1
|
Khrystonko O, Rimpelová S, Burianová T, Švorčík V, Lyutakov O, Elashnikov R. Smart multi stimuli-responsive electrospun nanofibers for on-demand drug release. J Colloid Interface Sci 2023; 648:338-347. [PMID: 37301158 DOI: 10.1016/j.jcis.2023.05.181] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/25/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Here, we report poly(N-isopropylacrylamide-co-acrylic acid) (PNIPAm-co-AAc) microgel-loaded polycaprolactone (PCL) nanofibers as temperature-, pH- and electro-responsive materials. First, the PNIPAm-co-AAc microgels were prepared by precipitation polymerization and then electrospun with PCL. The morphology of the prepared materials, analysed by scanning electron microscopy, showed a narrow nanofiber distribution in the range of 500-800 nm, depending on microgel content. Refractometry measurements, performed at pH4 and 6.5, as well as in distilled water, indicated the thermo- and pH-responsive behaviour of the nanofibers between 31 and 34 °C. After being thoroughly characterized, the prepared nanofibers were loaded with crystal violet (CV) or gentamicin as model drugs. The application of a pulsed voltage led to a pronounced increase in drug release kinetics, which was also dependent on microgel content. In addition, long-term temperature- and pH-responsive release was demonstrated. Next, the prepared materials displayed switchable antibacterial activity against S. aureus and E. coli. Finally, cell compatibility tests showed that NIH 3T3 fibroblasts spread evenly over the nanofiber surface, confirming that the nanofibers serve as a favourable support for cell growth. Overall, the prepared nanofibers offer switchable drug release and appear to have considerable biomedical potential, particularly in wound healing.
Collapse
Affiliation(s)
- Olena Khrystonko
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, The Czech Republic
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, The Czech Republic
| | - Terezie Burianová
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, The Czech Republic
| | - Václav Švorčík
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, The Czech Republic
| | - Oleksiy Lyutakov
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, The Czech Republic
| | - Roman Elashnikov
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, The Czech Republic.
| |
Collapse
|
2
|
Sun F, Ren HT, Li TT, Huang SY, Zhang Y, Lou CW, Lin JH. Bioinspired design of underwater superoleophobic Poly(N-isopropylacrylamide)/ polyacrylonitrile/TiO 2 nanofibrous membranes for highly efficient oil/water separation and photocatalysis. ENVIRONMENTAL RESEARCH 2020; 186:109494. [PMID: 32302872 DOI: 10.1016/j.envres.2020.109494] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 03/26/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
Inspired by fish scales, this study prepares a thermo-responsive underwater oleophobic PNIPAM/PAN/TiO2 nanofibrous membranes by traditional electrospinning technique using poly-N-isopropylacrylamide (PNIPAM) and polyacrylonitrile (PAN). Thermal properties, mechanical properties, surface chemical composition, wettability, photocatalysis, and oil/water separation of PNIPAM/PAN/TiO2 membrane are explored compared to pure PNIPAM membrane. Result reveals that PAN/TiO2 compounds make PNIPAM membrane with a smaller fiber diameter of 141 nm and high tensile stress of 7.4 MPa, and also decompose 98% of rhodamine B after UV light radiation. This bioinspired design structure endows the membrane with superhydrophilicity with a low water contact angle, and underwater superoleophobicity with a high oil contact angle of 157° (petroleum ether) and 151° (dichloromethane). This membrane can efficiency separate oil/water mixture with a high separation efficiency. Moreover, the resultant PNIPAM/PAN/TiO2 membrane has the bionic fish scale structure, and has wettability respond at lower critical solution temperature making the water flux decreased from 10013 ± 367 L m-2·h-1 to 7713 ± 324 L m-2·h-1, and thus has a potential to be used in purification of reclaimed water and separation of oil from water.
Collapse
Affiliation(s)
- Fei Sun
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Hai-Tao Ren
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Ting-Ting Li
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China.
| | - Shih-Yu Huang
- Department of Chemical Engineering and Materials, Ocean College, Minjiang University, Fuzhou 350108, China
| | - Yue Zhang
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Ching-Wen Lou
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Department of Chemical Engineering and Materials, Ocean College, Minjiang University, Fuzhou 350108, China; Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan; Advanced Medical Care and Protection Technology Research Center, College of Textile and Clothing, Qingdao University, Shandong 266071, China.
