindigo (1-Br) and DTE (2-H), in the presence of Pd₂(dba)₃·CHCl₃ (0.5 mol%), P(2-MeOC₆H₄)₃ (L1) (2 mol%), pivalic acid (1 equiv) as catalyst precursors, and Cs₂CO₃ (3 equiv) as a base affords poly(1-alt-2) with a high molecular weight (Mn up to 44,900). Although, it has been known that monomers, with plural C⁻H bonds, tend to form insoluble materials via direct arylation at undesirable C⁻H positions; the reaction of 1-Br and 2-H cleanly proceeds without insolubilization. The resulting polymer has a well-controlled structure and exhibits good charge transfer characteristics in an organic field-effect transistor (OFET), compared to the polymer produced by Migita⁻Kosugi⁻Stille cross-coupling polymerization. The DArP product displays an ideal linear relationship in the current⁻voltage curve, whereas the Migita⁻Kosugi⁻Stille product shows a VG-dependent change in the charge mobility.
Collapse
Affiliation(s)
- Masayuki Wakioka
- International Research Center for Elements Science (IRCELS), Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Natsumi Yamashita
- International Research Center for Elements Science (IRCELS), Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Hiroki Mori
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.
| | - Yasushi Nishihara
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.
| | - Fumiyuki Ozawa
- International Research Center for Elements Science (IRCELS), Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
20
|
|
21
|
Sharma S, Soni R, Kurungot S, Asha SK. Naphthalene Diimide Copolymers by Direct Arylation Polycondensation as Highly Stable Supercapacitor Electrode Materials. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02425] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Sandeep Sharma
- Academy of Scientific
and Innovative Research, New Delhi, India 110025
| | - Roby Soni
- Academy of Scientific
and Innovative Research, New Delhi, India 110025
| | | | - S. K. Asha
- Academy of Scientific
and Innovative Research, New Delhi, India 110025
| |
Collapse
|
22
|
Hayashi S, Togawa Y, Yamamoto SI, Koizumi T, Nishi K, Asano A. Synthesis of π-conjugated network polymers based on fluoroarene and fluorescent units via direct arylation polycondensation and their porosity and fluorescent properties. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28770] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shotaro Hayashi
- National Defense Academy of Japan, Hashirimizu 1-10-20 Yokosuka; Kanagawa 239-8686 Japan
| | - Yuki Togawa
- National Defense Academy of Japan, Hashirimizu 1-10-20 Yokosuka; Kanagawa 239-8686 Japan
| | - Shin-Ichi Yamamoto
- National Defense Academy of Japan, Hashirimizu 1-10-20 Yokosuka; Kanagawa 239-8686 Japan
| | - Toshio Koizumi
- National Defense Academy of Japan, Hashirimizu 1-10-20 Yokosuka; Kanagawa 239-8686 Japan
| | - Koji Nishi
- National Defense Academy of Japan, Hashirimizu 1-10-20 Yokosuka; Kanagawa 239-8686 Japan
| | - Atsushi Asano
- National Defense Academy of Japan, Hashirimizu 1-10-20 Yokosuka; Kanagawa 239-8686 Japan
| |
Collapse
|
23
|
Yao CF, Wang KL, Huang HK, Lin YJ, Lee YY, Yu CW, Tsai CJ, Horie M. Cyclopentadithiophene–Terephthalic Acid Copolymers: Synthesis via Direct Arylation and Saponification and Applications in Si-Based Lithium-Ion Batteries. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01355] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Chun-Feng Yao
- Department
of Chemical Engineering and ‡Department of Material Science
and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Kuo-Lung Wang
- Department
of Chemical Engineering and ‡Department of Material Science
and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hsin-Kai Huang
- Department
of Chemical Engineering and ‡Department of Material Science
and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yen-Jen Lin
- Department
of Chemical Engineering and ‡Department of Material Science
and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yun-Yang Lee
- Department
of Chemical Engineering and ‡Department of Material Science
and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chun-Wei Yu
- Department
of Chemical Engineering and ‡Department of Material Science
and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Cho-Jen Tsai
- Department
of Chemical Engineering and ‡Department of Material Science
and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Masaki Horie
- Department
of Chemical Engineering and ‡Department of Material Science
and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
24
|
