1
|
Tian JJ, Liu X, Ye L, Zhang Z, Quinn EC, Shi C, Broadbelt LJ, Marks TJ, Chen EYX. Redesigned Nylon 6 Variants with Enhanced Recyclability, Ductility, and Transparency. Angew Chem Int Ed Engl 2024; 63:e202320214. [PMID: 38418405 DOI: 10.1002/anie.202320214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/17/2024] [Accepted: 02/28/2024] [Indexed: 03/01/2024]
Abstract
Geminal (gem-) disubstitution in heterocyclic monomers is an effective strategy to enhance polymer chemical recyclability by lowering their ceiling temperatures. However, the effects of specific substitution patterns on the monomer's reactivity and the resulting polymer's properties are largely unexplored. Here we show that, by systematically installing gem-dimethyl groups onto ϵ-caprolactam (monomer of nylon 6) from the α to ϵ positions, both the redesigned lactam monomer's reactivity and the resulting gem-nylon 6's properties are highly sensitive to the substitution position, with the monomers ranging from non-polymerizable to polymerizable and the gem-nylon properties ranging from inferior to far superior to the parent nylon 6. Remarkably, the nylon 6 with the gem-dimethyls substituted at the γ position is amorphous and optically transparent, with a higher Tg (by 30 °C), yield stress (by 1.5 MPa), ductility (by 3×), and lower depolymerization temperature (by 60 °C) than conventional nylon 6.
Collapse
Affiliation(s)
- Jun-Jie Tian
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
| | - Xiaoyang Liu
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Liwei Ye
- Department of Chemistry and the Trienens Institute for Sustainability and Energy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Zhen Zhang
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
| | - Ethan C Quinn
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
| | - Changxia Shi
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
| | - Linda J Broadbelt
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Tobin J Marks
- Department of Chemistry and the Trienens Institute for Sustainability and Energy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
| |
Collapse
|
2
|
Kleybolte MM, Winnacker M. From Forest to Future: Synthesis of Sustainable High Molecular Weight Polyamides Using and Investigating the AROP of β-Pinene Lactam. Macromol Rapid Commun 2024; 45:e2300524. [PMID: 37903330 DOI: 10.1002/marc.202300524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/17/2023] [Indexed: 11/01/2023]
Abstract
Polyamides (PA) are among the most essential and versatile polymers due to their outstanding characteristics, for example, high chemical resistance and temperature stability. Furthermore, nature-derived monomers can introduce hard-to-synthesize structures into the PAs for unique polymer properties. Pinene, as one of the most abundant terpenes in nature and its presumable stability-giving bicyclic structure, is therefore highly promising. This work presents simple anionic ring-opening polymerizations of β-pinene lactam (AROP) in-bulk and in solution. PAs with high molecular weights, suitable for further processing, are produced. Their good mechanical, thermal (Td s up to 440 °C), and transparent appearance render them promising high-performance biomaterials. In the following, the suitability of different initiators is discussed. Thereby, it is found that NaH is the most successful for in-bulk polymerization, with a degree of polymerization (DP) of about 322. For solution-AROP, iPrMgCl·LiCl is successfully used for the first time, achieving DPs up to about 163. The obtained PAs are also hot-pressed, and the dynamic mechanical properties are analyzed.
Collapse
Affiliation(s)
- Magdalena M Kleybolte
- Wacker-Chair of Macromolecular Chemistry, Technical University Munich, Lichtenbergstraße 4, Garching bei München, 85748, Deutschland
- Catalysis Research Center (CRC), Technical University Munich, Ernst-Otto-Fischer-Straße 1, Garching bei München, 85748, Deutschland
| | - Malte Winnacker
- Wacker-Chair of Macromolecular Chemistry, Technical University Munich, Lichtenbergstraße 4, Garching bei München, 85748, Deutschland
- Catalysis Research Center (CRC), Technical University Munich, Ernst-Otto-Fischer-Straße 1, Garching bei München, 85748, Deutschland
| |
Collapse
|
3
|
Yan K, Wang J, Wang Z, Yuan L. Bio-based monomers for amide-containing sustainable polymers. Chem Commun (Camb) 2023; 59:382-400. [PMID: 36524867 DOI: 10.1039/d2cc05161c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The field of sustainable polymers from renewable feedstocks is a fast-reviving field after the decades-long domination of petroleum-based polymers. Amide-containing polymers exhibit a wide range of properties depending on the type of amide (primary, secondary, and tertiary), amide density, and other molecular structural parameters (co-existing groups, molecular weight, and topology). Engineering amide groups into sustainable polymers via the "monomer approach" is an industrially proven strategy, while bio-based monomers are of enormous importance to bridge the gap between renewable sources and amide-containing sustainable polymers (AmSPs). This feature article aims at conceptualizing the monomer-design philosophy behind most of the reported AmSPs and is organized by discussing di-functional monomers for step-growth polymerization, cyclic monomers for ring-opening polymerization and amide-containing monomers for chain-growth polymerization. We also give a perspective on AmSPs with respect to monomer design and performance enhancement.
