1
|
Yang Y, Wu Y, Bin Z, Zhang C, Tan G, You J. Discovery of Organic Optoelectronic Materials Powered by Oxidative Ar-H/Ar-H Coupling. J Am Chem Soc 2024; 146:1224-1243. [PMID: 38173272 DOI: 10.1021/jacs.3c12234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Efficient and streamlined synthetic methods that facilitate the rapid build-up of structurally diverse π-conjugated systems are of paramount importance in the quest for organic optoelectronic materials. Among these methods, transition-metal-catalyzed oxidative Ar-H/Ar-H coupling reactions between two (hetero)arenes have emerged as a concise and effective approach for generating a wide array of bi(hetero)aryl and fused heteroaryl structures. This innovative approach bypasses challenges associated with substrate pre-activation processes, thereby allowing for the creation of frameworks that were previously beyond reach using conventional Ar-X/Ar-M coupling reactions. These inherent advantages have ushered in new design patterns for organic optoelectronic molecules that deviate from traditional methods. This ground-breaking approach enables the transcendence of the limitations of repetitive material structures, ultimately leading to the discovery of novel high-performance materials. In this Perspective, we provide an overview of recent advances in the development of organic optoelectronic materials through the utilization of transition-metal-catalyzed oxidative Ar-H/Ar-H coupling reactions. We introduce several notable synthetic strategies in this domain, covering both directed and non-directed oxidative Ar-H/Ar-H coupling strategies, dual chelation-assisted strategy and directed ortho-C-H arylation/cyclization strategy. Additionally, we shed light on the role of oxidative Ar-H/Ar-H coupling reactions in the advancement of high-performance organic optoelectronic materials. Finally, we discuss the current limitations of existing protocols and offer insights into the future prospects for this field.
Collapse
Affiliation(s)
- Yudong Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Yimin Wu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Zhengyang Bin
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Cheng Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Guangying Tan
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| |
Collapse
|
2
|
Ye L, Thompson BC. Improving the efficiency and sustainability of catalysts for direct arylation polymerization (DArP). JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Liwei Ye
- Department of Chemistry and Loker Hydrocarbon Research Institute University of Southern California Los Angeles California USA
| | - Barry C. Thompson
- Department of Chemistry and Loker Hydrocarbon Research Institute University of Southern California Los Angeles California USA
| |
Collapse
|
3
|
Liu K, Perera K, Wang Z, Mei J, Boudouris BW. Impact of
open‐shell
loading on mass transport and doping in conjugated radical polymers. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Kangying Liu
- Department of Chemistry Purdue University, 560 Oval Drive West Lafayette Indiana USA
| | - Kuluni Perera
- Department of Chemistry Purdue University, 560 Oval Drive West Lafayette Indiana USA
| | - Zhiyang Wang
- Department of Chemistry Purdue University, 560 Oval Drive West Lafayette Indiana USA
| | - Jianguo Mei
- Department of Chemistry Purdue University, 560 Oval Drive West Lafayette Indiana USA
| | - Bryan W. Boudouris
- Department of Chemistry Purdue University, 560 Oval Drive West Lafayette Indiana USA
- Charles D. Davidson School of Chemical Engineering Purdue University, 480 W Stadium Avenue West Lafayette Indiana USA
| |
Collapse
|
4
|
Chua MH, Png ZM, Zhu Q, Xu J. Synthesis of Conjugated Polymers via Transition Metal Catalysed C-H Bond Activation. Chem Asian J 2021; 16:2896-2919. [PMID: 34390547 DOI: 10.1002/asia.202100749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/04/2021] [Indexed: 11/10/2022]
Abstract
Transition metal catalysed C-H bond activation chemistry has emerged as an exciting and promising approach in organic synthesis. This allows us to synthesize a wider range of functional molecules and conjugated polymers in a more convenient and more atom economical way. The formation of C-C bonds in the construction of pi-conjugated systems, particularly for conjugated polymers, has benefited much from the advances in C-H bond activation chemistry. Compared to conventional transition-metal catalysed cross-coupling polymerization such as Suzuki and Stille cross-coupling, pre-functionalization of aromatic monomers, such as halogenation, borylation and stannylation, is no longer required for direct arylation polymerization (DArP), which involve C-H/C-X cross-coupling, and oxidative direct arylation polymerization (Ox-DArP), which involves C-H/C-H cross-coupling protocols driven by the activation of monomers' C(sp2 )-H bonds. Furthermore, poly(annulation) via C-H bond activation chemistry leads to the formation of unique pi-conjugated moieties as part of the polymeric backbone. This review thus summarises advances to date in the synthesis of conjugated polymers utilizing transition metal catalysed C-H bond activation chemistry. A variety of conjugated polymers via DArP including poly(thiophene), thieno[3,4-c]pyrrole-4,6-dione)-containing, fluorenyl-containing, benzothiadiazole-containing and diketopyrrolopyrrole-containing copolymers, were summarized. Conjugated polymers obtained through Ox-DArP were outlined and compared. Furthermore, poly(annulation) using transition metal catalysed C-H bond activation chemistry was also reviewed. In the last part of this review, difficulties and perspective to make use of transition metal catalysed C-H activation polymerization to prepare conjugated polymers were discussed and commented.
