1
|
Hu X, Yan L, Zhang M. UV-radiation manufacturing of natural macromolecular products salecan and tannic acid-based functional gel material as superadsorbent for toluidine blue remediation. Int J Biol Macromol 2024; 280:135881. [PMID: 39321518 DOI: 10.1016/j.ijbiomac.2024.135881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/07/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Adsorbent materials constructed from natural macromolecular products are favored because of their wide range of sources, biodegradability, and environmental friendliness. Salecan is a novel extracellular polysaccharide with ideal physicochemical and biological activities. Here, we have designed a polymer gel through UV-initiated polymerization of [2-(Methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide (SBMA) in the mixture of salecan and tannic acid. Photopatterned polymerization process allowed in situ formation of gel adsorbent in a mild reaction condition with energy-efficient manner. Batch experiments for toluidine blue (TB) adsorption were carried out as a function of initial dye concentration, solution pH, contact time, and gel dosage to examine the adsorption capacity, potential mechanism, and removal efficiency. Adsorption behavior exhibited a pH-dependence pattern, which was closely related to their swelling and morphological properties. Adsorption process was in conformity to pseudo-second-order kinetic and Langmuir isotherm models, unlocking a chemical adsorption behavior and monolayer-type removal. The maximum adsorption was 490.2 mg/g, which could be considered a superiorly competing value. Additionally, the UV-gel still showed desirable recyclability and maintained the adsorption effectiveness over 95 % after five regeneration cycles. This study opened up new prospects in preparing high performance adsorbent for TB decontamination and laid the foundation for polysaccharide-based adsorption material research.
Collapse
Affiliation(s)
- Xinyu Hu
- Institute of Chemical Industry of Forest Products, CAF, Key Lab. of Biomass Energy and Material, Jiangsu Province, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China.
| | - Linlin Yan
- Institute of Chemical Industry of Forest Products, CAF, Key Lab. of Biomass Energy and Material, Jiangsu Province, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China
| | - Meng Zhang
- Institute of Chemical Industry of Forest Products, CAF, Key Lab. of Biomass Energy and Material, Jiangsu Province, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China; Jiangsu Key Laboratory for Bioresources of Saline Soils, School of Wetlands, Yancheng Teachers University, Yancheng 224002, China
| |
Collapse
|
2
|
Do PT, Sbordone F, Kalmer H, Sokolova A, Zhang C, Thai LD, Golberg DV, Chapman R, Poad BLJ, Frisch H. Main chain selective polymer degradation: controlled by the wavelength and assembly. Chem Sci 2024; 15:12410-12419. [PMID: 39118612 PMCID: PMC11304539 DOI: 10.1039/d4sc02172j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/23/2024] [Indexed: 08/10/2024] Open
Abstract
The advent of reversible deactivation radical polymerization (RDRP) revolutionized polymer chemistry and paved the way for accessing synthetic polymers with controlled sequences based on vinylic monomers. An inherent limitation of vinylic polymers stems from their all-carbon backbone, which limits both function and degradability. Herein, we report a synthetic strategy utilizing radical ring-opening polymerization (rROP) of complementary photoreactive cyclic monomers in combination with RDRP to embed photoresponsive functionality into desired blocks of polyvinyl polymers. Exploiting different absorbances of photoreactive cyclic monomers, it becomes possible to degrade blocks selectively by irradiation with either UVB or UVA light. Translating such primary structures of polymer sequences into higher order assemblies, the hydrophobicity of the photodegradable monomers allowed for the formation of micelles in water. Upon exposure to light, the nondegradable blocks detached yielding a significant reduction in the micelle hydrodynamic diameter. As a result of the self-assembled micellar environment, telechelic oligomers with photoreactive termini (e.g., coumarin or styrylpyrene) resulting from the photodegradation of polymers in water underwent intermolecular photocycloaddition to photopolymerize, which usually only occurs efficiently at longer wavelengths and a much higher concentration of photoresponsive groups. The reported main chain polymer degradation is thus controlled by the irradiation wavelength and the assembly of the polymers.