Collapse
Affiliation(s)
- Kangle Yan
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, P. R. China.
| | - Jie Wang
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, P. R. China.
| | - Zhongkai Wang
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, P. R. China.
| | - Liang Yuan
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, P. R. China.
| |
Collapse
|
4
|
Sustainable Polyamides Enabled by Controlled Ring-Opening Polymerization of 4-Hydroxyproline-derived Lactams. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2871-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Kleybolte MM, Zainer L, Liu JY, Stockmann PN, Winnacker M. (+)‐Limonene‐Lactam: Synthesis of a Sustainable Monomer for Ring‐Opening Polymerization to Novel, Biobased Polyamides. Macromol Rapid Commun 2022; 43:e2200185. [DOI: 10.1002/marc.202200185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/22/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Magdalena M. Kleybolte
- WACKER‐Chair of Macromolecular Chemistry Technical University of Munich Lichtenbergstraße 4 and Catalysis Research Center (CRC) Ernst‐Otto‐Fischer‐Straße 1 85748 Garching bei München Germany
| | - Laura Zainer
- Fraunhofer IGB Schulgasse 11a 94315 Straubing Germany
| | - Jin Y. Liu
- WACKER‐Institute for Silicon Chemistry Lichtenbergstraße 4 85748 Garching bei München Germany
| | | | - Malte Winnacker
- WACKER‐Chair of Macromolecular Chemistry Technical University of Munich Lichtenbergstraße 4 and Catalysis Research Center (CRC) Ernst‐Otto‐Fischer‐Straße 1 85748 Garching bei München Germany
| |
Collapse
|
6
|
Cywar RM, Rorrer NA, Mayes HB, Maurya AK, Tassone CJ, Beckham GT, Chen EYX. Redesigned Hybrid Nylons with Optical Clarity and Chemical Recyclability. J Am Chem Soc 2022; 144:5366-5376. [PMID: 35290039 DOI: 10.1021/jacs.1c12611] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aliphatic polyamides, or nylons, are typically highly crystalline and thermally robust polymers used in high-performance applications. Nylon 6, a high-ceiling-temperature (HCT) polyamide from ε-caprolactam, lacks expedient chemical recyclability, while low-ceiling temperature (LCT) nylon 4 from pyrrolidone exhibits complete chemical recyclability, but it is thermally unstable and not melt-processable. Here, we introduce a hybrid nylon, nylon 4/6, based on a bicyclic lactam composed of both HCT ε-caprolactam and LCT pyrrolidone motifs in a hybridized offspring structure. Hybrid nylon 4/6 overcomes trade-offs in (de)polymerizability and performance properties of the parent nylons, exhibiting both excellent polymerization and facile depolymerization characteristics. This stereoregular polyamide forms nanocrystalline domains, allowing optical clarity and high thermal stability, however, without displaying a melting transition before decomposition. Of a series of statistical copolymers comprising nylon 4/6 and nylon 4, a 50/50 copolymer achieves the greatest synergy in both reactivity and polymer properties of each homopolymer, offering an amorphous nylon with favorable properties, including optical clarity, a high glass transition temperature, melt processability, and full chemical recyclability.
Collapse
Affiliation(s)
- Robin M Cywar
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States.,Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Nicholas A Rorrer
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Heather B Mayes
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Anjani K Maurya
- SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, Menlo Park, California 94025, United States
| | - Christopher J Tassone
- SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, Menlo Park, California 94025, United States
| | - Gregg T Beckham
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States.,Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| |
Collapse
|
7
|
Lamparelli DH, Winnacker M, Capacchione C. Stereoregular Polymerization of Acyclic Terpenes. Chempluschem 2021; 87:e202100366. [PMID: 34674387 DOI: 10.1002/cplu.202100366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/05/2021] [Indexed: 12/27/2022]
Abstract
The growing environmental pollution and the expected depleting of fossil resources have sparked interest in recent years for polymers obtained from monomers originating from renewable sources. Furthermore, nature can provide a variety of building blocks with special structural features (e. g. side groups or stereo-elements) that cannot be obtained so easily via fossil-based pathways. In this context, terpenes are widespread natural compounds coming from non-food crops, present in a large variety of structures, and ready to use as monomers with or without further modifications. The present review aims to provide an overview of how chemists can stereospecifically polymerize terpenes, particularly the acyclic ones like myrcene, ocimene, and farnesene, using different metal catalyst systems in coordination-insertion polymerization. Attention is also paid to their copolymers, which have recently been disclosed, and to the possible applications of these bio-based materials in various industrial sectors such as in the field of elastomers. © 2021 The Authors. ChemPlusChem published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
Collapse
Affiliation(s)
- David Hermann Lamparelli
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università degli Studi di Salerno, via Giovanni Paolo II, 84084, Fisciano, Italy
| | - Malte Winnacker
- WACKER-Chair of Macromolecular Chemistry, Technische Universität München, Lichtenbergstraße 4, 85747, Garching bei München, Germany.,Catalysis Research Center (CRC)', Technische Universität München, Ernst-Otto-Fischer-Straße 1, 85748, Garching bei München, Germany
| | - Carmine Capacchione
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università degli Studi di Salerno, via Giovanni Paolo II, 84084, Fisciano, Italy
| |
Collapse
|
8
|
Zhong H, Deng J. Preparation and Chiral Applications of Optically Active Polyamides. Macromol Rapid Commun 2021; 42:e2100341. [PMID: 34347330 DOI: 10.1002/marc.202100341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/05/2021] [Indexed: 12/24/2022]
Abstract
Chirality is omnipresent in nature and plays vital roles in living organism, and has become a hot research topic across multidisciplinary fields including chemistry, biology, physics, and material science. Meanwhile, polyamides constitute an important class of polymers and have received significant attention owing to their outstanding properties and wide-ranging applications in many areas. Judiciously introducing chirality into polyamides will undoubtedly obtain attractive chiral polymers, namely, optically active polyamides. This review describes the preparation methods of chiral polyamides, including solution polycondensation, interfacial polycondensation, ring-open polymerization, and others; the newly emerging categories of chiral polyamides, i.e., helical polyamides, chiral polyamide-imides, are also presented. The applications of optically active polyamides in chiral research fields including asymmetric catalysis, membrane separation, and enantioselective crystallization are also summarized. In addition, current challenges in chiral polyamides are further presented and future perspectives in the field are proposed.
