1
|
Neamtu I, Ghilan A, Rusu AG, Nita LE, Chiriac VM, Chiriac AP. Design and applications of polymer-like peptides in biomedical nanogels. Expert Opin Drug Deliv 2024; 21:713-734. [PMID: 38916156 DOI: 10.1080/17425247.2024.2364651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/03/2024] [Indexed: 06/26/2024]
Abstract
INTRODUCTION Polymer nanogels are among the most promising nanoplatforms for use in biomedical applications. The substantial interest for these drug carriers is to enhance the transportation of bioactive substances, reduce the side effects, and achieve optimal action on the curative sites by targeting delivery and triggering the release of the drugs in a controlled and continuous mode. AREA COVERED The review discusses the opportunities, applications, and challenges of synthetic polypeptide nanogels in biomedicine, with an emphasis on the recent progress in cancer therapy. It is evidenced by the development of polypeptide nanogels for better controlled drug delivery and release, in complex in vivo microenvironments in biomedical applications. EXPERT OPINION Polypeptide nanogels can be developed by choosing the amino acids from the peptide structure that are suitable for the type of application. Using a stimulus - sensitive peptide nanogel, it is possible to obtain the appropriate transport and release of the drug, as well as to achieve desirable therapeutic effects, including safety, specificity, and efficiency. The final system represents an innovative way for local and sustained drug delivery at a specific site of the body.
Collapse
Affiliation(s)
- Iordana Neamtu
- Natural Polymers, Bioactive and Biocompatible Materials Laboratory, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
| | - Alina Ghilan
- Natural Polymers, Bioactive and Biocompatible Materials Laboratory, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
| | - Alina Gabriela Rusu
- Natural Polymers, Bioactive and Biocompatible Materials Laboratory, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
| | - Loredana Elena Nita
- Natural Polymers, Bioactive and Biocompatible Materials Laboratory, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
| | - Vlad Mihai Chiriac
- Faculty of Electronics Telecommunications and Information Technology, Gh. Asachi Technical University, Iaşi, Romania
| | - Aurica P Chiriac
- Natural Polymers, Bioactive and Biocompatible Materials Laboratory, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
| |
Collapse
|
2
|
Abstract
Carriers for RNA delivery must be dynamic, first stabilizing and protecting therapeutic RNA during delivery to the target tissue and across cellular membrane barriers and then releasing the cargo in bioactive form. The chemical space of carriers ranges from small cationic lipids applied in lipoplexes and lipid nanoparticles, over medium-sized sequence-defined xenopeptides, to macromolecular polycations applied in polyplexes and polymer micelles. This perspective highlights the discovery of distinct virus-inspired dynamic processes that capitalize on mutual nanoparticle-host interactions to achieve potent RNA delivery. From the host side, subtle alterations of pH, ion concentration, redox potential, presence of specific proteins, receptors, or enzymes are cues, which must be recognized by the RNA nanocarrier via dynamic chemical designs including cleavable bonds, alterable physicochemical properties, and supramolecular assembly-disassembly processes to respond to changing biological microenvironment during delivery.
Collapse
Affiliation(s)
- Simone Berger
- Department of Pharmacy, Pharmaceutical Biotechnology, Ludwig-Maximilians-Universität Munich, 81377Munich, Germany
- Center for NanoScience, Ludwig-Maximilians-Universität Munich, 80799Munich, Germany
| | - Ulrich Lächelt
- Center for NanoScience, Ludwig-Maximilians-Universität Munich, 80799Munich, Germany
- Department of Pharmaceutical Sciences, University of Vienna, Vienna1090, Austria
| | - Ernst Wagner
- Department of Pharmacy, Pharmaceutical Biotechnology, Ludwig-Maximilians-Universität Munich, 81377Munich, Germany
- Center for NanoScience, Ludwig-Maximilians-Universität Munich, 80799Munich, Germany
| |
Collapse
|
3
|
Leng Q, He J, Anand A, Mixson AJ. Delivery of mRNA with Histidine-Lysine Peptides. Methods Mol Biol 2024; 2822:367-386. [PMID: 38907929 DOI: 10.1007/978-1-0716-3918-4_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Transfection with mRNA has been considered superior to that with plasmids since the mRNA can be translated to a protein in the cytosol without entering the nucleus. One disadvantage of using mRNA is its susceptibility to enzymatic biodegradability, and consequently, significant research has occurred to determine nonviral carriers that will sufficiently stabilize this nucleic acid for cellular transport. Histidine-lysine peptides (HK) are one such class of mRNA carriers, which we think serves as a model for other peptides and polymeric carrier systems. When the HK peptide and mRNA are mixed and interact through ionic and nonionic bonds, mRNA polyplexes are formed, which can transfect cells. In contrast to linear HK peptides, branched HK peptides protected and efficiently transfected mRNA into cells. After describing the preparation and biophysical characterization of these polyplexes, we will provide protocols for in vitro and in vivo transfection for these mRNA polyplexes.
Collapse
Affiliation(s)
- Qixin Leng
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jiaxi He
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Aishwarya Anand
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - A James Mixson
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA.
- Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Zhou H, Chen DS, Hu CJ, Hong X, Shi J, Xiao Y. Stimuli-Responsive Nanotechnology for RNA Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303597. [PMID: 37915127 PMCID: PMC10754096 DOI: 10.1002/advs.202303597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/30/2023] [Indexed: 11/03/2023]
Abstract
Ribonucleic acid (RNA) drugs have shown promising therapeutic effects for various diseases in clinical and preclinical studies, owing to their capability to regulate the expression of genes of interest or control protein synthesis. Different strategies, such as chemical modification, ligand conjugation, and nanotechnology, have contributed to the successful clinical translation of RNA medicine, including small interfering RNA (siRNA) for gene silencing and messenger RNA (mRNA) for vaccine development. Among these, nanotechnology can protect RNAs from enzymatic degradation, increase cellular uptake and cytosolic transportation, prolong systemic circulation, and improve tissue/cell targeting. Here, a focused overview of stimuli-responsive nanotechnologies for RNA delivery, which have shown unique benefits in promoting RNA bioactivity and cell/organ selectivity, is provided. Many tissue/cell-specific microenvironmental features, such as pH, enzyme, hypoxia, and redox, are utilized in designing internal stimuli-responsive RNA nanoparticles (NPs). In addition, external stimuli, such as light, magnetic field, and ultrasound, have also been used for controlling RNA release and transportation. This review summarizes a wide range of stimuli-responsive NP systems for RNA delivery, which may facilitate the development of next-generation RNA medicines.
Collapse
Affiliation(s)
- Hui Zhou
- Department of Cardiology, Clinical Trial CenterZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan University430071WuhanChina
- Center for Nanomedicine and Department of AnesthesiologyPerioperative and Pain MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & Telecommunications210023NanjingChina
| | - Dean Shuailin Chen
- Center for Nanomedicine and Department of AnesthesiologyPerioperative and Pain MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Caleb J. Hu
- Center for Nanomedicine and Department of AnesthesiologyPerioperative and Pain MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Xuechuan Hong
- Department of Cardiology, Clinical Trial CenterZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan University430071WuhanChina
| | - Jinjun Shi
- Center for Nanomedicine and Department of AnesthesiologyPerioperative and Pain MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Yuling Xiao
- Center for Nanomedicine and Department of AnesthesiologyPerioperative and Pain MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| |
Collapse
|
5
|
Sun B, Wu W, Narasipura EA, Ma Y, Yu C, Fenton OS, Song H. Engineering nanoparticle toolkits for mRNA delivery. Adv Drug Deliv Rev 2023; 200:115042. [PMID: 37536506 DOI: 10.1016/j.addr.2023.115042] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
The concept of using mRNA to produce its own medicine in situ in the body makes it an ideal drug candidate, holding great potential to revolutionize the way we approach medicine. The unique characteristics of mRNA, as well as its customizable biomedical functions, call for the rational design of delivery systems to protect and transport mRNA molecules. In this review, a nanoparticle toolkit is presented for the development of mRNA-based therapeutics from a drug delivery perspective. Nano-delivery systems derived from either natural systems or chemical synthesis, in the nature of organic or inorganic materials, are summarised. Delivery strategies in controlling the tissue targeting and mRNA release, as well as the role of nanoparticles in building and boosting the activity of mRNA drugs, have also been introduced. In the end, our insights into the clinical and translational development of mRNA nano-drugs are presented.