Collapse
Affiliation(s)
- Phuong T Do
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Federica Sbordone
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Henrik Kalmer
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Anna Sokolova
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation (ANSTO) New Illawarra Road, Lucas Heights NSW 2234 Australia
| | - Chao Zhang
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Central Analytical Research Facility, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Linh Duy Thai
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Dmitri V Golberg
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Robert Chapman
- Centre for Advanced Macromolecular Design, School of Chemistry, UNSW Sydney Kensington NSW 2052 Australia
- School of Environmental and Life Sciences, University of Newcastle Callaghan NSW 2308 Australia
| | - Berwyck L J Poad
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Central Analytical Research Facility, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Hendrik Frisch
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| |
Collapse
|
3
|
Finis DS, Nicewicz DA. Alkoxy Radical Generation Mediated by Sulfoxide Cation Radicals for Alcohol-Directed Aliphatic C-H Functionalization. J Am Chem Soc 2024; 146:10.1021/jacs.4c05052. [PMID: 38847590 PMCID: PMC11624318 DOI: 10.1021/jacs.4c05052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
The C-H functionalization of remote, unactivated C-H bonds offers a unique method of garnering structural complexity in a synthesis. The use of directing groups has provided a means of enacting C-H functionalization on these difficult-to-access bonds; however, the installation and removal of directing groups on a substrate require additional synthetic manipulations, detracting from both the efficiency and economic feasibility of a transformation. The use of alkoxy radicals as transient directing groups for the functionalization of remote C-H bonds allows access to the synthesis of complex molecules without the need for additional functionality. Herein, we report a method for alkoxy radical formation from unactivated alcohols and reactivity mediated by photoredox-generated sulfoxide cation radicals. This protocol leverages the unique reactivity of alkoxy radicals to implement different reaction manifolds: 1,5-hydrogen atom transfer (HAT), cyclization, and β-scission. Furthermore, it was discovered that this methodology could be utilized to impose radical group transfer reactions via the β-scission pathway. Stern-Volmer analysis supports the formation of an alkoxy radical via the intermediacy of a sulfurane radical rather than a proton-coupled electron transfer (PCET) mechanism.
Collapse
Affiliation(s)
- Dominic S Finis
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - David A Nicewicz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
4
|
Xiao X, Zheng H, Gao H, Cheng Z, Feng C, Yang J, Gao H. Recent Advances in Synthesis of Non-Alternating Polyketone Generated by Copolymerization of Carbon Monoxide and Ethylene. Int J Mol Sci 2024; 25:1348. [PMID: 38279347 PMCID: PMC10816092 DOI: 10.3390/ijms25021348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 01/28/2024] Open
Abstract
The copolymers of carbon monoxide (CO) and ethylene, namely aliphatic polyketones (PKs), have attracted considerable attention due to their unique property and degradation. Based on the arrangement of the ethylene and carbonyl groups in the polymer chain, PKs can be divided into perfect alternating and non-perfect alternating copolymers. Perfect alternating PKs have been previously reviewed, we herein focus on recent advances in the synthesis of PKs without a perfect alternating structure including non-perfect alternating PKs and PE with in-chain ketones. The chain structure of PKs, catalytic copolymerization mechanism, and non-alternating polymerization catalysts including phosphine-sulfonate Pd, diphosphazane monoxide (PNPO) Pd/Ni, and phosphinophenolate Ni catalysts are comprehensively summarized. This review aims to enlighten the design of ethylene/CO non-alternating polymerization catalysts for the development of new polyketone materials.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Haiyang Gao
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China; (X.X.); (H.Z.); (H.G.); (Z.C.); (C.F.); (J.Y.)
| |
Collapse
|
5
|
Bellotti V, Wang HS, Truong NP, Simonutti R, Anastasaki A. Temporal Regulation of PET-RAFT Controlled Radical Depolymerization. Angew Chem Int Ed Engl 2023; 62:e202313232. [PMID: 37814385 DOI: 10.1002/anie.202313232] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Indexed: 10/11/2023]
Abstract
A photocatalytic RAFT-controlled radical depolymerization method is introduced for precisely conferring temporal control under visible light irradiation. By regulating the deactivation of the depropagating chains and suppressing thermal initiation, an excellent temporal control was enabled, exemplified by several consecutive "on" and "off" cycles. Minimal, if any, depolymerization could be observed during the dark periods while the polymer chain-ends could be efficiently re-activated and continue to depropagate upon re-exposure to light. Notably, favoring deactivation resulted in the gradual unzipping of polymer chains and a stepwise decrease in molecular weight over time. This synthetic approach constitutes a simple methodology to modulate temporal control during the chemical recycling of RAFT-synthesized polymers while offering invaluable mechanistic insights.
