1
|
Filice S, Scuderi V, Scalese S. Sulfonated Pentablock Copolymer (Nexar TM) for Water Remediation and Other Applications. Polymers (Basel) 2024; 16:2009. [PMID: 39065326 PMCID: PMC11280590 DOI: 10.3390/polym16142009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
This review focuses on the use of a sulfonated pentablock copolymer commercialized as NexarTM in water purification applications. The properties and the use of sulfonated copolymers, in general, and of NexarTM, in particular, are described within a brief reference focusing on the problem of different water contaminants, purification technologies, and the use of nanomaterials and nanocomposites for water treatment. In addition to desalination and pervaporation processes, adsorption and photocatalytic processes are also considered here. The reported results confirm the possibility of using NexarTM as a matrix for embedded nanoparticles, exploiting their performance in adsorption and photocatalytic processes and preventing their dispersion in the environment. Furthermore, the reported antimicrobial and antibiofouling properties of NexarTM make it a promising material for achieving active coatings that are able to enhance commercial filter lifetime and performance. The coated filters show selective and efficient removal of cationic contaminants in filtration processes, which is not observed with a bare commercial filter. The UV surface treatment and/or the addition of nanostructures such as graphene oxide (GO) flakes confer NexarTM with coating additional functionalities and activity. Finally, other application fields of this polymer are reported, i.e., energy and/or gas separation, suggesting its possible use as an efficient and economical alternative to the more well-known Nafion polymer.
Collapse
Affiliation(s)
- Simona Filice
- Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e Microsistemi (CNR-IMM), Ottava Strada n.5, 95121 Catania, Italy;
| | | | - Silvia Scalese
- Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e Microsistemi (CNR-IMM), Ottava Strada n.5, 95121 Catania, Italy;
| |
Collapse
|
2
|
Piñón-Balderrama CI, Leyva-Porras C, Conejo-Dávila AS, Zaragoza-Contreras EA. Sulfonated Block Copolymers: Synthesis, Chemical Modification, Self-Assembly Morphologies, and Recent Applications. Polymers (Basel) 2022; 14:polym14235081. [PMID: 36501479 PMCID: PMC9740409 DOI: 10.3390/polym14235081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Scientific research based on the self-assembly behavior of block copolymers (BCs) comprising charged-neutral segments has emerged as a novel strategy mainly looking for the optimization of efficiency in the generation and storage of electrical energy. The sulfonation reaction re- presents one of the most commonly employed methodologies by scientific investigations to reach the desired amphiphilic character, leading to enough ion concentration to modify and control the entire self-assembly behavior of the BCs. Recently, several works have studied and exploited these changes, inducing improvement on the mechanical properties, ionic conduction capabilities, colloidal solubility, interface activity, and stabilization of dispersed particles, among others. This review aims to present a description of recent works focused on obtaining amphiphilic block copolymers, specifically those that were synthesized by a living/controlled polymerization method and that have introduced the amphiphilic character by the sulfonation of one of the segments. Additionally, relevant works that have evidenced morphological and/or structural changes regarding the pristine BC as a result of the chemical modification are discussed. Finally, several emerging practical applications are analyzed to highlight the main drawbacks and challenges that should be addressed to overcome the development and understanding of these complex systems.
Collapse
|
3
|
Peddinti BST, Downs SN, Yan J, Smith SD, Ghiladi RA, Mhetar V, Tocchetto R, Griffiths A, Scholle F, Spontak RJ. Rapid and Repetitive Inactivation of SARS-CoV-2 and Human Coronavirus on Self-Disinfecting Anionic Polymers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2003503. [PMID: 34105286 PMCID: PMC7994973 DOI: 10.1002/advs.202003503] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/06/2021] [Indexed: 05/20/2023]
Abstract
While the ongoing COVID-19 pandemic affirms an urgent global need for effective vaccines as second and third infection waves are spreading worldwide and generating new mutant virus strains, it has also revealed the importance of mitigating the transmission of SARS-CoV-2 through the introduction of restrictive social practices. Here, it is demonstrated that an architecturally- and chemically-diverse family of nanostructured anionic polymers yield a rapid and continuous disinfecting alternative to inactivate coronaviruses and prevent their transmission from contact with contaminated surfaces. Operating on a dramatic pH-drop mechanism along the polymer/pathogen interface, polymers of this archetype inactivate the SARS-CoV-2 virus, as well as a human coronavirus surrogate (HCoV-229E), to the minimum detection limit within minutes. Application of these anionic polymers to frequently touched surfaces in medical, educational, and public-transportation facilities, or personal protection equipment, can provide rapid and repetitive protection without detrimental health or environmental complications.