Collapse
Affiliation(s)
- Hai Zhong
- State Key Laboratory of Chemical Resource Engineering and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource Engineering and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
9
|
Functionalisable Epoxy-rich Electrospun Fibres Based on Renewable Terpene for Multi-Purpose Applications. Polymers (Basel) 2021; 13:polym13111804. [PMID: 34070820 PMCID: PMC8198691 DOI: 10.3390/polym13111804] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
New bio-based polymers capable of either outperforming fossil-based alternatives or possessing new properties and functionalities are of relevant interest in the framework of the circular economy. In this work, a novel bio-based polycarvone acrylate di-epoxide (PCADE) was used as an additive in a one-step straightforward electrospinning process to endow the fibres with functionalisable epoxy groups at their surface. To demonstrate the feasibility of the approach, poly(vinylidene fluoride) (PVDF) fibres loaded with different amounts of PCADE were prepared. A thorough characterisation by TGA, DSC, DMTA and XPS showed that the two polymers are immiscible and that PCADE preferentially segregates at the fibre surface, thus developing a very simple one-step approach to the preparation of ready-to-use surface functionalisable fibres. We demonstrated this by exploiting the epoxy groups at the PVDF fibre surface in two very different applications, namely in epoxy-based carbon fibre reinforced composites and membranes for ω-transaminase enzyme immobilisation for heterogeneous catalysis.
Collapse
|
10
|
Lamparelli DH, Kleybolte MM, Winnacker M, Capacchione C. Sustainable Myrcene-Based Elastomers via a Convenient Anionic Polymerization. Polymers (Basel) 2021; 13:838. [PMID: 33803378 PMCID: PMC7967150 DOI: 10.3390/polym13050838] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 11/17/2022] Open
Abstract
Soluble heterocomplexes consisting of sodium hydride in combination with trialkylaluminum derivatives have been used as anionic initiating systems at 100 °C in toluene for convenient homo-, co- and ter-polymerization of myrcene with styrene and isoprene. In this way it has been possible to obtain elastomeric materials in a wide range of compositions with interesting thermal profiles and different polymeric architectures by simply modulating the alimentation feed and the (monomers)/(initiator systems) ratio. Especially, a complete study of the myrcene-styrene copolymers (PMS) was carried out, highlighting their tapered microstructures with high molecular weights (up to 159.8 KDa) and a single glass transition temperature. For PMS copolymer reactivity ratios, rmyr = 0.12 ± 0.003 and rsty = 3.18 ± 0.65 and rmyr = 0.10 ± 0.004 and rsty = 3.32 ± 0.68 were determined according to the Kelen-Tudos (KT) and extended Kelen-Tudos (exKT) methods, respectively. Finally, this study showed an easy accessible approach for the production of various elastomers by anionic copolymerization of renewable terpenes, such as myrcene, with commodities.