Collapse
Affiliation(s)
- Ming Hui Chua
- Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, 138634, Singapore, Singapore
| | - Zhuang Mao Png
- Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, 138634, Singapore, Singapore
| | - Qiang Zhu
- Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, 138634, Singapore, Singapore
| | - Jianwei Xu
- Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, 138634, Singapore, Singapore.,Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| |
Collapse
|
5
|
Han D, Li J, Zhang Q, He Z, Wu Z, Chu J, Lu Y. Synthesis of π-Conjugated Polymers Containing Benzotriazole Units via Palladium-Catalyzed Direct C-H Cross-Coupling Polycondensation for OLEDs Applications. Polymers (Basel) 2021; 13:254. [PMID: 33466635 PMCID: PMC7828650 DOI: 10.3390/polym13020254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 11/16/2022] Open
Abstract
Four D-π-A conjugated polymers, namely P1-P4, which contain benzotriazole building blocks in their backbone as acceptor, are synthesized via palladium-catalyzed direct C-H cross-coupling polycondensation of 5,6-difluorobenzotriazole with different thiophene derivatives, including 3-octylthiophene, 2,2'-bithiophene, thieno[3,4-b][1,4]dioxine, and 4,4-dioctyl-4H-silolo-[3,2-b:4,5-b']dithiophene as donor units, respectively. Taking the polymer P1 as an example, the chemical structure of the polymer is demonstrated by 1H and 19F NMR spectra. The optical, electrochemical, and thermal properties of these polymers are assessed by UV-vis absorption and fluorescence spectroscopy, cyclic voltammetry (CV), and thermal gravimetric analysis (TGA), respectively. DFT simulations of all polymers are also performed to understand their physicochemical properties. Furthermore, P1 and P2, which have relatively higher molecular weights and better fluorescent quantum efficiency than those of P3 and P4, are utilized as lighting emitters for organic light-emitting diodes (OLEDs), affording promising green and red luminescence with 0.07% and 0.14% of maximum external quantum efficiency, respectively, based on a device with an architecture of ITO/PEDOT:PSS/PTAA/the polymer emitting layer/TPBi/LiF/Al.
Collapse
Affiliation(s)
- Dong Han
- School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China; (D.H.); (J.L.); (Z.H.); (Z.W.); (J.C.)
| | - Jingwen Li
- School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China; (D.H.); (J.L.); (Z.H.); (Z.W.); (J.C.)
| | - Qiang Zhang
- School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China; (D.H.); (J.L.); (Z.H.); (Z.W.); (J.C.)
- Tianjin Key Laboratory for Photoelectric Materials and Devices, Tianjin University of Technology, Tianjin 300384, China
| | - Zewang He
- School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China; (D.H.); (J.L.); (Z.H.); (Z.W.); (J.C.)
| | - Zhiwei Wu
- School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China; (D.H.); (J.L.); (Z.H.); (Z.W.); (J.C.)
| | - Jingting Chu
- School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China; (D.H.); (J.L.); (Z.H.); (Z.W.); (J.C.)
| | - Yan Lu
- School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China; (D.H.); (J.L.); (Z.H.); (Z.W.); (J.C.)