Collapse
Affiliation(s)
| | - Sierra N. Downs
- National Emerging Infectious Diseases LaboratoriesBoston University School of MedicineBostonMA02118USA
| | - Jiaqi Yan
- Department of Chemical & Biomolecular EngineeringNorth Carolina State UniversityRaleighNC27695USA
| | - Steven D. Smith
- Corporate Research & DevelopmentThe Procter & Gamble CompanyCincinnatiOH45224USA
| | - Reza A. Ghiladi
- Department of ChemistryNorth Carolina State UniversityRaleighNC27695USA
- Center for Advanced Virus ExperimentationNorth Carolina State UniversityRaleighNC27695USA
| | - Vijay Mhetar
- Kraton Innovation CenterKraton CorporationHoustonTX77084USA
| | | | - Anthony Griffiths
- National Emerging Infectious Diseases LaboratoriesBoston University School of MedicineBostonMA02118USA
| | - Frank Scholle
- Center for Advanced Virus ExperimentationNorth Carolina State UniversityRaleighNC27695USA
- Department of Biological SciencesNorth Carolina State UniversityRaleighNC27695USA
| | - Richard J. Spontak
- Department of Chemical & Biomolecular EngineeringNorth Carolina State UniversityRaleighNC27695USA
- Center for Advanced Virus ExperimentationNorth Carolina State UniversityRaleighNC27695USA
- Department of Materials Science & EngineeringNorth Carolina State UniversityRaleighNC27695USA
| |
Collapse
|
4
|
Kang S, Park MJ. 100th Anniversary of Macromolecular Science Viewpoint: Block Copolymers with Tethered Acid Groups: Challenges and Opportunities. ACS Macro Lett 2020; 9:1527-1541. [PMID: 35617073 DOI: 10.1021/acsmacrolett.0c00629] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Scientific research on advanced polymer electrolytes has led to the emergence of all-solid-state energy storage/transfer systems. Early research began with acid-tethered polymers half a century ago, and research interest has gradually shifted to high-precision polymers with controllable acid functional groups and nanoscale morphologies. Consequently, various self-assembled acid-tethered block polymer morphologies have been produced. Their ion properties are profoundly affected by the multiscale intermolecular interactions in confinements. The creation of hierarchically organized ion/dipole arrangements inside the block copolymer nanostructures has been highlighted as a future method for developing advanced single-ion polymers with decoupled ion dynamics and polymer chain relaxation. Several emerging practical applications of the acid-tethered block copolymers have been explored to draw attention to the challenges and opportunities in developing state-of-the-art electrochemical systems.
Collapse
Affiliation(s)
- Sejong Kang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Korea 790-784
| | - Moon Jeong Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Korea 790-784
| |
Collapse
|
6
|
Pan Y, Li B, Liu Z, Yang Z, Yang X, Shi K, Li W, Peng C, Wang W, Ji X. Superfast and Reversible Thermoresponse of Poly( N-isopropylacrylamide) Hydrogels Grafted on Macroporous Poly(vinyl alcohol) Formaldehyde Sponges. ACS APPLIED MATERIALS & INTERFACES 2018; 10:32747-32759. [PMID: 30157634 DOI: 10.1021/acsami.8b12395] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Poly( N-isopropylacrylamide) (PNIPAAm), a typical thermoresponsive polymer, exhibits potential application in smart materials. However, bulk PNIPAAm hydrogel monoliths undergo slow volume phase transition at least tens of minutes to hours as determined by the shape and size of polymers due to the formation of the skin layer. In this regard, novel macroporous sponges with rapid thermoresponse are prepared via grafting polymerization of N-isopropylacrylamide (NIPAAm) onto the macroporous poly(vinyl alcohol) formaldehyde (PVF) network as confirmed by attenuated total reflection-infrared (ATR IR) and 1H NMR spectra. As prepared PVF- g-PNIPAAm sponges display interconnected open-cell structures, and their average pore sizes and porosities are ∼90 μm and >85%, respectively. The equilibrium swelling ratio of PVF- g-PNIPAAm sponges varies from 11 to 50 with temperature. The volume phase transition temperature is at 30-34 °C, as detected in the DSC curves of swollen samples. These features indicate that the existence of the original PVF network exerts almost no influence on the PNIPAAm temperature responsibility. As prepared samples can reach the swelling equilibrium in less than 80 s, and their rapid swelling kinetics can be fitted using the pseudo-first-order rate kinetic equation. Notably, the samples also display rapid deswelling rate in less than 40 s at relative high temperature (48 °C), thereby indicating a superfast responsive behavior to temperature change. The PVF- g-PNIPAAm sponges exhibit rapid and reversible thermoresponse in repeatable swelling-deswelling cycles, which can satisfy the need of special smart materials. In particular, combined with iodine solution (i.e., PVF- g-PNIPAAm/I2), these sponges can serve as a novel temperature indicator and exhibit excellent antibacterial performances.
Collapse
Affiliation(s)
- Yanxiong Pan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
| | - Bingrui Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
| | - Zhi Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
| | - Zhongyu Yang
- Department of Chemistry and Biochemistry , North Dakota State University , Fargo , North Dakota 58108 , United States
| | - Xu Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
| | - Kai Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
| | - Wei Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
| | - Chao Peng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
| | - Weicai Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
| | - Xiangling Ji
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
| |
Collapse
|