Collapse
Affiliation(s)
- Bing Sun
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, QLD 4072, Australia
| | - Weixi Wu
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, QLD 4072, Australia
| | - Eshan A Narasipura
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yutian Ma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, QLD 4072, Australia
| | - Owen S Fenton
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
6
|
Yang W, Mixich L, Boonstra E, Cabral H. Polymer-Based mRNA Delivery Strategies for Advanced Therapies. Adv Healthc Mater 2023; 12:e2202688. [PMID: 36785927 PMCID: PMC11469255 DOI: 10.1002/adhm.202202688] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/31/2023] [Indexed: 02/15/2023]
Abstract
Messenger RNA (mRNA)-based therapies offer great promise for the treatment of a variety of diseases. In 2020, two FDA approvals of mRNA-based vaccines have elevated mRNA vaccines to global recognition. However, the therapeutic capabilities of mRNA extend far beyond vaccines against infectious diseases. They hold potential for cancer vaccines, protein replacement therapies, gene editing therapies, and immunotherapies. For realizing such advanced therapies, it is crucial to develop effective carrier systems. Recent advances in materials science have led to the development of promising nonviral mRNA delivery systems. In comparison to other carriers like lipid nanoparticles, polymer-based delivery systems often receive less attention, despite their unique ability to carefully tune their chemical features to promote mRNA protection, their favorable pharmacokinetics, and their potential for targeting delivery. In this review, the central features of polymer-based systems for mRNA delivery highlighting the molecular design criteria, stability, and biodistribution are discussed. Finally, the role of targeting ligands for the future of RNA therapies is analyzed.
Collapse
Affiliation(s)
- Wenqian Yang
- Department of BioengineeringGraduate School of EngineeringThe University of Tokyo7‐3‐1 Hongo, Bunkyo‐kuTokyo113‐8656Japan
| | - Lucas Mixich
- Department of BioengineeringGraduate School of EngineeringThe University of Tokyo7‐3‐1 Hongo, Bunkyo‐kuTokyo113‐8656Japan
| | - Eger Boonstra
- Department of BioengineeringGraduate School of EngineeringThe University of Tokyo7‐3‐1 Hongo, Bunkyo‐kuTokyo113‐8656Japan
| | - Horacio Cabral
- Department of BioengineeringGraduate School of EngineeringThe University of Tokyo7‐3‐1 Hongo, Bunkyo‐kuTokyo113‐8656Japan
| |
Collapse
|
7
|
Shtykalova S, Deviatkin D, Freund S, Egorova A, Kiselev A. Non-Viral Carriers for Nucleic Acids Delivery: Fundamentals and Current Applications. Life (Basel) 2023; 13:903. [PMID: 37109432 PMCID: PMC10142071 DOI: 10.3390/life13040903] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Over the past decades, non-viral DNA and RNA delivery systems have been intensively studied as an alternative to viral vectors. Despite the most significant advantage over viruses, such as the lack of immunogenicity and cytotoxicity, the widespread use of non-viral carriers in clinical practice is still limited due to the insufficient efficacy associated with the difficulties of overcoming extracellular and intracellular barriers. Overcoming barriers by non-viral carriers is facilitated by their chemical structure, surface charge, as well as developed modifications. Currently, there are many different forms of non-viral carriers for various applications. This review aimed to summarize recent developments based on the essential requirements for non-viral carriers for gene therapy.
Collapse
Affiliation(s)
- Sofia Shtykalova
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
- Faculty of Biology, Saint-Petersburg State University, Universitetskaya Embankment 7-9, 199034 Saint-Petersburg, Russia
| | - Dmitriy Deviatkin
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
- Faculty of Biology, Saint-Petersburg State University, Universitetskaya Embankment 7-9, 199034 Saint-Petersburg, Russia
| | - Svetlana Freund
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
- Faculty of Biology, Saint-Petersburg State University, Universitetskaya Embankment 7-9, 199034 Saint-Petersburg, Russia
| | - Anna Egorova
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
| | - Anton Kiselev
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
| |
Collapse
|
8
|
Zhang L, Zhu L, Tang L, Xie J, Gao Y, Yu C, Shang K, Han H, Liu C, Lu Y. Glutathione-Responsive Nanoparticles of Camptothecin Prodrug for Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205246. [PMID: 36442854 PMCID: PMC9875659 DOI: 10.1002/advs.202205246] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/17/2022] [Indexed: 05/28/2023]
Abstract
Camptothecin (CPT) is a potent chemotherapeutic agent for various cancers, but the broader application of CPT is still hindered by its poor bioavailability and systemic toxicity. Here, a prodrug that releases CPT in response to glutathione (GSH), which is commonly overexpressed by cancer cells is reported. Through assembling with PEGylated lipids, the prodrug is incorporated within as-assembled nanoparticles, affording CPT with a prolonged half-life in blood circulation, enhanced tumor targetingability, and improved therapeutic efficacy. Furthermore, such prodrug nanoparticles can also promote dendritic cell maturation and tumor infiltration of CD8+ T cells, providing a novel strategy to improve the therapeutic efficacy of CPT.
Collapse
Affiliation(s)
- Lingpu Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Lin Zhu
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Lin Tang
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Jiayi Xie
- Department of AutomaticTsinghua UniversityPeking University Third HospitalBeijing Key Laboratory of Magnetic Resonance Imaging Devices and TechnologyBeijing100191P. R. China
| | - Yajuan Gao
- Department of RadiologyPeking University Third HospitalInstitute of Medical TechnologyPeking University Health Science CenterBeijing100019P. R. China
| | - Changyuan Yu
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Kun Shang
- Department of RadiologyPeking University Third HospitalInstitute of Medical TechnologyPeking University Health Science CenterBeijing100019P. R. China
| | - Hongbin Han
- Department of RadiologyPeking University Third HospitalInstitute of Medical TechnologyPeking University Health Science CenterBeijing100019P. R. China
| | - Chaoyong Liu
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Yunfeng Lu
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| |
Collapse
|
9
|
Yang W, Chen P, Boonstra E, Hong T, Cabral H. Polymeric Micelles with pH-Responsive Cross-Linked Core Enhance In Vivo mRNA Delivery. Pharmaceutics 2022; 14:pharmaceutics14061205. [PMID: 35745778 PMCID: PMC9231146 DOI: 10.3390/pharmaceutics14061205] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 12/04/2022] Open
Abstract
Messenger RNA (mRNA) is emerging as a promising therapeutic modality for a variety of diseases. Because of the fragility and limited intracellular access of mRNA, the development of delivery technologies is essential for promoting the applicability of mRNA-based treatments. Among effective nanocarriers, polymeric micelles loading mRNA by polyion complex (PIC) formation with block catiomers have the potential to meet the delivery needs. Since PICs are relatively unstable in in vivo settings, herein, we constructed mRNA-loaded micelles having pH-responsive cross-linked cores by complexing mRNA with cis-aconitic anhydride-modified poly(ethylene glycol)-poly(l-lysine) (PEG-pLL(CAA)) block copolymers. The micelles were stable at physiological pH (pH 7.4) but achieved the complete release of the mRNA at endosomal pH (pH 5.5–4.5). The cross-linking also enhanced the stability of the micelles against disassembly from polyanions and protected the loaded mRNA from degradation by nucleases. Thus, the cross-linked micelles increased the delivery of mRNA to cancer cells, promoting protein expression both in vitro and in vivo. Our results highlight the potential of PEG-pLL(CAA)-based micelles for mRNA delivery.