- Tianjin Key Laboratory for Photoelectric Materials and Devices, Tianjin University of Technology, Tianjin 300384, China
- Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
6
|
Kuwabara J, Kanbara T. Step-Economical Synthesis of Conjugated Polymer Materials Composed of Three Components: Donor, Acceptor, and π Units. Macromol Rapid Commun 2020; 42:e2000493. [PMID: 33225550 DOI: 10.1002/marc.202000493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/07/2020] [Indexed: 01/08/2023]
Abstract
Conjugated polymers have immense potential for their use as semiconducting materials in organic optoelectronic devices. The improvement of synthetic methods for conjugated polymers is important for the practical application of conjugated polymers. For mass production, synthetic methods must be developed by considering the concerns regarding cost and environment. Reduction in the number of synthetic steps is an efficient approach to address these concerns. The utilization of direct CH functionalization is a reasonable strategy in monomer and polymer syntheses, because the prefunctionalization steps for CC bond formation can be eliminated. This review summarizes the recent developments in the efficient syntheses of conjugated polymers as well as their monomers via direct arylation (CH/CX coupling) and cross-dehydrogenative coupling (CH/CH coupling) reactions.
Collapse
Affiliation(s)
- Junpei Kuwabara
- Tsukuba Research Center for Energy Materials Science (TREMS), Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Takaki Kanbara
- Tsukuba Research Center for Energy Materials Science (TREMS), Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| |
Collapse
|
7
|
Exploring the Utility of Buchwald Ligands for C-H Oxidative Direct Arylation Polymerizations. ACS Macro Lett 2019; 8:931-936. [PMID: 35619496 DOI: 10.1021/acsmacrolett.9b00395] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Oxidative C-H/C-H cross-coupling polymerizations provide an opportunity to synthesize conjugated polymers with an increased ease of monomer preparation, reduced environmental impact, and increased sustainability. Considering these attributes, it is necessary to expand the diversity of monomers that readily and efficiently participate in this coupling strategy to enable the development of conjugated polymers with a wide range of properties. Herein, the oxidative direct arylation polymerization toolbox is expanded to include 3,4-propylenedioxythiophene being synthesized via C-H/C-H cross-coupling methodologies. In conjunction with these efforts, the utilization of Buchwald ligands in C-H/C-H cross coupling polymerizations also is reported, and variations in the ligand structure provide insight into the role ligand choice has on C-H cross-coupling polymerizations. Specifically, it is determined that the phosphine functionality affects the rate-determining, concerted metalation-deprotonation step of the catalytic cycle, while bulky isopropyl substituents on the ligand's lower aryl ring promote reductive elimination. By balancing these steric effects on the ancillary ligands, polymers are synthesized to exhibit molecular weights above the effective conjugation length, with recovered yields >90%. In addition to expanding the scope of conjugated polymers accessible via oxidative direct arylation polymerization, these results provide the foundational understanding for utilizing Buchwald-type ligands in C-H-activated polymerizations.