Collapse
Affiliation(s)
- Valentina Bellotti
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg-5, Zurich, 8093, Switzerland
- Department of Material Science, Università di Milano-Bicocca, Via Roberto Cozzi 55, Milan, 20125, Italy
| | - Hyun Suk Wang
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg-5, Zurich, 8093, Switzerland
| | - Nghia P Truong
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg-5, Zurich, 8093, Switzerland
| | - Roberto Simonutti
- Department of Material Science, Università di Milano-Bicocca, Via Roberto Cozzi 55, Milan, 20125, Italy
| | - Athina Anastasaki
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg-5, Zurich, 8093, Switzerland
| |
Collapse
|
6
|
Chae JH, Choi M, Son S, Ko SM, Lee IH. Living Cationic Ring-Opening Polymerization of Hetero Diels-Alder Adducts to Give Multifactor-Controlled and Fast-Photodegradable Vinyl Polymers. Angew Chem Int Ed Engl 2023; 62:e202305414. [PMID: 37259631 DOI: 10.1002/anie.202305414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/02/2023]
Abstract
Precise control of multiple structural parameters associated with vinyl polymers is important for producing materials with the desired properties and functions. While the development of living polymerization methods has provided a way to control the various structural parameters of vinyl polymers, the concomitant control of their sequence and regioregularity remains a challenging task. To overcome this challenge, herein, we report the living cationic ring-opening polymerization of hetero Diels-Alder adducts. The scalable and modular synthesis of the cyclic monomers was achieved by a one-step protocol using readily available vinyl precursors. Subsequently, living polymerization of the cyclic monomers was examined, allowing the synthesis of vinyl polymers while controlling multiple factors, including molecular weight, dispersity, alternating sequence, head-to-head regioregularity, and end-group functionality. The living characteristics of the developed method were further demonstrated by block copolymerization. The synthesized vinyl polymers exhibited unique thermal properties and underwent fast photodegradation even under sunlight.
Collapse
Affiliation(s)
- Ju-Hyung Chae
- Department of Energy System Research, Ajou University, 16499, Suwon, Republic of Korea
| | - Minyeong Choi
- Department of Energy System Research, Ajou University, 16499, Suwon, Republic of Korea
| | - Semin Son
- Department of Energy System Research, Ajou University, 16499, Suwon, Republic of Korea
| | - Su-Min Ko
- Department of Energy System Research, Ajou University, 16499, Suwon, Republic of Korea
| | - In-Hwan Lee
- Department of Chemistry, Ajou University, 16499, Suwon, Republic of Korea
| |
Collapse
|
7
|
Bellotti V, Parkatzidis K, Wang HS, De Alwis Watuthanthrige N, Orfano M, Monguzzi A, Truong NP, Simonutti R, Anastasaki A. Light-accelerated depolymerization catalyzed by Eosin Y. Polym Chem 2023; 14:253-258. [PMID: 36760607 PMCID: PMC9843692 DOI: 10.1039/d2py01383e] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Retrieving the starting monomers from polymers synthesized by reversible deactivation radical polymerization has recently emerged as an efficient way to increase the recyclability of such materials and potentially enable their industrial implementation. To date, most methods have primarily focused on utilizing high temperatures (typically from 120 °C to 180 °C) to trigger an efficient depolymerization reaction. In this work, we show that, in the presence of Eosin Y under light irradiation, a much faster depolymerization of polymers made by reversible addition-fragmentation chain-transfer (RAFT) polymerization can be triggered even at a lower temperature (i.e. 100 °C). For instance, green light, in conjunction with ppm amounts of Eosin Y, resulted in the accelerated depolymerization of poly(methyl methacrylate) from 16% (thermal depolymerization at 100 °C) to 37% within 1 hour, and finally 80% depolymerization after 8 hours, as confirmed by both 1H-NMR and SEC analyses. The enhanced depolymerization rate was attributed to the activation of a macroCTA by Eosin Y, thus resulting in a faster macroradical generation. Notably, this method was found to be compatible with different wavelengths (e.g. blue, red and white light irradiation), solvents, and RAFT agents, thus highlighting the potential of light to significantly improve current depolymerization approaches.