Collapse
|
10
|
Stickdorn J, Stein L, Arnold-Schild D, Hahlbrock J, Medina-Montano C, Bartneck J, Ziß T, Montermann E, Kappel C, Hobernik D, Haist M, Yurugi H, Raabe M, Best A, Rajalingam K, Radsak MP, David SA, Koynov K, Bros M, Grabbe S, Schild H, Nuhn L. Systemically Administered TLR7/8 Agonist and Antigen-Conjugated Nanogels Govern Immune Responses against Tumors. ACS NANO 2022; 16:4426-4443. [PMID: 35103463 PMCID: PMC8945363 DOI: 10.1021/acsnano.1c10709] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The generation of specific humoral and cellular immune responses plays a pivotal role in the development of effective vaccines against tumors. Especially the presence of antigen-specific, cytotoxic T cells influences the outcome of therapeutic cancer vaccinations. Different strategies, ranging from delivering antigen-encoding mRNAs to peptides or full antigens, are accessible but often suffer from insufficient immunogenicity and require immune-boosting adjuvants as well as carrier platforms to ensure stability and adequate retention. Here, we introduce a pH-responsive nanogel platform as a two-component antitumor vaccine that is safe for intravenous application and elicits robust immune responses in vitro and in vivo. The underlying chemical design allows for straightforward covalent attachment of a model antigen (ovalbumin) and an immune adjuvant (imidazoquinoline-type TLR7/8 agonist) onto the same nanocarrier system. In addition to eliciting antigen-specific T and B cell responses that outperform mixtures of individual components, our two-component nanovaccine leads in prophylactic and therapeutic studies to an antigen-specific growth reduction of different tumors expressing ovalbumin intracellularly or on their surface. Regarding the versatile opportunities for functionalization, our nanogels are promising for the development of highly customized and potent nanovaccines.
Collapse
Affiliation(s)
- Judith Stickdorn
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Lara Stein
- Institute
of Immunology, University Medical Center
of Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Danielle Arnold-Schild
- Institute
of Immunology, University Medical Center
of Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Jennifer Hahlbrock
- Institute
of Immunology, University Medical Center
of Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Carolina Medina-Montano
- Department
of Dermatology, University Medical Center
of Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Joschka Bartneck
- III Department of Medicine - Hematology, Oncology, Pneumology, University Medical Center of the Johannes Gutenberg-University
Mainz, Langenbeckstraße
1, 55131 Mainz, Germany
| | - Tanja Ziß
- Institute
of Immunology, University Medical Center
of Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Evelyn Montermann
- Department
of Dermatology, University Medical Center
of Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Cinja Kappel
- Department
of Dermatology, University Medical Center
of Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Dominika Hobernik
- Department
of Dermatology, University Medical Center
of Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Maximilian Haist
- Department
of Dermatology, University Medical Center
of Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Hajime Yurugi
- Cell
Biology Unit, University Medical Center
of Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Marco Raabe
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Andreas Best
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Krishnaraj Rajalingam
- Cell
Biology Unit, University Medical Center
of Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Markus P. Radsak
- III Department of Medicine - Hematology, Oncology, Pneumology, University Medical Center of the Johannes Gutenberg-University
Mainz, Langenbeckstraße
1, 55131 Mainz, Germany
| | - Sunil A. David
- ViroVax,
LLC, 2029 Becker Drive
Suite 100E, Lawrence 66047-1620, Kansas. United States
| | - Kaloian Koynov
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Matthias Bros
- Department
of Dermatology, University Medical Center
of Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Stephan Grabbe
- Department
of Dermatology, University Medical Center
of Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Hansjörg Schild
- Institute
of Immunology, University Medical Center
of Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Lutz Nuhn
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
11
|
Dirisala A, Uchida S, Li J, Van Guyse JFR, Hayashi K, Vummaleti SVC, Kaur S, Mochida Y, Fukushima S, Kataoka K. Effective mRNA Protection by Poly(l-ornithine) Synergizes with Endosomal Escape Functionality of a Charge-Conversion Polymer toward Maximizing mRNA Introduction Efficiency. Macromol Rapid Commun 2022; 43:e2100754. [PMID: 35286740 DOI: 10.1002/marc.202100754] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/12/2022] [Indexed: 12/13/2022]
Abstract
For efficient delivery of messenger (m)RNA, delivery carriers need two major functions: protecting mRNA from nucleases and translocating mRNA from endolysosomes to the cytoplasm. Herein, these two complementary functionalities are integrated into a single polyplex by fine-tuning the catiomer chemical structure and incorporating the endosomal escape modality. The effect of the methylene spacer length on the catiomer side chain is evaluated by comparing poly(l-lysine) (PLL) with a tetramethylene spacer and poly(L-ornithine) (PLO) with a trimethylene spacer. Noteworthily, the nuclease stability of the mRNA/catiomer polyplexes is largely affected by the difference in one methylene group, with PLO/mRNA polyplex showing enhanced stability compared to PLL/mRNA polyplex. To introduce the endosomal escape function, the PLO/mRNA polyplex is wrapped with a charge-conversion polymer (CCP), which is negatively charged at extracellular pH but turns positive at endosomal acidic pH to disrupt the endosomal membrane. Compared to the parent PLO/mRNA polyplex, CCP facilitated the endosomal escape of the polyplex in cultured cells to improve the protein expression efficiency from mRNA by approximately 80-fold. Collectively, this system synergizes the protective effect of PLO against nucleases and the endosomal escape capability of CCP in mRNA delivery.
Collapse
Affiliation(s)
- Anjaneyulu Dirisala
- Innovation Center of NanoMedicine (iCONM), Kanagawa Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan
| | - Satoshi Uchida
- Innovation Center of NanoMedicine (iCONM), Kanagawa Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan.,Medical Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto, 606-0823, Japan
| | - Junjie Li
- Innovation Center of NanoMedicine (iCONM), Kanagawa Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan
| | - Joachim F R Van Guyse
- Innovation Center of NanoMedicine (iCONM), Kanagawa Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan
| | - Kotaro Hayashi
- Innovation Center of NanoMedicine (iCONM), Kanagawa Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan
| | - Sai V C Vummaleti
- Institute of High Performance Computing Agency for Science, Technology and Research, 1 Fusionopolis Way, 16-6 Connexis, 138632, Singapore
| | - Sarandeep Kaur
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Johannisallee 29, Leipzig, 04103, Germany
| | - Yuki Mochida
- Innovation Center of NanoMedicine (iCONM), Kanagawa Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan
| | - Shigeto Fukushima
- Innovation Center of NanoMedicine (iCONM), Kanagawa Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine (iCONM), Kanagawa Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan
| |
Collapse
|
12
|
Ouranidis A, Vavilis T, Mandala E, Davidopoulou C, Stamoula E, Markopoulou CK, Karagianni A, Kachrimanis K. mRNA Therapeutic Modalities Design, Formulation and Manufacturing under Pharma 4.0 Principles. Biomedicines 2021; 10:50. [PMID: 35052730 PMCID: PMC8773365 DOI: 10.3390/biomedicines10010050] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/17/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
In the quest for a formidable weapon against the SARS-CoV-2 pandemic, mRNA therapeutics have stolen the spotlight. mRNA vaccines are a prime example of the benefits of mRNA approaches towards a broad array of clinical entities and druggable targets. Amongst these benefits is the rapid cycle "from design to production" of an mRNA product compared to their peptide counterparts, the mutability of the production line should another target be chosen, the side-stepping of safety issues posed by DNA therapeutics being permanently integrated into the transfected cell's genome and the controlled precision over the translated peptides. Furthermore, mRNA applications are versatile: apart from vaccines it can be used as a replacement therapy, even to create chimeric antigen receptor T-cells or reprogram somatic cells. Still, the sudden global demand for mRNA has highlighted the shortcomings in its industrial production as well as its formulation, efficacy and applicability. Continuous, smart mRNA manufacturing 4.0 technologies have been recently proposed to address such challenges. In this work, we examine the lab and upscaled production of mRNA therapeutics, the mRNA modifications proposed that increase its efficacy and lower its immunogenicity, the vectors available for delivery and the stability considerations concerning long-term storage.