Collapse
|
8
|
Wang Y, Hasegawa T, Matsumoto H, Michinobu T. Significant Difference in Semiconducting Properties of Isomeric All‐Acceptor Polymers Synthesized via Direct Arylation Polycondensation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904966] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yang Wang
- Department of Materials Science and Engineering Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8552 Japan
- Current address: Emergent Molecular Function Research Team Center for Emergent Matter Science (CEMS) RIKEN 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Tsukasa Hasegawa
- Department of Materials Science and Engineering Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8552 Japan
| | - Hidetoshi Matsumoto
- Department of Materials Science and Engineering Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8552 Japan
| | - Tsuyoshi Michinobu
- Department of Materials Science and Engineering Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8552 Japan
| |
Collapse
|
9
|
Wang Y, Hasegawa T, Matsumoto H, Michinobu T. Significant Difference in Semiconducting Properties of Isomeric All-Acceptor Polymers Synthesized via Direct Arylation Polycondensation. Angew Chem Int Ed Engl 2019; 58:11893-11902. [PMID: 31210386 DOI: 10.1002/anie.201904966] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Indexed: 01/11/2023]
Abstract
The direct arylation polycondensation (DArP) appeared as an efficient method for producing semiconducting polymers but often requires acceptor monomers with orienting or activating groups for the reactive carbon-hydrogen (C-H) bonds, which limits the choice of acceptor units. In this study, we describe a DArP for producing high-molecular-weight all-acceptor polymers composed of the acceptor monomers without any orienting or activating groups via a modified method using Pd/Cu co-catalysts. We thus obtained two isomeric all-acceptor polymers, P1 and P2, which have the same backbone and side-chains but different positions of the nitrogen atoms in the thiazole units. This subtle change significantly influences their optoelectronic, molecular packing, and charge-transport properties. P2 with a greater backbone torsion has favorable edge-on orientations and a high electron mobility μe of 2.55 cm2 V-1 s-1 . Moreover, P2-based transistors show an excellent shelf-storage stability in air even after the storage for 1 month.
Collapse
Affiliation(s)
- Yang Wang
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan.,Current address: Emergent Molecular Function Research Team, Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Tsukasa Hasegawa
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Hidetoshi Matsumoto
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Tsuyoshi Michinobu
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
| |
Collapse
|
10
|
Yang Y, Nishiura M, Wang H, Hou Z. Metal-catalyzed C H activation for polymer synthesis and functionalization. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.08.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
11
|
|
12
|
Mirabal RA, Vanderzwet L, Abuadas S, Emmett MR, Schipper D. Dehydration Polymerization for Poly(hetero)arene Conjugated Polymers. Chemistry 2018; 24:12231-12235. [PMID: 29450929 DOI: 10.1002/chem.201800642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Indexed: 11/08/2022]
Abstract
The lack of scalable and sustainable methods to prepare conjugated polymers belies their importance in many enabling technologies. Accessing high-performance poly(hetero)arene conjugated polymers by dehydration has remained an unsolved problem in synthetic chemistry and has historically required transitional-metal coupling reactions. Herein, we report a dehydration method that allows access to conjugated heterocyclic materials. By using the technique, we have prepared a series of small molecules and polymers. The reaction avoids using transition metals, proceeds at room temperature, the only required reactant is a simple base and water is the sole by-product. The dehydration reaction is technically simple and provides a sustainable and straightforward method to prepare conjugated heteroarene motifs.
Collapse
Affiliation(s)
- Rafael A Mirabal
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Luke Vanderzwet
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Sara Abuadas
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Michael R Emmett
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Derek Schipper
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
13
|
Aoki H, Saito H, Shimoyama Y, Kuwabara J, Yasuda T, Kanbara T. Synthesis of Conjugated Polymers Containing Octafluorobiphenylene Unit via Pd-Catalyzed Cross-Dehydrogenative-Coupling Reaction. ACS Macro Lett 2018; 7:90-94. [PMID: 35610923 DOI: 10.1021/acsmacrolett.7b00887] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polycondensation via Pd-catalyzed cross-dehydrogenative-coupling reaction of 2,2',3,3',5,5',6,6'-octafluorobiphenyl with thiophene analogues was studied. The synthetic protocol, in which employment of prefunctionalized starting monomers was fully avoided, allowed straightforward access to an alternating π-conjugated polymer. The addition of K2CO3 to the catalytic system promotes the cross-coupling reaction and suppresses the undesired homocoupling reaction, producing the corresponding donor-acceptor type π-conjugated polymers with minor homocoupling defects. The reaction also proceeded using O2 as the terminal oxidant, resulting in lower loading of the Ag oxidant. The obtained polymer was evaluated as an emitting material for an organic light-emitting diode.