Scott CN, Bisen MD, Stemer DM, McKinnon S, Luscombe CK. Direct Arylation Polycondensation of 2,5-Dithienylsilole with a Series of Difluorobenzodiimine-Based Electron Acceptors. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Colleen N. Scott
- Department
of Chemistry, Mississippi State University, Mississippi State, Mississippi 39769, United States
| | - Milind D. Bisen
- Department
of Chemistry and Biochemistry, Southern Illinois University Carbondale, Carbondale, Illinois 62901, United States
| | - Dominik M. Stemer
- Materials
Science and Engineering Department, University of Washington, Seattle, Washington 98195, United States
| | - Samuel McKinnon
- Department
of Chemistry, Mississippi State University, Mississippi State, Mississippi 39769, United States
| | - Christine K. Luscombe
- Materials
Science and Engineering Department, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
25
|
Hayashi S, Kojima Y, Koizumi T. Direct arylation polycondensation of β-unprotected chalcogen heteroles under phosphine-free conditions. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.02.067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Kojima Y, Hayashi S, Koizumi T. Palladium on carbon-catalyzed direct C-H arylation polycondensation of 3,4-ethylenedioxythiophene with various dibromoarenes. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28475] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yoshihisa Kojima
- Department of Applied Chemistry; National Defense Academy; Hashirimizu 1-10-20 Yokosuka Kanagawa 239-8686 Japan
| | - Shotaro Hayashi
- Department of Applied Chemistry; National Defense Academy; Hashirimizu 1-10-20 Yokosuka Kanagawa 239-8686 Japan
| | - Toshio Koizumi
- Department of Applied Chemistry; National Defense Academy; Hashirimizu 1-10-20 Yokosuka Kanagawa 239-8686 Japan
| |
Collapse
|
27
|
Wakioka M, Takahashi R, Ichihara N, Ozawa F. Mixed-Ligand Approach to Palladium-Catalyzed Direct Arylation Polymerization: Highly Selective Synthesis of π-Conjugated Polymers with Diketopyrrolopyrrole Units. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02679] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Masayuki Wakioka
- International Research Center
for Elements Science (IRCELS), Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Rina Takahashi
- International Research Center
for Elements Science (IRCELS), Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Nobuko Ichihara
- International Research Center
for Elements Science (IRCELS), Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Fumiyuki Ozawa
- International Research Center
for Elements Science (IRCELS), Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
28
|
Saito H, Chen J, Kuwabara J, Yasuda T, Kanbara T. Facile one-pot access to π-conjugated polymers via sequential bromination/direct arylation polycondensation. Polym Chem 2017. [DOI: 10.1039/c7py00332c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The synthesis of π-conjugated polymers starting from unfunctionalized aromatic monomers via sequential bromination/direct arylation polycondensation was investigated.
Collapse
Affiliation(s)
- Hitoshi Saito
- Tsukuba Research Center for Interdisciplinary Materials Science (TIMS)
- Graduate School of Pure and Applied Sciences
- University of Tsukuba
- Tsukuba
- Japan
| | - Jieran Chen
- Tsukuba Research Center for Interdisciplinary Materials Science (TIMS)
- Graduate School of Pure and Applied Sciences
- University of Tsukuba
- Tsukuba
- Japan
| | - Junpei Kuwabara
- Tsukuba Research Center for Interdisciplinary Materials Science (TIMS)
- Graduate School of Pure and Applied Sciences
- University of Tsukuba
- Tsukuba
- Japan
| | - Takeshi Yasuda
- Research Center for Functional Materials
- National Institute for Materials Science (NIMS)
- Tsukuba
- Japan
| | - Takaki Kanbara
- Tsukuba Research Center for Interdisciplinary Materials Science (TIMS)
- Graduate School of Pure and Applied Sciences
- University of Tsukuba
- Tsukuba
- Japan
| |
Collapse
|
29
|
Wang KL, Kuo TH, Yao CF, Chang SW, Yang YS, Huang HK, Tsai CJ, Horie M. Cyclopentadithiophene-benzoic acid copolymers as conductive binders for silicon nanoparticles in anode electrodes of lithium ion batteries. Chem Commun (Camb) 2017; 53:1856-1859. [DOI: 10.1039/c6cc08177k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cyclopentadithiophene-benzoic acid copolymers have been synthesized by direct arylation followed by saponification for use as conductive binders for silicon nanoparticles in anode electrode of lithium ion batteries.