Collapse
Affiliation(s)
- David Hermann Lamparelli
- Department of Chemistry and Biology “Adolfo Zambelli”, University of Salerno, Giovanni Paolo II Str., 84084 Fisciano, Italy;
| | - Magdalena Maria Kleybolte
- WACKER-Chair of Macromolecular Chemistry, Technische Universität München, Lichtenbergstraße 4 Str., 85747 Garching bei München, Germany;
| | - Malte Winnacker
- WACKER-Chair of Macromolecular Chemistry, Technische Universität München, Lichtenbergstraße 4 Str., 85747 Garching bei München, Germany;
- Catalysis Research Center (CRC), Ernst-Otto-Fischer-Straße 1, 85748 Garching bei München, Germany
| | - Carmine Capacchione
- Department of Chemistry and Biology “Adolfo Zambelli”, University of Salerno, Giovanni Paolo II Str., 84084 Fisciano, Italy;
| |
Collapse
|
11
|
Stouten J, Wróblewska AA, Grit G, Noordijk J, Gebben B, Meeusen-Wierts MHM, Bernaerts KV. Polyamides containing a biorenewable aromatic monomer based on coumalate esters: from synthesis to evaluation of the thermal and mechanical properties. Polym Chem 2021. [DOI: 10.1039/d1py00005e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new biobased alternative for terephthalic acid (TPA) in (semi-)aromatic polyamides is proposed, namely 4-carboxybenzene propionic acid (4CBPA).
Collapse
Affiliation(s)
- Jules Stouten
- Aachen-Maastricht Institute for Biobased Materials (AMIBM)
- Faculty of Science and Engineering
- Maastricht University
- 6167 RD Geleen
- the Netherlands
| | - Aleksandra A. Wróblewska
- Aachen-Maastricht Institute for Biobased Materials (AMIBM)
- Faculty of Science and Engineering
- Maastricht University
- 6167 RD Geleen
- the Netherlands
| | - Glenn Grit
- Aachen-Maastricht Institute for Biobased Materials (AMIBM)
- Faculty of Science and Engineering
- Maastricht University
- 6167 RD Geleen
- the Netherlands
| | - Jurrie Noordijk
- Aachen-Maastricht Institute for Biobased Materials (AMIBM)
- Faculty of Science and Engineering
- Maastricht University
- 6167 RD Geleen
- the Netherlands
| | - Bert Gebben
- Process Technology Department
- Research and Innovation Center
- 6802 ED Arnhem
- the Netherlands
| | | | - Katrien V. Bernaerts
- Aachen-Maastricht Institute for Biobased Materials (AMIBM)
- Faculty of Science and Engineering
- Maastricht University
- 6167 RD Geleen
- the Netherlands
| |
Collapse
|
12
|
Montanari U, Taresco V, Liguori A, Gualandi C, Howdle SM. Synthesis of novel carvone (meth)acrylate monomers for the production of hydrophilic polymers with high terpene content. POLYM INT 2020. [DOI: 10.1002/pi.6096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ulisse Montanari
- School of Chemistry University of Nottingham, University Park Nottingham UK
| | - Vincenzo Taresco
- School of Chemistry University of Nottingham, University Park Nottingham UK
| | - Anna Liguori
- Department of Chemistry ‘Giacomo Ciamician’ and INSTM UdR of Bologna University of Bologna Bologna Italy
| | - Chiara Gualandi
- Department of Chemistry ‘Giacomo Ciamician’ and INSTM UdR of Bologna University of Bologna Bologna Italy
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI‐MAM University of Bologna Bologna Italy
| | - Steven M Howdle
- School of Chemistry University of Nottingham, University Park Nottingham UK
| |
Collapse
|
13
|
Worch JC, Weems AC, Yu J, Arno MC, Wilks TR, Huckstepp RTR, O'Reilly RK, Becker ML, Dove AP. Elastomeric polyamide biomaterials with stereochemically tuneable mechanical properties and shape memory. Nat Commun 2020; 11:3250. [PMID: 32591525 PMCID: PMC7320000 DOI: 10.1038/s41467-020-16945-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 05/27/2020] [Indexed: 12/14/2022] Open
Abstract
Biocompatible polymers are widely used in tissue engineering and biomedical device applications. However, few biomaterials are suitable for use as long-term implants and these examples usually possess limited property scope, can be difficult to process, and are non-responsive to external stimuli. Here, we report a class of easily processable polyamides with stereocontrolled mechanical properties and high-fidelity shape memory behaviour. We synthesise these materials using the efficient nucleophilic thiol-yne reaction between a dipropiolamide and dithiol to yield an α,β - unsaturated carbonyl moiety along the polymer backbone. By rationally exploiting reaction conditions, the alkene stereochemistry is modulated between 35-82% cis content and the stereochemistry dictates the bulk material properties such as tensile strength, modulus, and glass transition. Further access to materials possessing a broader range of thermal and mechanical properties is accomplished by polymerising a variety of commercially available dithiols with the dipropiolamide monomer.