Collapse
Affiliation(s)
- Valentina Bellotti
- Department of Material Science, University of Milano-Bicocca Via R. Cozzi 55 20125 Milan Italy
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir-Prelog-Weg-5 Zurich Switzerland
| | - Kostas Parkatzidis
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir-Prelog-Weg-5 Zurich Switzerland
| | - Hyun Suk Wang
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir-Prelog-Weg-5 Zurich Switzerland
| | | | - Matteo Orfano
- Department of Material Science, University of Milano-Bicocca Via R. Cozzi 55 20125 Milan Italy
| | - Angelo Monguzzi
- Department of Material Science, University of Milano-Bicocca Via R. Cozzi 55 20125 Milan Italy
| | - Nghia P Truong
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir-Prelog-Weg-5 Zurich Switzerland
| | - Roberto Simonutti
- Department of Material Science, University of Milano-Bicocca Via R. Cozzi 55 20125 Milan Italy
| | - Athina Anastasaki
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir-Prelog-Weg-5 Zurich Switzerland
| |
Collapse
|
8
|
Ma P, Plummer CM, Luo W, Pang J, Chen Y, Li L. Exhaustive Baeyer-Villiger oxidation: a tailor-made post-polymerization modification to access challenging poly(vinyl acetate) copolymers. Chem Sci 2022; 13:11746-11754. [PMID: 36320906 PMCID: PMC9580620 DOI: 10.1039/d2sc03492a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/05/2022] [Indexed: 11/28/2022] Open
Abstract
The discovery of exhaustive (nearly quantitative) post-polymerization modifications (PPM) relies heavily on the efficiency of their corresponding small-molecule protocols. However, the direct translation of existing small-molecule protocols into PPM methods has never been guaranteed due to the intrinsic differences between small-molecule substrates and polymers. Herein, we introduce the direct optimization on polymers (DOP) as a complementary approach to developing exhaustive PPM reactions. As proof of the DOP concept, we present an exhaustive Baeyer-Villiger (BV) post-modification which cannot be accessed by conventional approaches. This user-friendly methodology provides general access to synthetically challenging copolymers of vinyl acetate and more activated monomers (MAMs) including both statistical and narrow-dispersed block copolymers. Furthermore, a scalable one-pot copolymerization/exhaustive BV post-modification procedure was developed to produce such materials showing improved performance over regular PVAc.
Collapse
Affiliation(s)
- Pengfei Ma
- School of Chemistry, Sun Yat-sen University Guangzhou 510275 P. R. China
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Christopher M Plummer
- International Centre for Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology Zeromskiego 116 90-924 Lodz Poland
| | - Wenjun Luo
- School of Chemistry, Sun Yat-sen University Guangzhou 510275 P. R. China
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Jiyan Pang
- School of Chemistry, Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Yongming Chen
- School of Materials Science and Engineering, Sun Yat-sen University Guangzhou 510275 P. R. China
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Le Li
- School of Chemistry, Sun Yat-sen University Guangzhou 510275 P. R. China
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University Guangzhou 510275 P. R. China
| |
Collapse
|
9
|
A comparison of RAFT and ATRP methods for controlled radical polymerization. Nat Rev Chem 2021; 5:859-869. [PMID: 37117386 DOI: 10.1038/s41570-021-00328-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2021] [Indexed: 11/08/2022]
Abstract
Reversible addition-fragmentation chain-transfer (RAFT) polymerization and atom transfer radical polymerization (ATRP) are the two most common controlled radical polymerization methods. Both methods afford functional polymers with a predefined length, composition, dispersity and end group. Further, RAFT and ATRP tame radicals by reversibly converting active polymeric radicals into dormant chains. However, the mechanisms by which the ATRP and RAFT methods control chain growth are distinct, so each method presents unique opportunities and challenges, depending on the desired application. This Perspective compares RAFT and ATRP by identifying their mechanistic strengths and weaknesses, and their latest synthetic applications.
Collapse
|
10
|
Lee HW, Lee NJ, Kim JG. Sequential Post-Polymerization Modification of Aldehyde Polymers to Ketone and Oxime Polymers. Macromol Rapid Commun 2021; 42:e2100478. [PMID: 34519386 DOI: 10.1002/marc.202100478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/07/2021] [Indexed: 11/06/2022]
Abstract
A new sequential post-polymerization modification route has been developed for the synthesis of multifunctional polymers from a simple aldehyde polymer. In the first modification step, a template polymer derived from the radical polymerization of 4-vinyl benzaldehyde undergoes Rh-catalyzed hydroacylation with alkenes to furnish a group of ketone polymers. In the second modification step, Schiff base formation with alkoxy ammonium salts introduces a second group-an oxime functionality. Both the steps are highly efficient, introducing evenly distributed dual functionalities at the same position.