Collapse
Affiliation(s)
- Hideaki Aoki
- Tsukuba
Research Center for Energy Materials Science (TREMS), Graduate School
of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Hitoshi Saito
- Tsukuba
Research Center for Energy Materials Science (TREMS), Graduate School
of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Yuto Shimoyama
- Tsukuba
Research Center for Energy Materials Science (TREMS), Graduate School
of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Junpei Kuwabara
- Tsukuba
Research Center for Energy Materials Science (TREMS), Graduate School
of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Takeshi Yasuda
- Research
Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Takaki Kanbara
- Tsukuba
Research Center for Energy Materials Science (TREMS), Graduate School
of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
14
|
Zhang Q, Chang M, Lu Y, Sun Y, Li C, Yang X, Zhang M, Chen Y. A Direct C–H Coupling Method for Preparing π-Conjugated Functional Polymers with High Regioregularity. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02390] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Qiang Zhang
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China
| | - Meijia Chang
- The Centre
of Nanoscale Science and Technology and Key Laboratory of Functional
Polymer Materials, State Key Laboratory of Elemento-Organic Chemistry,
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yan Lu
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China
| | - Yanna Sun
- The Centre
of Nanoscale Science and Technology and Key Laboratory of Functional
Polymer Materials, State Key Laboratory of Elemento-Organic Chemistry,
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chenxi Li
- The Centre
of Nanoscale Science and Technology and Key Laboratory of Functional
Polymer Materials, State Key Laboratory of Elemento-Organic Chemistry,
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xinlin Yang
- The Centre
of Nanoscale Science and Technology and Key Laboratory of Functional
Polymer Materials, State Key Laboratory of Elemento-Organic Chemistry,
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Mingtao Zhang
- The Centre
of Nanoscale Science and Technology and Key Laboratory of Functional
Polymer Materials, State Key Laboratory of Elemento-Organic Chemistry,
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yongsheng Chen
- The Centre
of Nanoscale Science and Technology and Key Laboratory of Functional
Polymer Materials, State Key Laboratory of Elemento-Organic Chemistry,
College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
15
|
Abstract
Transition metal-mediated C-H bond activation and functionalization represent one of the most straightforward and powerful tools in modern organic synthetic chemistry. Bi(hetero)aryls are privileged π-conjugated structural cores in biologically active molecules, organic functional materials, ligands, and organic synthetic intermediates. The oxidative C-H/C-H coupling reactions between two (hetero)arenes through 2-fold C-H activation offer a valuable opportunity for rapid assembly of diverse bi(hetero)aryls and further exploitation of their applications in pharmaceutical and material sciences. This review provides a comprehensive overview of the fundamentals and applications of transition metal-mediated/catalyzed oxidative C-H/C-H coupling reactions between two (hetero)arenes. The substrate scope, limitation, reaction mechanism, regioselectivity, and chemoselectivity, as well as related control strategies of these reactions are discussed. Additionally, the applications of these established methods in the synthesis of natural products and exploitation of new organic functional materials are exemplified. In the last section, a short introduction on oxidant- or Lewis acid-mediated oxidative Ar-H/Ar-H coupling reactions is presented, considering that it is a very powerful method for the construction of biaryl units and polycylic arenes.
Collapse
Affiliation(s)
- Yudong Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University , 29 Wangjiang Road, Chengdu 610064, China
| | - Jingbo Lan
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University , 29 Wangjiang Road, Chengdu 610064, China
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University , 29 Wangjiang Road, Chengdu 610064, China
| |
Collapse
|
16
|
Gobalasingham NS, Pankow RM, Thompson BC. Synthesis of random poly(hexyl thiophene-3-carboxylate) copolymers via oxidative direct arylation polymerization (oxi-DArP). Polym Chem 2017. [DOI: 10.1039/c7py00181a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Oxi-DArP is utilized for the simple, mild, and atom economical synthesis of two families of random P3HET copolymers without any preactivation of the monomers, demonstrating the compatibility of this emerging synthetic method with copolymerizations.