Collapse
Affiliation(s)
- Andreas Ouranidis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Theofanis Vavilis
- Laboratory of Biology and Genetics, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Evdokia Mandala
- Fourth Department of Internal Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Christina Davidopoulou
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Eleni Stamoula
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Catherine K Markopoulou
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Anna Karagianni
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Kyriakos Kachrimanis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
13
|
Krhač Levačić A, Berger S, Müller J, Wegner A, Lächelt U, Dohmen C, Rudolph C, Wagner E. Dynamic mRNA polyplexes benefit from bioreducible cleavage sites for in vitro and in vivo transfer. J Control Release 2021; 339:27-40. [PMID: 34547258 DOI: 10.1016/j.jconrel.2021.09.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 01/06/2023]
Abstract
Currently, messenger RNA (mRNA)-based lipid nanoparticle formulations revolutionize the clinical field. Cationic polymer-based complexes (polyplexes) represent an alternative compound class for mRNA delivery. After establishing branched polyethylenimine with a succinylation degree of 10% (succPEI) as highly effective positive mRNA transfection standard, a diverse library of PEI-like peptides termed sequence-defined oligoaminoamides (OAAs) was screened for mRNA delivery. Notably, sequences, which had previously been identified as potent plasmid DNA (pDNA) or small-interfering RNA (siRNA) carriers, displayed only moderate mRNA transfection activity. A second round of screening combined the cationizable building block succinoyl tetraethylene pentamine and histidines for endosomal buffering, tyrosine tripeptides and various fatty acids for mRNA polyplex stabilization, as well as redox-sensitive units for programmed intracellular release. For the tested OAA carriers, balancing of extracellular stability, endosomal lytic activity, and intracellular release capability was found to be of utmost importance for optimum mRNA transfection efficiency. OAAs with T-shape topology containing two oleic acids as well-stabilizing fatty acids, attached via a dynamic bioreducible building block, displayed superior activity with up to 1000-fold increased transfection efficiency compared to their non-reducible analogs. In the absence of the dynamic linkage, incorporation of shorter less stabilizing fatty acids could only partly compensate for mRNA delivery. Highest GFP expression and the largest fraction of transfected cells (96%) could be detected for the bioreducible OAA with incorporated histidines and a dioleoyl motif, outperforming all other tested carriers as well as the positive control succPEI. The good in vitro performance of the dynamic lead structure was verified in vivo upon intratracheal administration of mRNA complexes in mice.
Collapse
Affiliation(s)
- Ana Krhač Levačić
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
| | - Simone Berger
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
| | - Judith Müller
- Ethris GmbH, Semmelweisstr. 3, Planegg D-82152, Germany
| | - Andrea Wegner
- Ethris GmbH, Semmelweisstr. 3, Planegg D-82152, Germany
| | - Ulrich Lächelt
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
| | | | | | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) Munich, Butenandtstr. 5-13, D-81377 Munich, Germany.
| |
Collapse
|
14
|
Ritt N, Ayaou A, Zentel R. RAFT Synthesis of Reactive Multifunctional Triblock‐Copolymers for Polyplex Formation. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nicolas Ritt
- Department of Chemistry Johannes Gutenberg University Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Amal Ayaou
- Department of Chemistry Johannes Gutenberg University Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Rudolf Zentel
- Department of Chemistry Johannes Gutenberg University Mainz Duesbergweg 10–14 55128 Mainz Germany
| |
Collapse
|
15
|
Freitag F, Wagner E. Optimizing synthetic nucleic acid and protein nanocarriers: The chemical evolution approach. Adv Drug Deliv Rev 2021; 168:30-54. [PMID: 32246984 DOI: 10.1016/j.addr.2020.03.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/10/2020] [Accepted: 03/30/2020] [Indexed: 12/20/2022]
Abstract
Optimizing synthetic nanocarriers is like searching for a needle in a haystack. How to find the most suitable carrier for intracellular delivery of a specified macromolecular nanoagent for a given disease target location? Here, we review different synthetic 'chemical evolution' strategies that have been pursued. Libraries of nanocarriers have been generated either by unbiased combinatorial chemistry or by variation and novel combination of known functional delivery elements. As in natural evolution, definition of nanocarriers as sequences, as barcode or design principle, may fuel chemical evolution. Screening in appropriate test system may not only provide delivery candidates, but also a refined understanding of cellular delivery including novel, unpredictable mechanisms. Combined with rational design and computational algorithms, candidates can be further optimized in subsequent evolution cycles into nanocarriers with improved safety and efficacy. Optimization of nanocarriers differs for various cargos, as illustrated for plasmid DNA, siRNA, mRNA, proteins, or genome-editing nucleases.
Collapse
|
16
|
He J, Xu S, Leng Q, Mixson AJ. Location of a single histidine within peptide carriers increases mRNA delivery. J Gene Med 2020; 23:e3295. [PMID: 33171540 PMCID: PMC7900953 DOI: 10.1002/jgm.3295] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Previously, we determined that four-branched histidine-lysine (HK) peptides were effective carriers of plasmids and small interfering RNA. In the present study, we compared several branched HK carriers and, in particular, two closely-related H3K4b and H3K(+H)4b peptides for their ability as carriers of mRNA. The H3K(+H)4b peptide differed from its parent analogue, H3K4b, by only a single histidine in each branch. METHODS A series of four-branched HK peptides with varied sequences was synthesized on a solid-phase peptide synthesizer. The ability of these peptides to carry mRNA expressing luciferase to MDA-MB-231 cells was investigated. With gel retardation and heparin displacement assays, the stability of HK polyplexes was examined. We determined the intracellular uptake of HK polyplexes by flow cytometry and fluorescence microscopy. The size and polydispersity index of the polyplexes in several media were measured by dynamic light scattering. RESULTS MDA-MB-231 cells transfected by H3K(+H)4b-mRNA polyplexes expressed 10-fold greater levels of luciferase than H3K4b polyplexes. With gel retardation and heparin displacement assays, the H3K(+H)4b polyplexes showed greater stability than H3K4b. Intracellular uptake and co-localization of H3K(+H)4b polyplexes within acidic endosomes were also significantly increased compared to H3K4b. Similar to H3K(+H)4b, several HK analogues with an additional histidine in the second domain of their branches were effective carriers of mRNA. When combined with DOTAP liposomes, H3K(+H)4b was synergistic in delivery of mRNA. CONCLUSIONS H3K(+H)4b was a more effective carrier of mRNA than H3K4b. Mechanistic studies suggest that H3K(+H)4b polyplexes were more stable than H3K4b polyplexes. Lipopolyplexes formed with H3K(+H)4b markedly increased mRNA transfection.