| | - Jia-Horng Lin
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; Department of Chemical Engineering and Materials, Ocean College, Minjiang University, Fuzhou 350108, China; Advanced Medical Care and Protection Technology Research Center, College of Textile and Clothing, Qingdao University, Shandong 266071, China; Laboratory of Fiber Application and Manufacturing, Department of Fiber and Composite Materials, Feng Chia University, Taichung 40724, Taiwan; Department of Fashion Design, Asia University, Taichung 41354, Taiwan; School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
3
|
McCune JA, Mommer S, Parkins CC, Scherman OA. Design Principles for Aqueous Interactive Materials: Lessons from Small Molecules and Stimuli-Responsive Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906890. [PMID: 32227391 DOI: 10.1002/adma.201906890] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/24/2019] [Indexed: 06/10/2023]
Abstract
Interactive materials are at the forefront of current materials research with few examples in the literature. Researchers are inspired by nature to develop materials that can modulate and adapt their behavior in accordance with their surroundings. Stimuli-responsive systems have been developed over the past decades which, although often described as "smart," lack the ability to act autonomously. Nevertheless, these systems attract attention on account of the resultant materials' ability to change their properties in a predicable manner. These materials find application in a plethora of areas including drug delivery, artificial muscles, etc. Stimuli-responsive materials are serving as the precursors for next-generation interactive materials. Interest in these systems has resulted in a library of well-developed chemical motifs; however, there is a fundamental gap between stimuli-responsive and interactive materials. In this perspective, current state-of-the-art stimuli-responsive materials are outlined with a specific emphasis on aqueous macroscopic interactive materials. Compartmentalization, critical for achieving interactivity, relies on hydrophobic, hydrophilic, supramolecular, and ionic interactions, which are commonly present in aqueous systems and enable complex self-assembly processes. Relevant examples of aqueous interactive materials that do exist are given, and design principles to realize the next generation of materials with embedded autonomous function are suggested.
Collapse
Affiliation(s)
- Jade A McCune
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Stefan Mommer
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Christopher C Parkins
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Oren A Scherman
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| |
Collapse
|
4
|
Li J, Zhu J, Jia L, Ma Y, Wu H. Aqueous-based electrospun P(NIPAAm- co-AAc)/RSF medicated fibrous mats for dual temperature- and pH-responsive drug controlled release. RSC Adv 2019; 10:323-331. [PMID: 35492552 PMCID: PMC9047333 DOI: 10.1039/c9ra08832f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/17/2019] [Indexed: 12/27/2022] Open
Abstract
This paper presents a green method for fabricating dual temperature- and pH-responsive electrospun fibrous mats from an aqueous-based blend poly(N-isopropylacrylamide-co-acrylic acid) (P(NIPAAm-co-AAc)) and regenerated silk fibroin (RSF) by employing electrospinning technique. P(NIPAAm-co-AAc) was synthesized by free radical solution polymerization and its low critical solution temperature (LCST) was in the physiological range (38.8 °C). The P(NIPAAm-co-AAc)/RSF fibers were prepared by electrospinning technology in the presence of the crosslinking agents (EDC·HCl and NHS) with water as solvent. After in situ crosslinking and water-annealing process, the water-stable composite fibrous mats were obtained. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were used to analyze the crosslinking process. Temperature and pH dual stimuli-responsive swelling-shrinking behavior of the fibrous mats were observed when the temperature was below and above the LCST of the copolymer at different pHs. In addition, rhodamine B-loaded the fibrous mats also showed dual temperature and pH controlled release behavior, demonstrating the potential use of the fibrous mats for "smart" controlled drug delivery applications.