Collapse
Affiliation(s)
- Joshua C Worch
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Andrew C Weems
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jiayi Yu
- Department of Polymer Science, The University of Akron, Akron, OH, 44325, USA
| | - Maria C Arno
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Thomas R Wilks
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | - Rachel K O'Reilly
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Matthew L Becker
- Department of Chemistry, Department of Mechanical Engineering & Materials Science, Department of Orthopaedic Surgery, Duke University, 308 Research Drive, Durham, NC, 27708, USA.
| | - Andrew P Dove
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
14
|
Winnacker M, Lamparelli DH, Capacchione C, Güngör HH, Stieglitz L, Rodewald KS, Schmidt M, Gronauer TF. Sustainable Polyesteramides and Copolyamides: Insights into the Copolymerization Behavior of Terpene‐Based Lactams. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Malte Winnacker
- WACKER‐Chair of Macromolecular ChemistryTechnical University of MunichLichtenbergstraße 4, Garching bei München and Catalysis Research Center (CRC) Ernst‐Otto‐Fischer‐Straße 1 Garching bei München 85748 Germany
| | - David H. Lamparelli
- Dipartimento di Chimica e Biologia “A. Zambelli”Universitá degli Studi di Salerno via Giovanni Paolo II Fisciano SA 132 I‐84084 Italy
| | - Carmine Capacchione
- Dipartimento di Chimica e Biologia “A. Zambelli”Universitá degli Studi di Salerno via Giovanni Paolo II Fisciano SA 132 I‐84084 Italy
| | - Hicran H. Güngör
- WACKER‐Chair of Macromolecular ChemistryTechnical University of MunichLichtenbergstraße 4, Garching bei München and Catalysis Research Center (CRC) Ernst‐Otto‐Fischer‐Straße 1 Garching bei München 85748 Germany
| | - Lucas Stieglitz
- WACKER‐Chair of Macromolecular ChemistryTechnical University of MunichLichtenbergstraße 4, Garching bei München and Catalysis Research Center (CRC) Ernst‐Otto‐Fischer‐Straße 1 Garching bei München 85748 Germany
| | - Katia S. Rodewald
- WACKER‐Chair of Macromolecular ChemistryTechnical University of MunichLichtenbergstraße 4, Garching bei München and Catalysis Research Center (CRC) Ernst‐Otto‐Fischer‐Straße 1 Garching bei München 85748 Germany
| | - Matthias Schmidt
- WACKER‐Chair of Macromolecular ChemistryTechnical University of MunichLichtenbergstraße 4, Garching bei München and Catalysis Research Center (CRC) Ernst‐Otto‐Fischer‐Straße 1 Garching bei München 85748 Germany
| | - Thomas F. Gronauer
- Chair of Organic Chemistry IITechnische Universität München Lichtenbergstraße 4 Garching bei München 85748 Germany
| |
Collapse
|
15
|
Stockmann PN, Van Opdenbosch D, Poethig A, Pastoetter DL, Hoehenberger M, Lessig S, Raab J, Woelbing M, Falcke C, Winnacker M, Zollfrank C, Strittmatter H, Sieber V. Biobased chiral semi-crystalline or amorphous high-performance polyamides and their scalable stereoselective synthesis. Nat Commun 2020; 11:509. [PMID: 31980642 PMCID: PMC6981233 DOI: 10.1038/s41467-020-14361-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/16/2019] [Indexed: 12/30/2022] Open
Abstract
The use of renewable feedstock is one of the twelve key principles of sustainable chemistry. Unfortunately, bio-based compounds often suffer from high production cost and low performance. To fully tap the potential of natural compounds it is important to utilize their functionalities that could make them superior compared to fossil-based resources. Here we show the conversion of (+)-3-carene, a by-product of the cellulose industry into ε-lactams from which polyamides. The lactams are selectively prepared in two diastereomeric configurations, leading to semi-crystalline or amorphous, transparent polymers that can compete with the thermal properties of commercial high-performance polyamides. Copolyamides with caprolactam and laurolactam exhibit an increased glass transition and amorphicity compared to the homopolyamides, potentially broadening the scope of standard polyamides. A four-step one-vessel monomer synthesis, applying chemo-enzymatic catalysis for the initial oxidation step, is established. The great potential of the polyamides is outlined.
Collapse
Affiliation(s)
- Paul N Stockmann
- Fraunhofer IGB, Bio, Electro and Chemocatalysis BioCat, Straubing Branch, Schulgasse 11a, 94315, Straubing, Germany
| | - Daniel Van Opdenbosch
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Schulgasse 16, 94315, Straubing, Germany
| | - Alexander Poethig
- Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
- Catalysis Research Center, Technical University of Munich, Ernst-Otto-Fischer-Straße 1, 85748, Garching, Germany
| | - Dominik L Pastoetter
- Fraunhofer IGB, Bio, Electro and Chemocatalysis BioCat, Straubing Branch, Schulgasse 11a, 94315, Straubing, Germany
| | - Moritz Hoehenberger
- Fraunhofer IGB, Bio, Electro and Chemocatalysis BioCat, Straubing Branch, Schulgasse 11a, 94315, Straubing, Germany
| | - Sebastian Lessig
- Fraunhofer IGB, Bio, Electro and Chemocatalysis BioCat, Straubing Branch, Schulgasse 11a, 94315, Straubing, Germany
| | - Johannes Raab
- Fraunhofer IGB, Bio, Electro and Chemocatalysis BioCat, Straubing Branch, Schulgasse 11a, 94315, Straubing, Germany
| | - Marion Woelbing
- Fraunhofer IGB, Bio, Electro and Chemocatalysis BioCat, Straubing Branch, Schulgasse 11a, 94315, Straubing, Germany
| | - Claudia Falcke
- Fraunhofer IGB, Bio, Electro and Chemocatalysis BioCat, Straubing Branch, Schulgasse 11a, 94315, Straubing, Germany
| | - Malte Winnacker
- Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
- Catalysis Research Center, Technical University of Munich, Ernst-Otto-Fischer-Straße 1, 85748, Garching, Germany
| | - Cordt Zollfrank
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Schulgasse 16, 94315, Straubing, Germany
| | - Harald Strittmatter
- Fraunhofer IGB, Bio, Electro and Chemocatalysis BioCat, Straubing Branch, Schulgasse 11a, 94315, Straubing, Germany
| | - Volker Sieber
- Fraunhofer IGB, Bio, Electro and Chemocatalysis BioCat, Straubing Branch, Schulgasse 11a, 94315, Straubing, Germany.