Collapse
Affiliation(s)
- Jiaxi He
- Department of Pathology, University Maryland School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Songhui Xu
- Department of Pathology, University Maryland School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Qixin Leng
- Department of Pathology, University Maryland School of Medicine, University of Maryland, Baltimore, MD, USA
| | - A James Mixson
- Department of Pathology, University Maryland School of Medicine, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
17
|
Transient Multivalent Nanobody Targeting to CD206-Expressing Cells via PH-Degradable Nanogels. Cells 2020; 9:cells9102222. [PMID: 33019594 PMCID: PMC7600184 DOI: 10.3390/cells9102222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/23/2020] [Accepted: 09/27/2020] [Indexed: 02/07/2023] Open
Abstract
To target nanomedicines to specific cells, especially of the immune system, nanobodies can be considered as an attractive tool, as they lack the Fc part as compared to traditional antibodies and, thus, prevent unfavorable Fc-receptor mediated mistargeting. For that purpose, we have site-specifically conjugated CD206/MMR-targeting nanobodies to three types of dye-labeled nanogel derivatives: non-degradable nanogels, acid-degradable nanogels (with ketal crosslinks), and single polymer chains (also obtained after nanogel degradation). All of them can be obtained from the same reactive ester precursor block copolymer. After incubation with naïve or MMR-expressing Chinese hamster ovary (CHO) cells, a nanobody mediated targeting and uptake could be confirmed for the nanobody-modified nanocarriers. Thereby, the intact nanogels that display nanobodies on their surface in a multivalent way showed a much stronger binding and uptake compared to the soluble polymers. Based on their acidic pH-responsive degradation potential, ketal crosslinked nanogels are capable of mediating a transient targeting that gets diminished upon unfolding into single polymer chains after endosomal acidification. Such control over particle integrity and targeting performance can be considered as highly attractive for safe and controllable immunodrug delivery purposes.
Collapse
|
18
|
Wang Y, Wagner E. Non-Viral Targeted Nucleic Acid Delivery: Apply Sequences for Optimization. Pharmaceutics 2020; 12:E888. [PMID: 32961908 PMCID: PMC7559072 DOI: 10.3390/pharmaceutics12090888] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/09/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
In nature, genomes have been optimized by the evolution of their nucleic acid sequences. The design of peptide-like carriers as synthetic sequences provides a strategy for optimizing multifunctional targeted nucleic acid delivery in an iterative process. The optimization of sequence-defined nanocarriers differs for different nucleic acid cargos as well as their specific applications. Supramolecular self-assembly enriched the development of a virus-inspired non-viral nucleic acid delivery system. Incorporation of DNA barcodes presents a complementary approach of applying sequences for nanocarrier optimization. This strategy may greatly help to identify nucleic acid carriers that can overcome pharmacological barriers and facilitate targeted delivery in vivo. Barcode sequences enable simultaneous evaluation of multiple nucleic acid nanocarriers in a single test organism for in vivo biodistribution as well as in vivo bioactivity.
Collapse
Affiliation(s)
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-based Drug Research, Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, D-81377 Munich, Germany;
| |
Collapse
|
19
|
Alberg I, Kramer S, Schinnerer M, Hu Q, Seidl C, Leps C, Drude N, Möckel D, Rijcken C, Lammers T, Diken M, Maskos M, Morsbach S, Landfester K, Tenzer S, Barz M, Zentel R. Polymeric Nanoparticles with Neglectable Protein Corona. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907574. [PMID: 32250017 DOI: 10.1002/smll.201907574] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 05/14/2023]
Abstract
The current understanding of nanoparticle-protein interactions indicates that they rapidly adsorb proteins upon introduction into a living organism. The formed protein corona determines thereafter identity and fate of nanoparticles in the body. The present study evaluates the protein affinity of three core-crosslinked polymeric nanoparticles with long circulation times, differing in the hydrophilic polymer material forming the particle surface, namely poly(N-2-hydroxypropylmethacrylamide) (pHPMA), polysarcosine (pSar), and poly(ethylene glycol) (PEG). This includes the nanotherapeutic CPC634, which is currently in clinical phase II evaluation. To investigate possible protein corona formation, the nanoparticles are incubated in human blood plasma and separated by asymmetrical flow field-flow fractionation (AF4). Notably, light scattering shows no detectable differences in particle size or polydispersity upon incubation with plasma for all nanoparticles, while in gel electrophoresis, minor amounts of proteins can be detected in the particle fraction. Label-free quantitative proteomics is additionally applied to analyze and quantify the composition of the proteins. It proves that some proteins are enriched, but their concentration is significantly less than one protein per particle. Thus, most of the nanoparticles are not associated with any proteins. Therefore, this work underlines that polymeric nanoparticles can be synthesized, for which a protein corona formation does not take place.
Collapse
Affiliation(s)
- Irina Alberg
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, Mainz, D-55128, Germany
| | - Stefan Kramer
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, Mainz, D-55128, Germany
| | - Meike Schinnerer
- Institute of Physical Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, Mainz, D-55128, Germany
| | - Qizhi Hu
- Cristal Therapeutics, Oxfordlaan 55, Maastricht, 6229 EV, The Netherlands
| | - Christine Seidl
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, Mainz, D-55128, Germany
| | - Christian Leps
- Institute for Immunology, University Medical Center of Mainz, Langenbeckstr. 1, Mainz, 55131, Germany
| | - Natascha Drude
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Forckenbecktrasse 55, Aachen, 52074, Germany
| | - Diana Möckel
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Forckenbecktrasse 55, Aachen, 52074, Germany
| | - Cristianne Rijcken
- Cristal Therapeutics, Oxfordlaan 55, Maastricht, 6229 EV, The Netherlands
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Forckenbecktrasse 55, Aachen, 52074, Germany
| | - Mustafa Diken
- TRON - Translational Oncology at the University Medical Center of Johannes Gutenberg University gGmbH, Freiligrathstr. 12, Mainz, 55131, Germany
| | - Michael Maskos
- Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Str. 18-20, Mainz, 55129, Germany
| | - Svenja Morsbach
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| | - Stefan Tenzer
- Institute for Immunology, University Medical Center of Mainz, Langenbeckstr. 1, Mainz, 55131, Germany
| | - Matthias Barz
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, Mainz, D-55128, Germany
| | - Rudolf Zentel
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, Mainz, D-55128, Germany
| |
Collapse
|
20
|
Huang X, Hu J, Li Y, Xin F, Qiao R, Davis TP. Engineering Organic/Inorganic Nanohybrids through RAFT Polymerization for Biomedical Applications. Biomacromolecules 2019; 20:4243-4257. [DOI: 10.1021/acs.biomac.9b01158] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Xumin Huang
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Science at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026 Anhui, China
| | - Yuhuan Li
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Fangyun Xin
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Ruirui Qiao
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
21
|
Kramer S, Svatunek D, Alberg I, Gräfen B, Schmitt S, Braun L, van Onzen AHAM, Rossin R, Koynov K, Mikula H, Zentel R. HPMA-Based Nanoparticles for Fast, Bioorthogonal iEDDA Ligation. Biomacromolecules 2019; 20:3786-3797. [PMID: 31535846 PMCID: PMC6794642 DOI: 10.1021/acs.biomac.9b00868] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Fast
and bioorthogonally reacting nanoparticles are attractive
tools for biomedical applications such as tumor pretargeting. In this
study, we designed an amphiphilic block copolymer system based on
HPMA using different strategies to introduce the highly reactive click
units 1,2,4,5-tetrazines (Tz) either at the chain end (Tz-CTA) or
statistical into the hydrophobic block. This reactive group undergoes
a rapid, bioorthogonal inverse electron-demand Diels–Alder
reaction (iEDDA) with trans-cyclooctenes (TCO). Subsequently,
this polymer platform was used for the preparation of different Tz-covered
nanoparticles, such as micelles and colloids. Thereby it was found
that the reactivity of the polymeric micelles is comparable to that
of the low molar mass tetrazines. The core-cross-linked micelles can
be successfully conjugated at rather low concentrations to large biomacromolecules
like antibodies, not only in physiological buffer, but also in human
blood plasma, which was confirmed by fluorescence correlation spectroscopy
(FCS).