Collapse
Affiliation(s)
- Hyo Won Lee
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54986, Republic of Korea
| | - Nam Joo Lee
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54986, Republic of Korea
| | - Jeung Gon Kim
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54986, Republic of Korea
| |
Collapse
|
11
|
Allegrezza ML, Konkolewicz D. PET-RAFT Polymerization: Mechanistic Perspectives for Future Materials. ACS Macro Lett 2021; 10:433-446. [PMID: 35549229 DOI: 10.1021/acsmacrolett.1c00046] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the past decade, photochemistry has emerged as a growing area in organic and polymer chemistry. Use of light to drive polymerization has advantages by imparting spatial and temporal control over the reaction. Photoinduced electron/energy transfer reversible addition-fragmentation chain transfer polymerization (PET-RAFT) has emerged as an excellent technique for developing well-defined polymers from a variety of functional monomers. However, the mechanism, of electron versus energy transfer is debated in the literature, with conflicting reports on the underlying process. This perspective focuses on the mechanistic aspects of PET-RAFT, in particular, the electron versus energy transfer pathways. The different mechanisms are evaluated, including evidence for one versus the other mechanisms. The current literature has not reached a consensus across all PET-RAFT processes, but rather, each catalytic system has unique characteristics.
Collapse
Affiliation(s)
- Michael L. Allegrezza
- Department of Chemistry and Biochemmistry, Miami University, 651 East High Street, Oxford, Ohio 45056, United States
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemmistry, Miami University, 651 East High Street, Oxford, Ohio 45056, United States
| |
Collapse
|
12
|
Nwoko T, De Alwis Watuthanthrige N, Parnitzke B, Yehl K, Konkolewicz D. Tuning the molecular weight distributions of vinylketone-based polymers using RAFT photopolymerization and UV photodegradation. Polym Chem 2021. [DOI: 10.1039/d1py01129d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The choice and mixture of chain transfer agent in reversible addition/fragmentation chain transfer polymerization has been used to modulate the dispersity and architecture of vinyl ketone polymers and their copolymers.
Collapse
Affiliation(s)
- Tochukwu Nwoko
- Department of Chemistry and Biochemistry, Miami University, 651 E High St., Oxford, OH, USA
| | | | - Bryan Parnitzke
- Department of Chemistry and Biochemistry, Miami University, 651 E High St., Oxford, OH, USA
| | - Kevin Yehl
- Department of Chemistry and Biochemistry, Miami University, 651 E High St., Oxford, OH, USA
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, 651 E High St., Oxford, OH, USA
| |
Collapse
|
13
|
Nothling MD, Fu Q, Reyhani A, Allison‐Logan S, Jung K, Zhu J, Kamigaito M, Boyer C, Qiao GG. Progress and Perspectives Beyond Traditional RAFT Polymerization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001656. [PMID: 33101866 PMCID: PMC7578854 DOI: 10.1002/advs.202001656] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/17/2020] [Indexed: 05/09/2023]
Abstract
The development of advanced materials based on well-defined polymeric architectures is proving to be a highly prosperous research direction across both industry and academia. Controlled radical polymerization techniques are receiving unprecedented attention, with reversible-deactivation chain growth procedures now routinely leveraged to prepare exquisitely precise polymer products. Reversible addition-fragmentation chain transfer (RAFT) polymerization is a powerful protocol within this domain, where the unique chemistry of thiocarbonylthio (TCT) compounds can be harnessed to control radical chain growth of vinyl polymers. With the intense recent focus on RAFT, new strategies for initiation and external control have emerged that are paving the way for preparing well-defined polymers for demanding applications. In this work, the cutting-edge innovations in RAFT that are opening up this technique to a broader suite of materials researchers are explored. Emerging strategies for activating TCTs are surveyed, which are providing access into traditionally challenging environments for reversible-deactivation radical polymerization. The latest advances and future perspectives in applying RAFT-derived polymers are also shared, with the goal to convey the rich potential of RAFT for an ever-expanding range of high-performance applications.