Collapse
Affiliation(s)
- Juan Li
- College of Materials Science and Engineering, Taiyuan University of Technology Taiyuan 030024 China
| | - Jingxin Zhu
- College of Materials Science and Engineering, Taiyuan University of Technology Taiyuan 030024 China
| | - Lan Jia
- College of Materials Science and Engineering, Taiyuan University of Technology Taiyuan 030024 China
| | - Yanlong Ma
- College of Materials Science and Engineering, Taiyuan University of Technology Taiyuan 030024 China
| | - Haijuan Wu
- College of Materials Science and Engineering, Taiyuan University of Technology Taiyuan 030024 China
| |
Collapse
|
5
|
Khan MS, Misra SK, Dighe K, Wang Z, Schwartz-Duval AS, Sar D, Pan D. Electrically-receptive and thermally-responsive paper-based sensor chip for rapid detection of bacterial cells. Biosens Bioelectron 2018; 110:132-140. [PMID: 29605712 DOI: 10.1016/j.bios.2018.03.044] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 03/19/2018] [Indexed: 01/15/2023]
Abstract
Although significant technological advancements have been made in the development of analytical biosensor chips for detecting bacterial strains (E. coli, S. Mutans and B. Subtilis), critical requirements i.e. limit of detection (LOD), fast time of response, ultra-sensitivity with high reproducibility and good shelf-life with robust sensing capability have yet to be met within a single sensor chip. In order to achieve these criteria, we present an electrically-receptive thermally-responsive (ER-TR) sensor chip comprised of simple filter paper used as substrate coated with composite of poly(N-isopropylacrylamide) polymer (PNIPAm) - graphene nanoplatelet (GR) followed by evaporation of Au electrodes for capturing both Gram-positive (S. mutans and B. subtilis) and Gram-negative (E. coli) bacterial cells in real-time. Autoclave water, tap water, lake water and milk samples were tested with ER-TR chip with and without bacterial strains at varying concentration range 101-105 cells/mL. The sensor was integrated with in-house built printed circuit board (PCB) to transmit/receive electrical signals. The interaction of E. coli, S. mutans and B. subtilis cells with fibers of PNIPAm-GR resulted in a change of electrical resistance and the readout was monitored wirelessly in real-time using MATLAB algorithm. Finally, prepared ER-TR chip exhibited the reproducibility of 85-97% with shelf-life of up to four weeks after testing with lake water sample.
Collapse
Affiliation(s)
- Muhammad S Khan
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Biomedical Research Center, Carle Foundation Hospital, Urbana, IL, USA
| | - Santosh K Misra
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Biomedical Research Center, Carle Foundation Hospital, Urbana, IL, USA.
| | - Ketan Dighe
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Biomedical Research Center, Carle Foundation Hospital, Urbana, IL, USA
| | - Zhen Wang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Biomedical Research Center, Carle Foundation Hospital, Urbana, IL, USA
| | - Aaron S Schwartz-Duval
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Biomedical Research Center, Carle Foundation Hospital, Urbana, IL, USA
| | - Dinabandhu Sar
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Biomedical Research Center, Carle Foundation Hospital, Urbana, IL, USA
| | - Dipanjan Pan
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Biomedical Research Center, Carle Foundation Hospital, Urbana, IL, USA; Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, IL, USA; Department of Materials Science and Engineering, University of Illinois-Urbana Champaign, IL, USA; Carle Illinois College of Medicine, Urbana, IL 61801, USA.
| |
Collapse
|
6
|
Chen J, Zhu C, Yang Z, Wang P, Yue Y, Kitaoka T. Thermally Tunable Pickering Emulsions Stabilized by Carbon-Dot-Incorporated Core-Shell Nanospheres with Fluorescence "On-Off" Behavior. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:273-283. [PMID: 29227679 DOI: 10.1021/acs.langmuir.7b03490] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Lack of deep understanding of nanoparticle (NP) actions at oil/water interface set an obstacle to practical applications of Pickering emulsions. Fluorescence labels fabricated by incorporation of carbon dots (CDs) into poly(N-isopropylacrylamide) (PNIPAM) matrix can not only mark the action of PNIPAM-based NPs in the interface but also reflect the colloidal morphologies of PNIPAM. In this work, we employed coaxial electrospraying for fabricating core-shell nanospheres of cellulose acetate encapsulated by PNIPAM, and facile incorporation of CDs in PNIPAM shells was achieved simultaneously. The coaxial electrosprayed NPs (CENPs) with temperature-dependent wettability can stabilize heptane and toluene in water at 25 °C, respectively, and reversible emulsion break can be triggered by temperature adjustment around the low critical solution temperature (LCST). Remarkably, CENP/CD composites exhibited a fluorescence "on-off" behavior because of the volume phase transition of the PNIPAM shell. CENP/CD composites in Pickering emulsions clearly elucidated the motions of CENPs in response to temperature changes. At temperatures below the LCST, the CENP concentration played an important role in surface coverage of oil droplets. Specifically, the CENP concentration above the minimum concentration for complete emulsification of oil phase led to high surface coverage and two-domain adsorption of CENPs at the interface including primary monolayer anchoring of CENPs on droplets surrounded by interconnected CENP networks, which contributed to the superior stability of the emulsions. Moreover, CENP/CD composites can be recycled with well-preserved core-shell structure and stable fluorescent properties, which offers their great potential applications in sensors and imaging.