Collapse
Affiliation(s)
- Kuo-Lung Wang
- Department of Chemical Engineering
- Frontier Research Center on Fundamental and Applied Sciences of Matters
- National Tsing-Hua University
- Hsinchu
- Taiwan
| | - Tzu-Husan Kuo
- Department of Chemical Engineering
- Frontier Research Center on Fundamental and Applied Sciences of Matters
- National Tsing-Hua University
- Hsinchu
- Taiwan
| | - Chun-Feng Yao
- Department of Chemical Engineering
- Frontier Research Center on Fundamental and Applied Sciences of Matters
- National Tsing-Hua University
- Hsinchu
- Taiwan
| | - Shu-Wei Chang
- Department of Chemical Engineering
- Frontier Research Center on Fundamental and Applied Sciences of Matters
- National Tsing-Hua University
- Hsinchu
- Taiwan
| | - Yu-Shuo Yang
- Department of Material Science and Engineering
- National Tsing-Hua University
- Hsinchu
- Taiwan
| | - Hsin-Kai Huang
- Department of Material Science and Engineering
- National Tsing-Hua University
- Hsinchu
- Taiwan
| | - Cho-Jen Tsai
- Department of Material Science and Engineering
- National Tsing-Hua University
- Hsinchu
- Taiwan
| | - Masaki Horie
- Department of Chemical Engineering
- Frontier Research Center on Fundamental and Applied Sciences of Matters
- National Tsing-Hua University
- Hsinchu
- Taiwan
| |
Collapse
|
30
|
Application of direct (hetero)arylation in constructing conjugated small molecules and polymers for organic optoelectronic devices. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2016.11.126] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Gobalasingham NS, Ekiz S, Pankow RM, Livi F, Bundgaard E, Thompson BC. Carbazole-based copolymers via direct arylation polymerization (DArP) for Suzuki-convergent polymer solar cell performance. Polym Chem 2017. [DOI: 10.1039/c7py00859g] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Direct arylation polymerization (DArP) is used to synthesize a variety of carbazole-based copolymers for evaluation in solar cells.
Collapse
Affiliation(s)
- Nemal S. Gobalasingham
- Department of Chemistry and Loker Hydrocarbon Research Institute
- University of Southern California
- Los Angeles
- USA
| | - Seyma Ekiz
- Department of Chemistry and Loker Hydrocarbon Research Institute
- University of Southern California
- Los Angeles
- USA
| | - Robert M. Pankow
- Department of Chemistry and Loker Hydrocarbon Research Institute
- University of Southern California
- Los Angeles
- USA
| | - Francesco Livi
- Department of Chemistry and Loker Hydrocarbon Research Institute
- University of Southern California
- Los Angeles
- USA
- DTU Energy
| | - Eva Bundgaard
- DTU Energy
- Technical University of Denmark
- Roskilde
- Denmark
| | - Barry C. Thompson
- Department of Chemistry and Loker Hydrocarbon Research Institute
- University of Southern California
- Los Angeles
- USA
| |
Collapse
|
32
|
Nitti A, Po R, Bianchi G, Pasini D. Direct Arylation Strategies in the Synthesis of π-Extended Monomers for Organic Polymeric Solar Cells. Molecules 2016; 22:molecules22010021. [PMID: 28035966 PMCID: PMC6155804 DOI: 10.3390/molecules22010021] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 12/17/2016] [Accepted: 12/20/2016] [Indexed: 02/06/2023] Open
Abstract
π-conjugated macromolecules for organic polymeric solar cells can be rationally engineered at the molecular level in order to tune the optical, electrochemical and solid-state morphology characteristics, and thus to address requirements for the efficient solid state device implementation. The synthetic accessibility of monomers and polymers required for the device is getting increasing attention. Direct arylation reactions for the production of the π-extended scaffolds are gaining importance, bearing clear advantages over traditional carbon-carbon forming methodologies. Although their use in the final polymerization step is already established, there is a need for improving synthetic accessibility to implement them also in the monomer synthesis. In this review, we discuss recent examples highlighting this useful strategy.
Collapse
Affiliation(s)
- Andrea Nitti
- Department of Chemistry, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy.
| | - Riccardo Po
- Research Center for Renewable Energies & Environment, Eni spa, Via Giacomo Fauser 4, 28100 Novara, Italy.
| | - Gabriele Bianchi
- Research Center for Renewable Energies & Environment, Eni spa, Via Giacomo Fauser 4, 28100 Novara, Italy.
| | - Dario Pasini
- Department of Chemistry, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy.