Collapse
Affiliation(s)
- Stefan Kramer
- Johannes Gutenberg University Mainz , Institute of Organic Chemistry , Duesbergweg 10-14 , 55128 Mainz , Germany
| | - Dennis Svatunek
- TU Wien , Institute of Applied Synthetic Chemistry , Getreidemarkt 9 , 1060 Vienna , Austria
| | - Irina Alberg
- Johannes Gutenberg University Mainz , Institute of Organic Chemistry , Duesbergweg 10-14 , 55128 Mainz , Germany
| | - Barbara Gräfen
- Johannes Gutenberg University Mainz , Institute of Organic Chemistry , Duesbergweg 10-14 , 55128 Mainz , Germany
| | - Sascha Schmitt
- Max Planck Institute for Polymer Research , Physics of Interfaces , Ackermannweg 10 , 55128 Mainz , Germany
| | - Lydia Braun
- Johannes Gutenberg University Mainz , Institute of Organic Chemistry , Duesbergweg 10-14 , 55128 Mainz , Germany
| | - Arthur H A M van Onzen
- Tagworks Pharmaceuticals BV, Radboud University Medical Center , Department of Nuclear Medicine and Radiology , 6500 HB Nijmegen , The Netherlands
| | - Raffaella Rossin
- Tagworks Pharmaceuticals BV, Radboud University Medical Center , Department of Nuclear Medicine and Radiology , 6500 HB Nijmegen , The Netherlands
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research , Physics of Interfaces , Ackermannweg 10 , 55128 Mainz , Germany
| | - Hannes Mikula
- TU Wien , Institute of Applied Synthetic Chemistry , Getreidemarkt 9 , 1060 Vienna , Austria
| | - Rudolf Zentel
- Johannes Gutenberg University Mainz , Institute of Organic Chemistry , Duesbergweg 10-14 , 55128 Mainz , Germany
| |
Collapse
|
22
|
Peng L, Wagner E. Polymeric Carriers for Nucleic Acid Delivery: Current Designs and Future Directions. Biomacromolecules 2019; 20:3613-3626. [DOI: 10.1021/acs.biomac.9b00999] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Leber N, Kaps L, Yang A, Aslam M, Giardino M, Klefenz A, Choteschovsky N, Rosigkeit S, Mostafa A, Nuhn L, Schuppan D, Zentel R. α‐Mannosyl‐Functionalized Cationic Nanohydrogel Particles for Targeted Gene Knockdown in Immunosuppressive Macrophages. Macromol Biosci 2019; 19:e1900162. [DOI: 10.1002/mabi.201900162] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Nadine Leber
- Institutes of Organic ChemistryJohannes Gutenberg‐University of Mainz Duesbergweg 10‐14 55128 Mainz Germany
| | - Leonard Kaps
- Institute of Translational Immunology and Research Center for ImmunotherapyUniversity Medical Center of the Johannes Gutenberg‐University Mainz Obere Zahlbacher Str. 63 55131 Mainz Germany
| | - Aiting Yang
- Institute of Translational Immunology and Research Center for ImmunotherapyUniversity Medical Center of the Johannes Gutenberg‐University Mainz Obere Zahlbacher Str. 63 55131 Mainz Germany
| | - Misbah Aslam
- Institute of Translational Immunology and Research Center for ImmunotherapyUniversity Medical Center of the Johannes Gutenberg‐University Mainz Obere Zahlbacher Str. 63 55131 Mainz Germany
- Department of MicrobiologyShaheed Benazir Bhutto Women University LARAMA, Charsadda Road, Peshawar, Pakistan
| | - Mariacristina Giardino
- Institute of Translational Immunology and Research Center for ImmunotherapyUniversity Medical Center of the Johannes Gutenberg‐University Mainz Obere Zahlbacher Str. 63 55131 Mainz Germany
| | - Adrian Klefenz
- Institute of Translational Immunology and Research Center for ImmunotherapyUniversity Medical Center of the Johannes Gutenberg‐University Mainz Obere Zahlbacher Str. 63 55131 Mainz Germany
| | - Niklas Choteschovsky
- Institute of Translational Immunology and Research Center for ImmunotherapyUniversity Medical Center of the Johannes Gutenberg‐University Mainz Obere Zahlbacher Str. 63 55131 Mainz Germany
| | - Sebastian Rosigkeit
- Institute of Translational Immunology and Research Center for ImmunotherapyUniversity Medical Center of the Johannes Gutenberg‐University Mainz Obere Zahlbacher Str. 63 55131 Mainz Germany
| | - Asmaa Mostafa
- Institute of Translational Immunology and Research Center for ImmunotherapyUniversity Medical Center of the Johannes Gutenberg‐University Mainz Obere Zahlbacher Str. 63 55131 Mainz Germany
| | - Lutz Nuhn
- Max‐Planck‐Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Detlef Schuppan
- Institute of Translational Immunology and Research Center for ImmunotherapyUniversity Medical Center of the Johannes Gutenberg‐University Mainz Obere Zahlbacher Str. 63 55131 Mainz Germany
- Division of GastroenterologyBeth Israel Deaconess Medical Center, Harvard Medical School 330 Brookline Avenue Boston MA 02215 USA
| | - Rudolf Zentel
- Institutes of Organic ChemistryJohannes Gutenberg‐University of Mainz Duesbergweg 10‐14 55128 Mainz Germany
| |
Collapse
|
24
|
Kramer S, Langhanki J, Krumb M, Opatz T, Bros M, Zentel R. HPMA‐Based Nanocarriers for Effective Immune System Stimulation. Macromol Biosci 2019; 19:e1800481. [DOI: 10.1002/mabi.201800481] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/22/2019] [Indexed: 01/25/2023]
Affiliation(s)
- Stefan Kramer
- Institute of Organic ChemistryJohannes Gutenberg‐University Mainz Duesbergweg 10–14 ,55128 Mainz Germany
| | - Jens Langhanki
- Institute of Organic ChemistryJohannes Gutenberg‐University Mainz Duesbergweg 10–14 ,55128 Mainz Germany
| | - Matthias Krumb
- Institute of Organic ChemistryJohannes Gutenberg‐University Mainz Duesbergweg 10–14 ,55128 Mainz Germany
| | - Till Opatz
- Institute of Organic ChemistryJohannes Gutenberg‐University Mainz Duesbergweg 10–14 ,55128 Mainz Germany
| | - Matthias Bros
- Department of DermatologyUniversity Medical CenterJohannes Gutenberg‐University Mainz Obere Zahlbacher Straße 63 ,55131 Mainz Germany
| | - Rudolf Zentel
- Institute of Organic ChemistryJohannes Gutenberg‐University Mainz Duesbergweg 10–14 ,55128 Mainz Germany
| |
Collapse
|
25
|
Kowalski PS, Rudra A, Miao L, Anderson DG. Delivering the Messenger: Advances in Technologies for Therapeutic mRNA Delivery. Mol Ther 2019; 27:710-728. [PMID: 30846391 PMCID: PMC6453548 DOI: 10.1016/j.ymthe.2019.02.012] [Citation(s) in RCA: 621] [Impact Index Per Article: 124.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 12/18/2022] Open
Abstract
mRNA has broad potential as a therapeutic. Current clinical efforts are focused on vaccination, protein replacement therapies, and treatment of genetic diseases. The clinical translation of mRNA therapeutics has been made possible through advances in the design of mRNA manufacturing and intracellular delivery methods. However, broad application of mRNA is still limited by the need for improved delivery systems. In this review, we discuss the challenges for clinical translation of mRNA-based therapeutics, with an emphasis on recent advances in biomaterials and delivery strategies, and we present an overview of the applications of mRNA-based delivery for protein therapy, gene editing, and vaccination.