Collapse
Affiliation(s)
- Jianqiang Chen
- Laboratory of Advanced Environmental & Energy Storage Materials, Department of Environment Engineering, Nanjing Forestry University , 159 Longpan Road, Nanjing 210037, P. R. China
| | - Chenyang Zhu
- Laboratory of Advanced Environmental & Energy Storage Materials, Department of Environment Engineering, Nanjing Forestry University , 159 Longpan Road, Nanjing 210037, P. R. China
| | - Zhen Yang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University , 1 Wenyuan Road, Nanjing 210023, P. R. China
| | - Ping Wang
- Laboratory of Advanced Environmental & Energy Storage Materials, Department of Environment Engineering, Nanjing Forestry University , 159 Longpan Road, Nanjing 210037, P. R. China
| | - Yiying Yue
- Laboratory of Advanced Environmental & Energy Storage Materials, Department of Environment Engineering, Nanjing Forestry University , 159 Longpan Road, Nanjing 210037, P. R. China
| | - Takuya Kitaoka
- Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University , 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| |
Collapse
|
7
|
Thakur N, Sargur Ranganath A, Sopiha K, Baji A. Thermoresponsive Cellulose Acetate-Poly(N-isopropylacrylamide) Core-Shell Fibers for Controlled Capture and Release of Moisture. ACS APPLIED MATERIALS & INTERFACES 2017; 9:29224-29233. [PMID: 28795559 DOI: 10.1021/acsami.7b07559] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, we used core-shell electrospinning to fabricate cellulose acetate-poly(N-isopropylacrylamide) (CA-PNIPAM) fibrous membranes and demonstrated the ability of these fibers to capture water from a high humid atmosphere and release it when thermally stimulated. The wettability of the fibers was controlled by using thermoresponsive PNIPAM as the shell layer. Scanning electron and fluorescence microscopes are used to investigate the microstructure of the fibers and confirm the presence of the core and shell phases within the fibers. The moisture capturing and releasing ability of these core-shell CA-PNIPAM fibers was compared with those of the neat CA and neat PNIPAM fibers at room temperature as well as at an elevated temperature. At room temperature, the CA-PNIPAM core-shell fibers are shown to have the maximum moisture uptake capacity among the three samples. The external temperature variations which trigger the moisture response behavior of these CA-PNIPAM fibers fall within the range of typical day and night cycles of deserts, demonstrating the potential use of these fibers for water harvesting applications.
Collapse
Affiliation(s)
- Neha Thakur
- Division of Engineering Product Development, Singapore University of Technology and Design (SUTD) , 8 Somapah Rd, 487372, Singapore
| | - Anupama Sargur Ranganath
- Division of Engineering Product Development, Singapore University of Technology and Design (SUTD) , 8 Somapah Rd, 487372, Singapore
| | - Kostiantyn Sopiha
- Division of Engineering Product Development, Singapore University of Technology and Design (SUTD) , 8 Somapah Rd, 487372, Singapore
| | - Avinash Baji
- Division of Engineering Product Development, Singapore University of Technology and Design (SUTD) , 8 Somapah Rd, 487372, Singapore
| |
Collapse
|
8
|
Temperature-responsive PLLA/PNIPAM nanofibers for switchable release. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 72:293-300. [DOI: 10.1016/j.msec.2016.11.028] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/07/2016] [Indexed: 12/13/2022]
|
9
|
Ranganath AS, Ganesh VA, Sopiha K, Sahay R, Baji A. Thermoresponsive electrospun membrane with enhanced wettability. RSC Adv 2017. [DOI: 10.1039/c6ra27848e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
10
|
Arslan O, Aytac Z, Uyar T. Superhydrophobic, Hybrid, Electrospun Cellulose Acetate Nanofibrous Mats for Oil/Water Separation by Tailored Surface Modification. ACS APPLIED MATERIALS & INTERFACES 2016; 8:19747-54. [PMID: 27398738 DOI: 10.1021/acsami.6b05429] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Electrospun cellulose acetate nanofibers (CA-NF) have been modified with perfluoro alkoxysilanes (FS/CA-NF) for tailoring their chemical and physical features aiming oil-water separation purposes. Strikingly, hybrid FS/CA-NF showed that perfluoro groups are rigidly positioned on the outer surface of the nanofibers providing superhydrophobic characteristic with a water contact angle of ∼155°. Detailed analysis showed that hydrolysis/condensation reactions led to the modification of the acetylated β(1 → 4) linked d-glucose chains of CA transforming it into a superhydrophobic nanofibrous mat. Analytical data have revealed that CA-NF surfaces can be selectively controlled for fabricating the durable, robust and water resistant hybrid electrospun nanofibrous mat. The -OH groups available on the CA structure allowed the basic sol-gel reactions started by the reactive FS hybrid precursor system which can be monitored by spectroscopic analysis. Since alkoxysilane groups on the perfluoro silane compound are capable of reacting for condensation together with the CA, superhydrophobic nanofibrous mat is obtained via electrospinning. This structural modification led to the facile fabrication of the novel oil/water nanofibrous separator which functions effectively demonstrated by hexane/oil and water separation experiments. Perfluoro groups consequently modified the hydrophilic CA nanofibers into superhydrophobic character and therefore FS/CA-NF could be quite practical for future applications like water/oil separators, as well as self-cleaning or water resistant nanofibrous structures.