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Schulgasse 16, 94315, Straubing, Germany.
- Catalysis Research Center, Technical University of Munich, Ernst-Otto-Fischer-Straße 1, 85748, Garching, Germany.
| |
Collapse
|
16
|
Abstract
The use of renewable terpene-based monomers for the preparation of sustainable functional polymers is highlighted.
Collapse
Affiliation(s)
- Francesco Della Monica
- Institute of Chemical Research of Catalonia (ICIQ)
- The Barcelona Institute for Science & Technology (BIST)
- 43007 Tarragona
- Spain
| | - Arjan W. Kleij
- Institute of Chemical Research of Catalonia (ICIQ)
- The Barcelona Institute for Science & Technology (BIST)
- 43007 Tarragona
- Spain
- Catalan Institute for Research and Advanced Studies (ICREA)
| |
Collapse
|
17
|
Stadler BM, Wulf C, Werner T, Tin S, de Vries JG. Catalytic Approaches to Monomers for Polymers Based on Renewables. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01665] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bernhard M. Stadler
- Leibniz Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Christoph Wulf
- Leibniz Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Thomas Werner
- Leibniz Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Sergey Tin
- Leibniz Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Johannes G. de Vries
- Leibniz Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| |
Collapse
|
18
|
Winnacker M, Beringer AJG, Gronauer TF, Güngör HH, Reinschlüssel L, Rieger B, Sieber SA. Polyamide/PEG Blends as Biocompatible Biomaterials for the Convenient Regulation of Cell Adhesion and Growth. Macromol Rapid Commun 2019; 40:e1900091. [DOI: 10.1002/marc.201900091] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/25/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Malte Winnacker
- WACKER‐Lehrstuhl für Makromolekulare ChemieLichtenbergstraße 4Department of ChemistryTechnische Universität München 85747 Garching bei München Germany
- Catalysis Research CenterTechnische Universität München Ernst‐Otto‐Fischer‐Straße 1 85748 Garching bei München Germany
| | - Andreas J. G. Beringer
- WACKER‐Lehrstuhl für Makromolekulare ChemieLichtenbergstraße 4Department of ChemistryTechnische Universität München 85747 Garching bei München Germany
- Catalysis Research CenterTechnische Universität München Ernst‐Otto‐Fischer‐Straße 1 85748 Garching bei München Germany
- Department of ChemistryLudwig‐Maximilians‐Universität München
| | - Thomas F. Gronauer
- WACKER‐Lehrstuhl für Makromolekulare ChemieLichtenbergstraße 4Department of ChemistryTechnische Universität München 85747 Garching bei München Germany
- Catalysis Research CenterTechnische Universität München Ernst‐Otto‐Fischer‐Straße 1 85748 Garching bei München Germany
- Chair of Organic Chemistry IITechnische Universität München
| | - Hicran H. Güngör
- WACKER‐Lehrstuhl für Makromolekulare ChemieLichtenbergstraße 4Department of ChemistryTechnische Universität München 85747 Garching bei München Germany
- Catalysis Research CenterTechnische Universität München Ernst‐Otto‐Fischer‐Straße 1 85748 Garching bei München Germany
| | - Leonhard Reinschlüssel
- WACKER‐Lehrstuhl für Makromolekulare ChemieLichtenbergstraße 4Department of ChemistryTechnische Universität München 85747 Garching bei München Germany
- Catalysis Research CenterTechnische Universität München Ernst‐Otto‐Fischer‐Straße 1 85748 Garching bei München Germany
| | - Bernhard Rieger
- WACKER‐Lehrstuhl für Makromolekulare ChemieLichtenbergstraße 4Department of ChemistryTechnische Universität München 85747 Garching bei München Germany
- Catalysis Research CenterTechnische Universität München Ernst‐Otto‐Fischer‐Straße 1 85748 Garching bei München Germany
| | - Stephan A. Sieber
- WACKER‐Lehrstuhl für Makromolekulare ChemieLichtenbergstraße 4Department of ChemistryTechnische Universität München 85747 Garching bei München Germany
- Catalysis Research CenterTechnische Universität München Ernst‐Otto‐Fischer‐Straße 1 85748 Garching bei München Germany
- Chair of Organic Chemistry IITechnische Universität München
| |
Collapse
|
19
|
Stockmann PN, Pastoetter DL, Woelbing M, Falcke C, Winnacker M, Strittmatter H, Sieber V. New Bio-Polyamides from Terpenes: α-Pinene and (+)-3-Carene as Valuable Resources for Lactam Production. Macromol Rapid Commun 2019; 40:e1800903. [PMID: 30892749 DOI: 10.1002/marc.201800903] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/03/2019] [Indexed: 11/08/2022]
Abstract
The synthesis and polymerization of two β-lactams and two ε-lactams derived from the terpenes α-pinene and (+)-3-carene are reported. The new biopolymers can be considered as polyamide 2 (PA2) and polyamide 6 (PA6)-types with aliphatic stereoregular side chains, which lead to remarkable new properties. The macromolecules are investigated by gel permeation chromatography (GPC), nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), and infrared (IR). The (+)-3-carene-derived PA6-type is of particular interest, since it reaches a molecular weight of over 30 kDa, which is the highest value for lactam-based polyamides derived from terpenes reported to date. Additionally, a glass transition temperature (Tg ) of 120 °C is observed, surpassing the glass transition temperature of PA6 by 60 °C. The absence of a melting point (Tm ) indicates high amorphicity, another novelty for terpene-based polyamides, which might give transparent bio-polyamides access to new fields of application.