Collapse
Affiliation(s)
- Mitchell D. Nothling
- Polymer Science GroupDepartment of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| | - Qiang Fu
- Centre for Technology in Water and Wastewater Treatment (CTWW)School of Civil and Environmental EngineeringUniversity of Technology SydneyUltimoNSW2007Australia
| | - Amin Reyhani
- Polymer Science GroupDepartment of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| | - Stephanie Allison‐Logan
- Polymer Science GroupDepartment of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| | - Kenward Jung
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN)School of Chemical EngineeringUNWSSydneyNSW2052Australia
| | - Jian Zhu
- College of ChemistryChemical Engineering and Material ScienceDepartment of Polymer Science and EngineeringSoochow UniversitySuzhou215123China
| | - Masami Kamigaito
- Department of Molecular and Macromolecular ChemistryGraduate School of EngineeringNagoya UniversityFuro‐cho, Chikusa‐kuNagoya464‐8603Japan
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN)School of Chemical EngineeringUNWSSydneyNSW2052Australia
| | - Greg G. Qiao
- Polymer Science GroupDepartment of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| |
Collapse
|
14
|
De Alwis Watuthanthrige N, Reeves JA, Dolan MT, Valloppilly S, Zanjani MB, Ye Z, Konkolewicz D. Wavelength-Controlled Synthesis and Degradation of Thermoplastic Elastomers Based on Intrinsically Photoresponsive Phenyl Vinyl Ketone. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Jennifer A. Reeves
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford Ohio, 45056, United States
| | - Madison T. Dolan
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford Ohio, 45056, United States
| | - Shah Valloppilly
- Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588, United States
| | - Mehdi B. Zanjani
- Department of Mechanical and Manufacturing Engineering, Miami University, 650 E High St, Oxford, Ohio 45056, United States
| | - Zhijiang Ye
- Department of Mechanical and Manufacturing Engineering, Miami University, 650 E High St, Oxford, Ohio 45056, United States
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford Ohio, 45056, United States
| |
Collapse
|
15
|
Xu Y, Noirbent G, Brunel D, Liu F, Gigmes D, Sun K, Zhang Y, Liu S, Morlet-Savary F, Xiao P, Dumur F, Lalevée J. Ketone derivatives as photoinitiators for both radical and cationic photopolymerizations under visible LED and application in 3D printing. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109737] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Delafresnaye L, Jung K, Boyer C, Barner-Kowollik C. Two colours of light drive PET–RAFT photoligation. Polym Chem 2020. [DOI: 10.1039/d0py01078b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
By fusing the realms of photopolymerisation and photoligation, our contribution exploits two orthogonal wavelengths of visible light to readily synthesise and functionalise well defined polymers from a unique dual functionality RAFT agent.
Collapse
Affiliation(s)
- Laura Delafresnaye
- Centre for Materials Science
- Queensland University of Technology (QUT)
- 4000 Brisbane
- Australia
- School of Chemistry and Physics
| | - Kenward Jung
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN)
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN)
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| | - Christopher Barner-Kowollik
- Centre for Materials Science
- Queensland University of Technology (QUT)
- 4000 Brisbane
- Australia
- School of Chemistry and Physics
| |
Collapse
|
17
|
Chen T, Wang H, Chu Y, Boyer C, Liu J, Xu J. Photo‐Induced Depolymerisation: Recent Advances and Future Challenges. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900166] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Tao Chen
- College of Materials Science and Engineering Institute for Graphene Applied Technology Innovation Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong Province Qingdao University Qingdao 266071 China
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney NSW 2052 Australia
| | - Huining Wang
- College of Materials Science and Engineering Institute for Graphene Applied Technology Innovation Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong Province Qingdao University Qingdao 266071 China
| | - Yingying Chu
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney NSW 2052 Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney NSW 2052 Australia
| | - Jingquan Liu
- College of Materials Science and Engineering Institute for Graphene Applied Technology Innovation Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong Province Qingdao University Qingdao 266071 China
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney NSW 2052 Australia
| |
Collapse
|
18
|
Kuhn LR, Allegrezza ML, Dougher NJ, Konkolewicz D. Using Kinetic Modeling and Experimental Data to Evaluate Mechanisms in PET‐RAFT. JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1002/pola.29475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Leah R. Kuhn
- Department of Chemistry and BiochemistryMiami University, 651 E High St. Oxford Ohio 45056
| | - Michael L. Allegrezza
- Department of Chemistry and BiochemistryMiami University, 651 E High St. Oxford Ohio 45056
| | - Nicholas J. Dougher
- Department of Chemistry and BiochemistryMiami University, 651 E High St. Oxford Ohio 45056
| | - Dominik Konkolewicz
- Department of Chemistry and BiochemistryMiami University, 651 E High St. Oxford Ohio 45056
| |
Collapse
|
19
|
Sultane PR, Bielawski CW. Stereoelectronically Directed Photodegradation of Poly(adamantyl Vinyl Ketone). Macromol Rapid Commun 2019; 40:e1900302. [PMID: 31334910 DOI: 10.1002/marc.201900302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/01/2019] [Indexed: 12/28/2022]
Abstract
Adamantyl vinyl ketone (AVK) and its copolymers are synthesized using reversible addition fragmentation chain-transfer (RAFT) methodology and then degraded using UV light. The polymerization of AVK is found to be controlled as indicated by a linear correlation between the molecular weights of the polymers produced and monomer conversion as well as a series of chain extensions. The RAFT method is also used to synthesize random and block copolymers of AVK and methyl methacrylate. Irradiating poly(adamantyl vinyl ketone) (PAVK) with UV light affords a polyolefin and adamantane as the major products. Similar products are obtained, along with poly(methyl methacrylate) (PMMA), when the block copolymer is subjected to UV light. The random copolymer undergoes complete degradation under similar conditions. A mechanism wherein stereoelectronic effects channel photodegradation through Norrish I Type pathways in a manner that preserves the main chain of the polymer during the decomposition process is proposed.