Collapse
Affiliation(s)
- Piotr S Kowalski
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Arnab Rudra
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Anesthesiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Lei Miao
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Anesthesiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
26
|
Dirisala A, Uchida S, Tockary TA, Yoshinaga N, Li J, Osawa S, Gorantla L, Fukushima S, Osada K, Kataoka K. Precise tuning of disulphide crosslinking in mRNA polyplex micelles for optimising extracellular and intracellular nuclease tolerability. J Drug Target 2019; 27:670-680. [PMID: 30499743 DOI: 10.1080/1061186x.2018.1550646] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The major issues in messenger (m)RNA delivery are rapid mRNA degradation in the extracellular and intracellular spaces, which decreases the efficiency and duration for protein expression from mRNA. Stabilization of mRNA carriers using environment-responsive crosslinkings has promises to overcome these issues. Herein, we fine-tuned the structure of disulphide crosslinkings, which are selectively cleaved in the intracellular reductive environment, using the mRNA-loaded polyplex micelles (PMs) prepared from poly(ethylene glycol)-poly(L-lysine) (PEG-PLys) block copolymers, particularly by focussing on cationic charge density after the crosslinking. Primary amino groups in PLys segment were partially thiolated in two ways: One is to introduce 3-mercaptopropionyl (MP) groups via amide linkage, resulting in the decreased cationic charge density [PEG-PLys(MP)], and the other is the conversion of amino groups to 1-amidine-3-mercaptopropyl (AMP) groups with preserving cationic charge density [PEG-PLys(AMP)]. Compared to non-crosslinked and PEG-PLys(MP) PMs, PEG-PLys(AMP) PM attained tighter mRNA packaging in the PM core, thereby improving mRNA nuclease tolerability in serum and intracellular spaces, and providing enhanced protein expression in cultured cells at the optimal crosslinking density. These findings highlight the importance of cationic charge preservation in installing crosslinking moieties, providing a rationale for mRNA carrier design in the molecular level.
Collapse
Affiliation(s)
- Anjaneyulu Dirisala
- a Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion , Kawasaki , Kanagawa , Japan
| | - Satoshi Uchida
- a Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion , Kawasaki , Kanagawa , Japan.,b Department of Bioengineering , Graduate School of Engineering, The University of Tokyo , Bunkyo , Tokyo , Japan
| | - Theofilus A Tockary
- a Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion , Kawasaki , Kanagawa , Japan
| | - Naoto Yoshinaga
- b Department of Bioengineering , Graduate School of Engineering, The University of Tokyo , Bunkyo , Tokyo , Japan
| | - Junjie Li
- a Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion , Kawasaki , Kanagawa , Japan
| | - Shigehito Osawa
- a Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion , Kawasaki , Kanagawa , Japan
| | - Lahari Gorantla
- c Department of Bioengineering , College of Engineering, University of Washington , Washington , USA
| | - Shigeto Fukushima
- a Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion , Kawasaki , Kanagawa , Japan
| | - Kensuke Osada
- d National Institutes for Quantum and Radiology Science and Technology , Inage , Chiba , Japan
| | - Kazunori Kataoka
- a Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion , Kawasaki , Kanagawa , Japan.,e Policy Alternatives Research Institute, The University of Tokyo , Bunkyo , Tokyo , Japan
| |
Collapse
|
27
|
Li B, Zhang X, Dong Y. Nanoscale platforms for messenger RNA delivery. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1530. [PMID: 29726120 PMCID: PMC6443240 DOI: 10.1002/wnan.1530] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 03/27/2018] [Accepted: 04/01/2018] [Indexed: 12/27/2022]
Abstract
Messenger RNA (mRNA) has become a promising class of drugs for diverse therapeutic applications in the past few years. A series of clinical trials are ongoing or will be initiated in the near future for the treatment of a variety of diseases. Currently, mRNA-based therapeutics mainly focuses on ex vivo transfection and local administration in clinical studies. Efficient and safe delivery of therapeutically relevant mRNAs remains one of the major challenges for their broad applications in humans. Thus, effective delivery systems are urgently needed to overcome this limitation. In recent years, numerous nanoscale biomaterials have been constructed for mRNA delivery in order to protect mRNA from extracellular degradation and facilitate endosomal escape after cellular uptake. Nanoscale platforms have expanded the feasibility of mRNA-based therapeutics, and enabled its potential applications to protein replacement therapy, cancer immunotherapy, therapeutic vaccines, regenerative medicine, and genome editing. This review focuses on recent advances, challenges, and future directions in nanoscale platforms designed for mRNA delivery, including lipid and lipid-derived nanoparticles, polymer-based nanoparticles, protein derivatives mRNA complexes, and other types of nanomaterials. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Biology-Inspired Nanomaterials > Lipid-Based Structures Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures.
Collapse
Affiliation(s)
- Bin Li
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Xinfu Zhang
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Yizhou Dong
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio
- The Center for Clinical and Translational Science, The Ohio State University, Columbus, Ohio
- James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, Ohio
- Department of Radiation Oncology, The Ohio State University, Columbus, Ohio
| |
Collapse
|
28
|
Xiong Q, Lee GY, Ding J, Li W, Shi J. Biomedical applications of mRNA nanomedicine. NANO RESEARCH 2018; 11:5281-5309. [PMID: 31007865 PMCID: PMC6472920 DOI: 10.1007/s12274-018-2146-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/02/2018] [Accepted: 07/08/2018] [Indexed: 05/20/2023]
Abstract
As an attractive alternative to plasmid DNA, messenger RNA (mRNA) has recently emerged as a promising class of nucleic acid therapeutics for biomedical applications. Advances in addressing the inherent shortcomings of mRNA and in the development of nanoparticle-based delivery systems have prompted the development and clinical translation of mRNA-based medicines. In this review, we discuss the chemical modification strategies of mRNA to improve its stability, minimize immune responses, and enhance translational efficacy. We also highlight recent progress in nanoparticle-based mRNA delivery. Considerable attention is given to the increasingly widespread applications of mRNA nanomedicine in the biomedical fields of vaccination, protein-replacement therapy, gene editing, and cellular reprogramming and engineering.
Collapse
Affiliation(s)
- Qingqing Xiong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
- Department of Hepatobiliary Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060 China
| | - Gha Young Lee
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Jianxun Ding
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Wenliang Li
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
- School of Pharmacy, Jilin Medical University, Jilin, 132013 China
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
29
|
Nuhn L, Bolli E, Massa S, Vandenberghe I, Movahedi K, Devreese B, Van Ginderachter JA, De Geest BG. Targeting Protumoral Tumor-Associated Macrophages with Nanobody-Functionalized Nanogels through Strain Promoted Azide Alkyne Cycloaddition Ligation. Bioconjug Chem 2018; 29:2394-2405. [PMID: 29889515 DOI: 10.1021/acs.bioconjchem.8b00319] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Tumor-associated macrophages (TAMs) with high expression levels of the Macrophage Mannose Receptor (MMR, CD206) exhibit a strong angiogenic and immune suppressive activity. Thus, they are a highly attractive target in cancer immunotherapy, with the aim to modulate their protumoral behavior. Here, we introduce polymer nanogels as potential drug nanocarriers which were site-specifically decorated with a Nanobody (Nb) specific for the MMR. Using azide-functionalized RAFT chain transfer agents, they provide access to amphiphilic reactive ester block copolymers that self-assemble into micelles and are afterwards core-cross-linked toward fully hydrophilic nanogels with terminal azide groups on their surface. MMR-targeting Nb can site-selectively be functionalized with one single cyclooctyne moiety by maleimide-cysteine chemistry under mildly reducing conditions which enables successful chemoorthogonal conjugation to the nanogels. The resulting Nb-functionalized nanogels were highly efficient in targeting MMR-expressing cells and TAMs both in vitro and in vivo. We believe that these findings pave the road for targeted eradication or modulation of pro-tumoral MMRhigh TAMs.