- INSTM Research Unit, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy.
| |
Collapse
|
33
|
Kuwabara J, Fujie Y, Maruyama K, Yasuda T, Kanbara T. Suppression of Homocoupling Side Reactions in Direct Arylation Polycondensation for Producing High Performance OPV Materials. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b02380] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Junpei Kuwabara
- Tsukuba
Research Center for Interdisciplinary Materials Science (TIMS), Graduate
School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Yohei Fujie
- Tsukuba
Research Center for Interdisciplinary Materials Science (TIMS), Graduate
School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Keisuke Maruyama
- Tsukuba
Research Center for Interdisciplinary Materials Science (TIMS), Graduate
School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Takeshi Yasuda
- Research
Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Takaki Kanbara
- Tsukuba
Research Center for Interdisciplinary Materials Science (TIMS), Graduate
School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
34
|
Dudnik AS, Aldrich TJ, Eastham ND, Chang RPH, Facchetti A, Marks TJ. Tin-Free Direct C-H Arylation Polymerization for High Photovoltaic Efficiency Conjugated Copolymers. J Am Chem Soc 2016; 138:15699-15709. [PMID: 27933999 DOI: 10.1021/jacs.6b10023] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A new and highly regioselective direct C-H arylation polymerization (DARP) methodology enables the reproducible and sustainable synthesis of high-performance π-conjugated photovoltaic copolymers. Unlike traditional Stille polycondensation methods for producing photovoltaic copolymers, this DARP protocol eliminates the need for environmentally harmful, toxic organotin compounds. This DARP protocol employs low loadings of commercially available catalyst components, Pd2(dba)3·CHCl3 (0.5 mol%) and P(2-MeOPh)3 (2 mol%), sterically tuned carboxylic acid additives, and an environmentally friendly solvent, 2-methyltetrahydrofuran. Using this DARP protocol, several representative copolymers are synthesized in excellent yields and high molecular masses. The DARP-derived copolymers are benchmarked versus Stille-derived counterparts by close comparison of optical, NMR spectroscopic, and electrochemical properties, all of which indicate great chemical similarity and no significant detectable structural defects in the DARP copolymers. The DARP- and Stille-derived copolymer and fullerene blend microstructural properties and morphologies are characterized with AFM, TEM, and XRD and are found to be virtually indistinguishable. Likewise, the charge generation, recombination, and transport characteristics of the fullerene blend films are found to be identical. For the first time, polymer solar cells fabricated using DARP-derived copolymers exhibit solar cell performances rivalling or exceeding those achieved with Stille-derived materials. For the DARP copolymer PBDTT-FTTE, the power conversion efficiency of 8.4% is a record for a DARP copolymer.
Collapse
Affiliation(s)
- Alexander S Dudnik
- Department of Chemistry and the Materials Research Center, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Thomas J Aldrich
- Department of Chemistry and the Materials Research Center, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Nicholas D Eastham
- Department of Chemistry and the Materials Research Center, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Materials Science and Engineering and Argonne Northwestern Solar Energy Research Center (ANSER), Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Robert P H Chang
- Department of Materials Science and Engineering and Argonne Northwestern Solar Energy Research Center (ANSER), Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Antonio Facchetti
- Department of Materials Science and Engineering and Argonne Northwestern Solar Energy Research Center (ANSER), Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Polyera Corporation , 8045 Lamon Avenue, Skokie, Illinois 60077, United States
| | - Tobin J Marks
- Department of Chemistry and the Materials Research Center, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Materials Science and Engineering and Argonne Northwestern Solar Energy Research Center (ANSER), Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
35
|
Pouliot JR, Grenier F, Blaskovits JT, Beaupré S, Leclerc M. Direct (Hetero)arylation Polymerization: Simplicity for Conjugated Polymer Synthesis. Chem Rev 2016; 116:14225-14274. [DOI: 10.1021/acs.chemrev.6b00498] [Citation(s) in RCA: 333] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jean-Rémi Pouliot
- Département de Chimie, Université Laval, Quebec City, Quebec G1V 0A6, Canada