Collapse
Affiliation(s)
- Prakash R Sultane
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Christopher W Bielawski
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea.,Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.,Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| |
Collapse
|
20
|
Reeves JA, De Alwis Watuthanthrige N, Boyer C, Konkolewicz D. Intrinsic and Catalyzed Photochemistry of Phenylvinylketone for Wavelength‐Sensitive Controlled Polymerization. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Jennifer A. Reeves
- Department of Chemistry and BiochemistryMiami University 651 E High St Oxford OH 45056 Miami USA
| | | | - Cyrille Boyer
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine School of Chemical Engineering, and Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of ChemistryThe University of New South Wales Sydney NSW 2052 Australia
| | - Dominik Konkolewicz
- Department of Chemistry and BiochemistryMiami University 651 E High St Oxford OH 45056 Miami USA
| |
Collapse
|
21
|
Dolinski ND, Page ZA, Discekici EH, Meis D, Lee IH, Jones GR, Whitfield R, Pan X, McCarthy BG, Shanmugam S, Kottisch V, Fors BP, Boyer C, Miyake GM, Matyjaszewski K, Haddleton DM, de Alaniz JR, Anastasaki A, Hawker CJ. What happens in the dark? Assessing the temporal control of photo-mediated controlled radical polymerizations. JOURNAL OF POLYMER SCIENCE. PART A, POLYMER CHEMISTRY 2019; 57:268-273. [PMID: 31011240 PMCID: PMC6474683 DOI: 10.1002/pola.29247] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 09/12/2018] [Indexed: 12/29/2022]
Abstract
A signature of photo-mediated controlled polymerizations is the ability to modulate the rate of polymerization by turning the light source 'on' and 'off.' However, in many reported systems, growth can be reproducibly observed during dark periods. In this study, emerging photo-mediated controlled radical polymerizations are evaluated with in situ 1H NMR monitoring to assess their behavior in the dark. Interestingly, it is observed that Cu-mediated systems undergo long-lived, linear growth during dark periods in organic media.
Collapse
Affiliation(s)
- Neil D. Dolinski
- Materials Department and Materials Research Laboratory, University of California Santa Barbara, Santa Barbara CA 93106
| | - Zachariah A. Page
- Materials Department and Materials Research Laboratory, University of California Santa Barbara, Santa Barbara CA 93106
| | - Emre H. Discekici
- Materials Department and Materials Research Laboratory, University of California Santa Barbara, Santa Barbara CA 93106
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara CA 93106
| | - David Meis
- Materials Department and Materials Research Laboratory, University of California Santa Barbara, Santa Barbara CA 93106
| | - In-Hwan Lee
- Materials Department and Materials Research Laboratory, University of California Santa Barbara, Santa Barbara CA 93106
| | - Glen R. Jones
- Department of Chemistry, University of Warwick, Coventry, CV47 AK (UK)
| | - Richard Whitfield
- Department of Chemistry, University of Warwick, Coventry, CV47 AK (UK)
| | - Xiangcheng Pan
- Center for Macromolecular Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Blaine G. McCarthy
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523
| | - Sivaprakash Shanmugam
- Center for Advanced Macromolecular Design, School of Chemical Engineering, The University of New South Wales, Sydney NSW 2052, (Australia)
| | | | - Brett P. Fors
- Department of Chemistry, Cornell University, Ithaca, NY 14850
| | - Cyrille Boyer
- Center for Advanced Macromolecular Design, School of Chemical Engineering, The University of New South Wales, Sydney NSW 2052, (Australia)
| | - Garret M. Miyake
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523
| | | | | | - Javier Read de Alaniz
- Materials Department and Materials Research Laboratory, University of California Santa Barbara, Santa Barbara CA 93106
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara CA 93106
| | - Athina Anastasaki
- Materials Department and Materials Research Laboratory, University of California Santa Barbara, Santa Barbara CA 93106
- Department of Chemistry, University of Warwick, Coventry, CV47 AK (UK)
| | - Craig J. Hawker
- Materials Department and Materials Research Laboratory, University of California Santa Barbara, Santa Barbara CA 93106
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara CA 93106
| |
Collapse
|
22
|