Collapse
Affiliation(s)
- Osman Arslan
- UNAM-National Nanotechnology Research Center, Bilkent University , 06800, Ankara, Turkey
| | - Zeynep Aytac
- UNAM-National Nanotechnology Research Center, Bilkent University , 06800, Ankara, Turkey
- Institute of Materials Science & Nanotechnology, Bilkent University , Ankara, 06800, Turkey
| | - Tamer Uyar
- UNAM-National Nanotechnology Research Center, Bilkent University , 06800, Ankara, Turkey
- Institute of Materials Science & Nanotechnology, Bilkent University , Ankara, 06800, Turkey
| |
Collapse
|
11
|
Hakalahti M, Mautner A, Johansson LS, Hänninen T, Setälä H, Kontturi E, Bismarck A, Tammelin T. Direct Interfacial Modification of Nanocellulose Films for Thermoresponsive Membrane Templates. ACS APPLIED MATERIALS & INTERFACES 2016; 8:2923-2927. [PMID: 26812620 DOI: 10.1021/acsami.5b12300] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This letter proposes a strategy to construct tunable films combining the physical characteristics of cellulose nanofibrils and smart polymers for membrane applications. A functional membrane template was obtained by first fabricating a water stable film from cellulose nanofibrils and subsequently surface grafting it with a thermoresponsive polymer, poly(N-isopropylacrylamide). The behavior of the membrane template was dependent on temperature. The increment in slope of relative water permeance around the lower critical solution temperature of poly(N-isopropylacrylamide) increased from 18 to 100% upon polymer attachment. Although the membrane template essentially consisted of wood-based materials, the benefits of smart synthetic polymers were achieved.
Collapse
Affiliation(s)
- Minna Hakalahti
- High Performance Fibre Products, VTT Technical Research Center of Finland Ltd , FI-02044 VTT, Espoo, Finland
| | - Andreas Mautner
- Polymer & Composite Engineering (PaCE) Group, Institute for Materials Chemistry & Research, University of Vienna , Währingerstrasse 42, A-1090 Vienna, Austria
- Polymer & Composite Engineering (PaCE) Group, Dept. of Chemical Engineering, Imperial College London , South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Leena-Sisko Johansson
- Department of Forest Products Technology, School of Chemical Technology, Aalto University , 02150 Espoo, Finland
| | - Tuomas Hänninen
- High Performance Fibre Products, VTT Technical Research Center of Finland Ltd , FI-02044 VTT, Espoo, Finland
| | - Harri Setälä
- High Performance Fibre Products, VTT Technical Research Center of Finland Ltd , FI-02044 VTT, Espoo, Finland
| | - Eero Kontturi
- Department of Forest Products Technology, School of Chemical Technology, Aalto University , 02150 Espoo, Finland
| | - Alexander Bismarck
- Polymer & Composite Engineering (PaCE) Group, Institute for Materials Chemistry & Research, University of Vienna , Währingerstrasse 42, A-1090 Vienna, Austria
- Polymer & Composite Engineering (PaCE) Group, Dept. of Chemical Engineering, Imperial College London , South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Tekla Tammelin
- High Performance Fibre Products, VTT Technical Research Center of Finland Ltd , FI-02044 VTT, Espoo, Finland
| |
Collapse
|
12
|
Zhou YN, Li JJ, Luo ZH. PhotoATRP-Based Fluorinated Thermosensitive Block Copolymer for Controllable Water/Oil Separation. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b02394] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Yin-Ning Zhou
- Department of Chemical Engineering,
School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jin-Jin Li
- Department of Chemical Engineering,
School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zheng-Hong Luo
- Department of Chemical Engineering,
School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|