| | - François Grenier
- Département de Chimie, Université Laval, Quebec City, Quebec G1V 0A6, Canada
| | | | - Serge Beaupré
- Département de Chimie, Université Laval, Quebec City, Quebec G1V 0A6, Canada
| | - Mario Leclerc
- Département de Chimie, Université Laval, Quebec City, Quebec G1V 0A6, Canada
| |
Collapse
|
36
|
Chang SW, Muto T, Kondo T, Liao MJ, Horie M. Double acceptor donor–acceptor alternating conjugated polymers containing cyclopentadithiophene, benzothiadiazole and thienopyrroledione: toward subtractive color organic photovoltaics. Polym J 2016. [DOI: 10.1038/pj.2016.72] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
37
|
Livi F, Gobalasingham NS, Thompson BC, Bundgaard E. Analysis of diverse direct arylation polymerization (DArP) conditions toward the efficient synthesis of polymers converging with stille polymers in organic solar cells. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28176] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Francesco Livi
- Department of Chemistry and Loker Hydrocarbon Research InstituteUniversity of Southern CaliforniaLos Angeles California90089‐1661
- DTU EnergyTechnical University of DenmarkRoskilde DK‐4000 Denmark
| | - Nemal S. Gobalasingham
- Department of Chemistry and Loker Hydrocarbon Research InstituteUniversity of Southern CaliforniaLos Angeles California90089‐1661
| | - Barry C. Thompson
- Department of Chemistry and Loker Hydrocarbon Research InstituteUniversity of Southern CaliforniaLos Angeles California90089‐1661
| | - Eva Bundgaard
- DTU EnergyTechnical University of DenmarkRoskilde DK‐4000 Denmark
| |
Collapse
|
38
|
Abstract
C-H activation reactions have allowed us to react traditionally chemically inert bonds in molecules to develop new methods for cross-coupling reactions. This type of reactivity can be applied to conjugated polymer materials in an effort to improve existing synthetic difficulties including harsh reaction conditions, multiple monomer functionalization steps, and organometallic reagent waste. In this Viewpoint, we highlight some of the encouraging advances in direct arylation polymerization (DArP) as well as ongoing challenges for future improvement and utility.
Collapse
Affiliation(s)
- Sabin-Lucian Suraru
- Materials
Science and Engineering Department, University of Washington, Seattle, Washington 98195-2120, United States
| | - Jason A. Lee
- Department
of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Christine K. Luscombe
- Materials
Science and Engineering Department, University of Washington, Seattle, Washington 98195-2120, United States
- Department
of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|
39
|
Iizuka E, Wakioka M, Ozawa F. Mixed-Ligand Approach to Palladium-Catalyzed Direct Arylation Polymerization: Effective Prevention of Structural Defects Using Diamines. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00441] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Eisuke Iizuka
- International
Research Center
for Elements Science (IRCELS), Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Masayuki Wakioka
- International
Research Center
for Elements Science (IRCELS), Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Fumiyuki Ozawa
- International
Research Center
for Elements Science (IRCELS), Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
40
|
Ishikawa T, Motoyanagi J, Minoda M. Synthesis of Brush-shaped π-Conjugated Polymers Based on Well-defined Thiophene-end-capped Poly(vinyl ether)s. CHEM LETT 2016. [DOI: 10.1246/cl.160022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Taketo Ishikawa
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology
| | - Jin Motoyanagi
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology
| | - Masahiko Minoda
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology
| |
Collapse
|
41
|
Guo Q, Jiang R, Wu D, You J. Rapid Access to 2,2′‐Bithiazole‐Based Copolymers via Sequential Palladium‐Catalyzed C–H/C–X and C–H/C–H Coupling Reactions. Macromol Rapid Commun 2016; 37:794-8. [DOI: 10.1002/marc.201600028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/24/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Qiang Guo
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Ruyong Jiang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Di Wu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 China
| |
Collapse
|
42
|
Kuwabara J, Takase N, Yasuda T, Kanbara T. Synthesis of conjugated polymers possessing diketopyrrolopyrrole units bearing phenyl, pyridyl, and thiazolyl groups by direct arylation polycondensation: Effects of aromatic groups in DPP on physical properties. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28105] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Junpei Kuwabara
- Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), Graduate School of Pure and Applied Sciences, University of Tsukuba; 1-1-1 Tennodai Tsukuba Ibaraki 305-8573 Japan
| | - Naoto Takase
- Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), Graduate School of Pure and Applied Sciences, University of Tsukuba; 1-1-1 Tennodai Tsukuba Ibaraki 305-8573 Japan
| | - Takeshi Yasuda
- Organic Thin-Film Solar Cells Group; Photovoltaic Materials Unit, National Institute for Materials Science (NIMS); 1-2-1 Sengen Tsukuba Ibaraki 305-0047 Japan
| | - Takaki Kanbara
- Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), Graduate School of Pure and Applied Sciences, University of Tsukuba; 1-1-1 Tennodai Tsukuba Ibaraki 305-8573 Japan
| |
Collapse
|
43
|
Kuwabara J, Yasuda T, Takase N, Kanbara T. Effects of the Terminal Structure, Purity, and Molecular Weight of an Amorphous Conjugated Polymer on Its Photovoltaic Characteristics. ACS APPLIED MATERIALS & INTERFACES 2016; 8:1752-8. [PMID: 26716726 DOI: 10.1021/acsami.5b09482] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The photovoltaic characteristics of an amorphous polymer containing EDOT and fluorene units were investigated. In particular, the effects of the terminal structure, residual amount of Pd, and molecular weight were systematically investigated. Direct arylation polycondensation of EDOT followed by an established purification method readily afforded polymers with different terminal structures, Pd contents, and molecular weights. Of these factors, the terminal structure of the polymer was a crucial factor affecting the photovoltaic characteristics. For example, the polymer with a Br terminal had a PCE of 2.9% in bulk-heterojunction organic photovoltaics (BHJ OPVs) with a fullerene derivative, whereas the polymer without a Br terminal had a PCE of 4.6% in the same cell configuration. The decreased Pd residues and high molecular weights of the polymers increased the long-term stability of the devices. Moreover, BHJ OPVs containing the high-molecular-weight polymer could be fabricated with an environmentally friendly nonhalogenated solvent.
Collapse
Affiliation(s)
- Junpei Kuwabara
- Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), Graduate School of Pure and Applied Sciences, University of Tsukuba , 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Takeshi Yasuda
- Organic Thin-Film Solar Cells Group, Photovoltaic Materials Unit, National Institute for Materials Science (NIMS) , 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Naoto Takase
- Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), Graduate School of Pure and Applied Sciences, University of Tsukuba , 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Takaki Kanbara
- Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), Graduate School of Pure and Applied Sciences, University of Tsukuba , 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
44
|
Kumada T, Nohara Y, Kuwabara J, Kanbara T. Direct Arylation Polycondensation of Thienothiophenes with Various Dibromoarylenes. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2015. [DOI: 10.1246/bcsj.20150235] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tatsuya Kumada
- Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), Graduate School of Pure and Applied Sciences, University of Tsukuba
| | - Yuta Nohara
- Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), Graduate School of Pure and Applied Sciences, University of Tsukuba
| | - Junpei Kuwabara
- Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), Graduate School of Pure and Applied Sciences, University of Tsukuba
| | - Takaki Kanbara
- Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), Graduate School of Pure and Applied Sciences, University of Tsukuba
| |
Collapse
|
45
|
Wakioka M, Ishiki S, Ozawa F. Synthesis of Donor–Acceptor Polymers Containing Thiazolo[5,4-d]thiazole Units via Palladium-Catalyzed Direct Arylation Polymerization. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b01822] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Masayuki Wakioka
- International
Research Center for Elements Science (IRCELS), Institute for Chemical
Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Satoru Ishiki
- International
Research Center for Elements Science (IRCELS), Institute for Chemical
Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Fumiyuki Ozawa
- International
Research Center for Elements Science (IRCELS), Institute for Chemical
Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- ACT-C, Japan Science
and Technology Agency, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
46
|
Wang K, Wang G, Wang M. Balanced Ambipolar Poly(diketopyrrolopyrrole-alt