Kurek PN, Kloster AJ, Weaver KA, Manahan R, Allegrezza ML, De Alwis Watuthanthrige N, Boyer C, Reeves JA, Konkolewicz D. How Do Reaction and Reactor Conditions Affect Photoinduced Electron/Energy Transfer Reversible Addition–Fragmentation Transfer Polymerization? Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.7b05397] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Pierce N. Kurek
- Department of Chemistry and Biochemistry, Miami University, 651 E High St., Oxford, Ohio 45056, United States
| | - Alex J. Kloster
- Department of Chemistry and Biochemistry, Miami University, 651 E High St., Oxford, Ohio 45056, United States
| | - Kyle A. Weaver
- Department of Chemistry and Biochemistry, Miami University, 651 E High St., Oxford, Ohio 45056, United States
| | - Rodrigo Manahan
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Michael L. Allegrezza
- Department of Chemistry and Biochemistry, Miami University, 651 E High St., Oxford, Ohio 45056, United States
| | | | - Cyrille Boyer
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Jennifer A. Reeves
- Department of Chemistry and Biochemistry, Miami University, 651 E High St., Oxford, Ohio 45056, United States
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, 651 E High St., Oxford, Ohio 45056, United States
| |
Collapse
|
23
|
Wang GX, Liu MS, Liang E, He B. Photo-induced controlled radical polymerization with new Photocatalyst. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-018-1459-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
24
|
De Alwis Watuthanthrige N, Kurek PN, Konkolewicz D. Photolabile protecting groups: a strategy for making primary amine polymers by RAFT. Polym Chem 2018. [DOI: 10.1039/c7py01398a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photolabile amine protecting groups are combined with RAFT polymerization to create well-defined amine containing polymers, which is typically a challenge for RAFT polymerization.
Collapse
Affiliation(s)
| | - Pierce N. Kurek
- Department of Chemistry and Biochemistry
- Miami University
- Oxford
- USA
| | | |
Collapse
|
25
|
Niu J, Page ZA, Dolinski ND, Anastasaki A, Hsueh AT, Soh HT, Hawker CJ. Rapid Visible Light-Mediated Controlled Aqueous Polymerization with In Situ Monitoring. ACS Macro Lett 2017; 6:1109-1113. [PMID: 35650926 DOI: 10.1021/acsmacrolett.7b00587] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a simple procedure for rapid, visible light-mediated, controlled radical polymerization in aqueous solutions. Based on the photoelectron transfer reversible addition-fragmentation chain transfer (PET-RAFT) polymerization, fast chain propagation at room temperature in water was achieved in the presence of reductant and without prior deoxygenation. A systematic study correlating irradiation intensity and polymerization kinetics, enabled by in situ nuclear magnetic resonance spectroscopy, provided optimized reaction conditions. The versatility of this procedure was demonstrated through a rapid triblock copolymer synthesis, and incorporation of water-labile activated esters for direct conjugation of hydrophilic small molecules and proteins. In addition, this technique boasts excellent temporal control and provides a wide range of macromolecular materials with controlled molecular weights and narrow molecular weight distributions.
Collapse
Affiliation(s)
- Jia Niu
- Department
of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | | | | | | | | | | | | |
Collapse
|
26
|
Lee IH, Discekici EH, Anastasaki A, de Alaniz JR, Hawker CJ. Controlled radical polymerization of vinyl ketones using visible light. Polym Chem 2017. [DOI: 10.1039/c7py00617a] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Herein we report the photoinduced electron transfer–reversible addition–fragmentation chain transfer (PET-RAFT) polymerization of a range of vinyl ketone monomers including methyl, ethyl and phenyl derivatives, using Eosin Y as an organic photoredox catalyst and visible light.
Collapse
Affiliation(s)
- In-Hwan Lee
- Materials Research Laboratory
- University of California
- Santa Barbara
- USA
| | - Emre H. Discekici
- Materials Research Laboratory
- University of California
- Santa Barbara
- USA
- Department of Chemistry and Biochemistry
| | - Athina Anastasaki
- Materials Research Laboratory
- University of California
- Santa Barbara
- USA
| | - Javier Read de Alaniz
- Materials Research Laboratory
- University of California
- Santa Barbara
- USA
- Department of Chemistry and Biochemistry
| | - Craig J. Hawker
- Materials Research Laboratory
- University of California
- Santa Barbara
- USA
- Department of Chemistry and Biochemistry
| |
Collapse
|