Collapse
Affiliation(s)
- Nemal S. Gobalasingham
- Department of Chemistry and Loker Hydrocarbon Research Institute
- University of Southern California
- Los Angeles
- USA
| | - Robert M. Pankow
- Department of Chemistry and Loker Hydrocarbon Research Institute
- University of Southern California
- Los Angeles
- USA
| | - Barry C. Thompson
- Department of Chemistry and Loker Hydrocarbon Research Institute
- University of Southern California
- Los Angeles
- USA
| |
Collapse
|
17
|
Nitti A, Po R, Bianchi G, Pasini D. Direct Arylation Strategies in the Synthesis of π-Extended Monomers for Organic Polymeric Solar Cells. Molecules 2016; 22:molecules22010021. [PMID: 28035966 PMCID: PMC6155804 DOI: 10.3390/molecules22010021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 12/17/2016] [Accepted: 12/20/2016] [Indexed: 02/06/2023] Open
Abstract
π-conjugated macromolecules for organic polymeric solar cells can be rationally engineered at the molecular level in order to tune the optical, electrochemical and solid-state morphology characteristics, and thus to address requirements for the efficient solid state device implementation. The synthetic accessibility of monomers and polymers required for the device is getting increasing attention. Direct arylation reactions for the production of the π-extended scaffolds are gaining importance, bearing clear advantages over traditional carbon-carbon forming methodologies. Although their use in the final polymerization step is already established, there is a need for improving synthetic accessibility to implement them also in the monomer synthesis. In this review, we discuss recent examples highlighting this useful strategy.
Collapse
Affiliation(s)
- Andrea Nitti
- Department of Chemistry, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy.
| | - Riccardo Po
- Research Center for Renewable Energies & Environment, Eni spa, Via Giacomo Fauser 4, 28100 Novara, Italy.
| | - Gabriele Bianchi
- Research Center for Renewable Energies & Environment, Eni spa, Via Giacomo Fauser 4, 28100 Novara, Italy.
| | - Dario Pasini
- Department of Chemistry, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy.
- INSTM Research Unit, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy.
| |
Collapse
|
18
|
Hu J, Li G, Yuan C, Huang ZB, Shi DQ, Zhao Y. Rhodium(III)-Catalyzed Oxidative C–H/C–H Cross-Coupling of Heteroarenes and Masked Benzylamines. Org Lett 2016; 18:5998-6001. [DOI: 10.1021/acs.orglett.6b02773] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jundie Hu
- Key Laboratory of Organic
Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, China
| | - Guobao Li
- Key Laboratory of Organic
Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, China
| | - Chunchen Yuan
- Key Laboratory of Organic
Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhi-Bin Huang
- Key Laboratory of Organic
Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, China
| | - Da-Qing Shi
- Key Laboratory of Organic
Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, China
| | - Yingsheng Zhao
- Key Laboratory of Organic
Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
19
|
Guo Q, Wu D, You J. Oxidative Direct Arylation Polymerization Using Oxygen as the Sole Oxidant: Facile, Green Access to Bithiazole-Based Polymers. CHEMSUSCHEM 2016; 9:2765-2768. [PMID: 27553577 DOI: 10.1002/cssc.201600827] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Indexed: 06/06/2023]
Abstract
The most appealing oxidant, molecular oxygen, is employed for the first time as the sole oxidant in the transition metal-catalyzed oxidative direct arylation polymerization (C-H/C-H-type DArP), which eliminates by-product formation of stoichiometric metal salts except for water . Compared to conventional approaches, other than the avoidance of an end-capping procedure, the current protocol is remarkably advanced in the aspect of eco-friendliness, step- and cost-economy, and, of special significance, the purity of polymer products. As illustrative examples, six 5,5'-bithiazole-based polymers are synthesized using this new method, demonstrating higher number-average molecular weight (Mn up to 33 700) in better yields (up to 93 %) through only one step. The evolution of C-H/C-H-type DArP from heavy metal salts to O2 alone as the oxidant could solve the problem of metal residues in polymers, which is considered harmful to the performance of devices.
Collapse
Affiliation(s)
- Qiang Guo
- Key Laboratory of Green Chemistry and Technology of the Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
- College of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Di Wu
- Key Laboratory of Green Chemistry and Technology of the Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China.
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of the Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China.
| |
Collapse
|