-tetrafluorobenzene) Semiconducting Polymers Synthesized via Direct Arylation Polymerization. Macromol Rapid Commun 2015; 36:2162-70. [DOI: 10.1002/marc.201500377] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/12/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Kai Wang
- Division of Chemical and Biomolecular Engineering; School of Chemical and Biomedical Engineering; Nanyang Technological University; 70 Nanyang Drive Singapore 637457 Singapore
| | - Guojie Wang
- Division of Chemical and Biomolecular Engineering; School of Chemical and Biomedical Engineering; Nanyang Technological University; 70 Nanyang Drive Singapore 637457 Singapore
| | - Mingfeng Wang
- Division of Chemical and Biomolecular Engineering; School of Chemical and Biomedical Engineering; Nanyang Technological University; 70 Nanyang Drive Singapore 637457 Singapore
| |
Collapse
|
47
|
Matsidik R, Komber H, Luzio A, Caironi M, Sommer M. Defect-free Naphthalene Diimide Bithiophene Copolymers with Controlled Molar Mass and High Performance via Direct Arylation Polycondensation. J Am Chem Soc 2015; 137:6705-11. [DOI: 10.1021/jacs.5b03355] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Rukiya Matsidik
- Makromolekulare
Chemie, Universität Freiburg, Stefan-Meier-Straße 31, 79104 Freiburg, Germany
- Freiburger
Materialforschungszentrum, Stefan-Meier-Straße 21, Universität Freiburg, 79104 Freiburg, Germany
| | - Hartmut Komber
- Leibniz Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Alessandro Luzio
- Center
for Nanoscience and Technology @PoliMi, Instituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy
| | - Mario Caironi
- Center
for Nanoscience and Technology @PoliMi, Instituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy
| | - Michael Sommer
- Makromolekulare
Chemie, Universität Freiburg, Stefan-Meier-Straße 31, 79104 Freiburg, Germany
- Freiburger
Materialforschungszentrum, Stefan-Meier-Straße 21, Universität Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
48
|
Lai YY, Tung TC, Liang WW, Cheng YJ. Synthesis of Poly(3-hexylthiophene), Poly(3-hexylselenophene), and Poly(3-hexylselenophene-alt-3-hexylthiophene) by Direct C–H Arylation Polymerization via N-Heterocyclic Carbene Palladium Catalysts. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00488] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yu-Ying Lai
- Department of Applied Chemistry, National Chiao Tung University, 1001 University Road, Hsin-Chu 30010, Taiwan
| | - Tsu-Chien Tung
- Department of Applied Chemistry, National Chiao Tung University, 1001 University Road, Hsin-Chu 30010, Taiwan
| | - Wei-Wei Liang
- Department of Applied Chemistry, National Chiao Tung University, 1001 University Road, Hsin-Chu 30010, Taiwan
| | - Yen-Ju Cheng
- Department of Applied Chemistry, National Chiao Tung University, 1001 University Road, Hsin-Chu 30010, Taiwan
| |
Collapse
|
49
|
Iizuka E, Wakioka M, Ozawa F. Mixed-Ligand Approach to Palladium-Catalyzed Direct Arylation Polymerization: Synthesis of Donor–Acceptor Polymers with Dithienosilole (DTS) and Thienopyrroledione (TPD) Units. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00526] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Eisuke Iizuka
- International Research Center for Elements Science (IRCELS),
Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Masayuki Wakioka
- International Research Center for Elements Science (IRCELS),
Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Fumiyuki Ozawa
- International Research Center for Elements Science (IRCELS),
Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- ACT-C, Japan Science and Technology Agency, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
50
|
Lu W, Kuwabara J, Kuramochi M, Kanbara T. Synthesis of bithiazole-based crystalline polymers via palladium-catalyzed direct CH arylation. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/pola.27611] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Wei Lu
- Tsukuba Research Center for Interdisciplinary Materials Science (TIMS); Graduate School of Pure and Applied Sciences; University of Tsukuba; 1-1-1 Tennodai Tsukuba 305-8573 Japan
| | - Junpei Kuwabara
- Tsukuba Research Center for Interdisciplinary Materials Science (TIMS); Graduate School of Pure and Applied Sciences; University of Tsukuba; 1-1-1 Tennodai Tsukuba 305-8573 Japan
| | - Masahiro Kuramochi
- Tsukuba Research Center for Interdisciplinary Materials Science (TIMS); Graduate School of Pure and Applied Sciences; University of Tsukuba; 1-1-1 Tennodai Tsukuba 305-8573 Japan
| | - Takaki Kanbara
- Tsukuba Research Center for Interdisciplinary Materials Science (TIMS); Graduate School of Pure and Applied Sciences; University of Tsukuba; 1-1-1 Tennodai Tsukuba 305-8573 Japan
| |
Collapse
|