Collapse
Affiliation(s)
- Paul N Stockmann
- Fraunhofer IGB, Straubing Branch Bio, Electro and Chemocatalysis BioCat, Schulgasse 11a, 94315, Straubing, Germany
| | - Dominik L Pastoetter
- Fraunhofer IGB, Straubing Branch Bio, Electro and Chemocatalysis BioCat, Schulgasse 11a, 94315, Straubing, Germany
| | - Marion Woelbing
- Fraunhofer IGB, Straubing Branch Bio, Electro and Chemocatalysis BioCat, Schulgasse 11a, 94315, Straubing, Germany
| | - Claudia Falcke
- Fraunhofer IGB, Straubing Branch Bio, Electro and Chemocatalysis BioCat, Schulgasse 11a, 94315, Straubing, Germany
| | - Malte Winnacker
- WACKER-Chair of Macromolecular Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching bei München, Germany
| | - Harald Strittmatter
- Fraunhofer IGB, Straubing Branch Bio, Electro and Chemocatalysis BioCat, Schulgasse 11a, 94315, Straubing, Germany
| | - Volker Sieber
- Fraunhofer IGB, Straubing Branch Bio, Electro and Chemocatalysis BioCat, Schulgasse 11a, 94315, Straubing, Germany.,Chair of Chemistry for Biogenic Resources, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, 94315, Straubing, Germany.,Catalysis Research Center, Technical University of Munich, 85748, Garching bei München, Germany
| |
Collapse
|
20
|
He W, Tao Y, Wang X. Functional Polyamides: A Sustainable Access via Lysine Cyclization and Organocatalytic Ring-Opening Polymerization. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01790] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Wenjing He
- Key Laboratory of Polymer Ecomaterials and, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, P. R. China
- University of
Science and Technology of China, Hefei 230026, P. R. China
| | - Youhua Tao
- Key Laboratory of Polymer Ecomaterials and, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, P. R. China
- University of
Science and Technology of China, Hefei 230026, P. R. China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials and, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, P. R. China
- University of
Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
21
|
Winnacker M. Pinene: reichlich vorhandene und erneuerbare Bausteine für eine Vielzahl an nachhaltigen Polymeren. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Malte Winnacker
- WACKER-Lehrstuhl für Makromolekulare Chemie; Technische Universität München; Lichtenbergstraße 4 85747 Garching bei München Deutschland
- Catalysis Research Center (CRC); Ernst-Otto-Fischer Straße 1 85748 Garching bei München Deutschland
| |
Collapse
|
22
|
Winnacker M. Pinenes: Abundant and Renewable Building Blocks for a Variety of Sustainable Polymers. Angew Chem Int Ed Engl 2018; 57:14362-14371. [DOI: 10.1002/anie.201804009] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/11/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Malte Winnacker
- WACKER-Chair of Macromolecular Chemistry; Technische Universität München; Lichtenbergstraße 4 85747 Garching bei München Germany
- Catalysis Research Center (CRC); Ernst-Otto-Fischer Str. 1 85748 Garching bei München Germany
| |
Collapse
|
23
|
Winnacker M, Sag J. Sustainable terpene-based polyamides via anionic polymerization of a pinene-derived lactam. Chem Commun (Camb) 2018; 54:841-844. [DOI: 10.1039/c7cc08266e] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A sustainable lactam, which is derived from the renewable terpene β-pinene, is converted to polyamides with prosperous thermal properties via a convenient anionic ring-opening polymerization (ROP).