Collapse
Affiliation(s)
- Lutz Nuhn
- Department of Pharmaceutics , Ghent University , Ottergemsesteenweg 460 , 9000 Ghent , Belgium.,Cancer Research Institute Ghent (CRIG) , Ghent University , Ottergemsesteenweg 460 , 9000 Ghent , Belgium.,Max-Planck-Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany
| | - Evangelia Bolli
- Myeloid Cell Immunology Lab , VIB Center for Inflammation Research , Pleinlaan 2 , 1050 Brussels , Belgium.,Lab of Cellular and Molecular Immunology , Vrije Universiteit Brussel , Pleinlaan 2 , 1050 Brussels , Belgium
| | - Sam Massa
- Myeloid Cell Immunology Lab , VIB Center for Inflammation Research , Pleinlaan 2 , 1050 Brussels , Belgium.,Lab of Cellular and Molecular Immunology , Vrije Universiteit Brussel , Pleinlaan 2 , 1050 Brussels , Belgium
| | - Isabel Vandenberghe
- Department of Biochemistry and Microbiology , Ghent University , K. L. Ledeganckstraat 35 , 9000 Ghent , Belgium
| | - Kiavash Movahedi
- Myeloid Cell Immunology Lab , VIB Center for Inflammation Research , Pleinlaan 2 , 1050 Brussels , Belgium.,Lab of Cellular and Molecular Immunology , Vrije Universiteit Brussel , Pleinlaan 2 , 1050 Brussels , Belgium
| | - Bart Devreese
- Department of Biochemistry and Microbiology , Ghent University , K. L. Ledeganckstraat 35 , 9000 Ghent , Belgium
| | - Jo A Van Ginderachter
- Myeloid Cell Immunology Lab , VIB Center for Inflammation Research , Pleinlaan 2 , 1050 Brussels , Belgium.,Lab of Cellular and Molecular Immunology , Vrije Universiteit Brussel , Pleinlaan 2 , 1050 Brussels , Belgium
| | - Bruno G De Geest
- Department of Pharmaceutics , Ghent University , Ottergemsesteenweg 460 , 9000 Ghent , Belgium.,Cancer Research Institute Ghent (CRIG) , Ghent University , Ottergemsesteenweg 460 , 9000 Ghent , Belgium
| |
Collapse
|
30
|
Wang W, Naolou T, Ma N, Deng Z, Xu X, Mansfeld U, Wischke C, Gossen M, Neffe AT, Lendlein A. Polydepsipeptide Block-Stabilized Polyplexes for Efficient Transfection of Primary Human Cells. Biomacromolecules 2017; 18:3819-3833. [PMID: 28954190 DOI: 10.1021/acs.biomac.7b01034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The rational design of a polyplex gene carrier aims to balance maximal effectiveness of nucleic acid transfection into cells with minimal adverse effects. Depsipeptide blocks with an Mn ∼ 5 kDa exhibiting strong physical interactions were conjugated with PEI moieties (2.5 or 10 kDa) to di- and triblock copolymers. Upon nanoparticle formation and complexation with DNA, the resulting polyplexes (sizes typically 60-150 nm) showed remarkable stability compared to PEI-only or lipoplex and facilitated efficient gene delivery. Intracellular trafficking was visualized by observing fluorescence-labeled pDNA and highlighted the effective cytoplasmic uptake of polyplexes and release of DNA to the perinuclear space. Specifically, a triblock copolymer with a middle depsipeptide block and two 10 kDa PEI swallowtail structures mediated the highest levels of transgenic VEGF secretion in mesenchymal stem cells with low cytotoxicity. These nanocarriers form the basis for a delivery platform technology, especially for gene transfer to primary human cells.
Collapse
Affiliation(s)
- Weiwei Wang
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies , Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany
| | - Toufik Naolou
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies , Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany
| | - Nan Ma
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies , Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin , 14195 Berlin, Germany
| | - Zijun Deng
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies , Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin , 14195 Berlin, Germany
| | - Xun Xu
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies , Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin , 14195 Berlin, Germany
| | - Ulrich Mansfeld
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies , Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany
| | - Christian Wischke
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies , Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany
| | - Manfred Gossen
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies , Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany
| | - Axel T Neffe
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies , Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany.,Institute of Chemistry, University of Potsdam , 14476 Potsdam, Germany
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies , Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin , 14195 Berlin, Germany.,Institute of Chemistry, University of Potsdam , 14476 Potsdam, Germany
| |
Collapse
|
31
|
Li D, van Nostrum CF, Mastrobattista E, Vermonden T, Hennink WE. Nanogels for intracellular delivery of biotherapeutics. J Control Release 2017; 259:16-28. [DOI: 10.1016/j.jconrel.2016.12.020] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/19/2016] [Indexed: 12/18/2022]
|
32
|
Leber N, Nuhn L, Zentel R. Cationic Nanohydrogel Particles for Therapeutic Oligonucleotide Delivery. Macromol Biosci 2017; 17. [PMID: 28605133 DOI: 10.1002/mabi.201700092] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 05/04/2017] [Indexed: 02/02/2023]
Abstract
Short pharmaceutical active oligonucleotides such as small interfering RNA (siRNA) or cytidine-phosphate-guanosine (CpG) are considered as powerful therapeutic alternatives, especially to medicate hard-to-treat diseases (e.g., liver fibrosis or cancer). Unfortunately, these molecules are equipped with poor pharmacokinetic properties that prevent them from translation. Well-defined nanosized carriers can provide opportunities to optimize their delivery and guide them to their site of action. Among several concepts, this Feature Article focuses on cationic nanohydrogel particles as a universal delivery system for small anionic molecules including siRNA and CpG. Cationic nanohydrogels are derived from preaggregated precursor block copolymers, which are further cross-linked to obtain well-defined nanoparticles of tunable sizes and with (degradable) cationic cores. Novel opportunities for oligonucleotide delivery in vitro and in vivo with respect to liver fibrosis therapies will be highlighted as well as perspectives toward modulating the immune system. In general, the approach of covalently stabilized cationic carrier systems can contribute to find advanced oligonucleotide therapeutics.
Collapse
Affiliation(s)
- Nadine Leber
- Institute of Organic Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Lutz Nuhn
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Rudolf Zentel
- Institute of Organic Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
33
|
Liu M, Gao P, Wan Q, Deng F, Wei Y, Zhang X. Recent Advances and Future Prospects of Aggregation-induced Emission Carbohydrate Polymers. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201600575] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/25/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Meiying Liu
- Department of Chemistry; Nanchang University; 999 Xuefu Avenue Nanchang 330031 China
| | - Peng Gao
- Department of Chemistry; Nanchang University; 999 Xuefu Avenue Nanchang 330031 China
| | - Qing Wan
- Department of Chemistry; Nanchang University; 999 Xuefu Avenue Nanchang 330031 China
| | - Fengjie Deng
- Department of Chemistry; Nanchang University; 999 Xuefu Avenue Nanchang 330031 China
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research; Tsinghua University; Beijing 100084 P. R. China
| | - Xiaoyong Zhang
- Department of Chemistry; Nanchang University; 999 Xuefu Avenue Nanchang 330031 China
| |
Collapse
|
34
|
Charge-altering releasable transporters (CARTs) for the delivery and release of mRNA in living animals. Proc Natl Acad Sci U S A 2017; 114:E448-E456. [PMID: 28069945 DOI: 10.1073/pnas.1614193114] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Functional delivery of mRNA to tissues in the body is key to implementing fundamentally new and potentially transformative strategies for vaccination, protein replacement therapy, and genome editing, collectively affecting approaches for the prevention, detection, and treatment of disease. Broadly applicable tools for the efficient delivery of mRNA into cultured cells would advance many areas of research, and effective and safe in vivo mRNA delivery could fundamentally transform clinical practice. Here we report the step-economical synthesis and evaluation of a tunable and effective class of synthetic biodegradable materials: charge-altering releasable transporters (CARTs) for mRNA delivery into cells. CARTs are structurally unique and operate through an unprecedented mechanism, serving initially as oligo(α-amino ester) cations that complex, protect, and deliver mRNA and then change physical properties through a degradative, charge-neutralizing intramolecular rearrangement, leading to intracellular release of functional mRNA and highly efficient protein translation. With demonstrated utility in both cultured cells and animals, this mRNA delivery technology should be broadly applicable to numerous research and therapeutic applications.
Collapse
|