Collapse
Affiliation(s)
- Malte Winnacker
- WACKER-Chair of Macromolecular Chemistry, Lichtenbergstraße 4, Technische Universität München
- 85747 Garching bei München
- Germany
- Catalysis Research Center, Ernst-Otto-Fischer-Straße 1, Technische Universität München
- 85748 Garching
| | - Jacob Sag
- WACKER-Chair of Macromolecular Chemistry, Lichtenbergstraße 4, Technische Universität München
- 85747 Garching bei München
- Germany
- Catalysis Research Center, Ernst-Otto-Fischer-Straße 1, Technische Universität München
- 85748 Garching
| |
Collapse
|
24
|
Winnacker M, Sag J, Tischner A, Rieger B. Sustainable, Stereoregular, and Optically Active Polyamides via Cationic Polymerization of ε-Lactams Derived from the Terpene β-Pinene. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201600787] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/30/2017] [Indexed: 01/11/2023]
Affiliation(s)
- Malte Winnacker
- WACKER-Lehrstuhl für Makromolekulare Chemie; Technische Universität München; Lichtenbergstraße 4 85747 Garching bei München Germany
| | - Jacob Sag
- WACKER-Lehrstuhl für Makromolekulare Chemie; Technische Universität München; Lichtenbergstraße 4 85747 Garching bei München Germany
| | - Andreas Tischner
- WACKER-Lehrstuhl für Makromolekulare Chemie; Technische Universität München; Lichtenbergstraße 4 85747 Garching bei München Germany
| | - Bernhard Rieger
- WACKER-Lehrstuhl für Makromolekulare Chemie; Technische Universität München; Lichtenbergstraße 4 85747 Garching bei München Germany
| |
Collapse
|
25
|
Winnacker M. Polyamides and their functionalization: recent concepts for their applications as biomaterials. Biomater Sci 2017; 5:1230-1235. [DOI: 10.1039/c7bm00160f] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent strategies for the applications of nylon composites, pristine nylons and chemically modified nylon polymers as biomaterials are elucidated.
Collapse
Affiliation(s)
- Malte Winnacker
- WACKER-Chair of Macromolecular Chemistry
- Lichtenbergstraße 4
- and Catalysis Research Center (CRC)
- Ernst-Otto-Fischer-Straße 1
- Technische Universität München
| |
Collapse
|
26
|
Kristufek SL, Wacker KT, Tsao YYT, Su L, Wooley KL. Monomer design strategies to create natural product-based polymer materials. Nat Prod Rep 2017; 34:433-459. [DOI: 10.1039/c6np00112b] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In an effort towards enhancing function and sustainability, natural products have become of interest in the field of polymer chemistry.
Collapse
Affiliation(s)
- Samantha L. Kristufek
- Department of Chemistry
- Department of Chemical Engineering
- Department of Materials Science & Engineering
- Texas A&M University
- College Station
| | - Kevin T. Wacker
- Department of Chemistry
- Department of Chemical Engineering
- Department of Materials Science & Engineering
- Texas A&M University
- College Station
| | - Yi-Yun Timothy Tsao
- Department of Chemistry
- Department of Chemical Engineering
- Department of Materials Science & Engineering
- Texas A&M University
- College Station
| | - Lu Su
- Department of Chemistry
- Department of Chemical Engineering
- Department of Materials Science & Engineering
- Texas A&M University
- College Station
| | - Karen L. Wooley
- Department of Chemistry
- Department of Chemical Engineering
- Department of Materials Science & Engineering
- Texas A&M University
- College Station
| |
Collapse
|
27
|
Liu S, Zhang X, Li M, Ren X, Tao Y. Precision synthesis of sustainable thermoplastic elastomers from lysine-derived monomers. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28394] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shanshan Liu
- College of Chemical Engineering; ChangChun University of Technology; Yanan Street 2055 Changchun 130000 People's Republic of China
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Renmin Street 5625 Changchun 130022 People's Republic of China
| | - Xiaojie Zhang
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Renmin Street 5625 Changchun 130022 People's Republic of China
| | - Maosheng Li
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Renmin Street 5625 Changchun 130022 People's Republic of China
| | - Xiuyan Ren
- College of Chemical Engineering; ChangChun University of Technology; Yanan Street 2055 Changchun 130000 People's Republic of China
| | - Youhua Tao
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Renmin Street 5625 Changchun 130022 People's Republic of China
| |
Collapse
|
28
|
Winnacker M, Rieger B. Biobased Polyamides: Recent Advances in Basic and Applied Research. Macromol Rapid Commun 2016; 37:1391-413. [DOI: 10.1002/marc.201600181] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/15/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Malte Winnacker
- WACKER-Lehrstuhl für Makromolekulare Chemie; Technische Universität München; Lichtenbergstraße 4 85474 Garching bei München Germany
| | - Bernhard Rieger
- WACKER-Lehrstuhl für Makromolekulare Chemie; Technische Universität München; Lichtenbergstraße 4 85474 Garching bei München Germany
| |
Collapse
|